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Theory of neutral atom scattering at long range from metal surfaces*
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We examine possible interactions between neutral atoms and metal surfaces at separations greater than 500
A, treating the Lifshitz dispersion force, dynamic forces, and fringe fields due to surface roughness. Using
the derived interaction energies we compute the classical trajectories of atoms passing over metal cylinders
and compare them with the results of a recent series of experiments. There is a significant discrepancy
between theory and experiment, with theory predicting more scattering than is observed.

I. INTRODUCTION

There has recently been an extensive experi-
mental study of the interactions between neutral
atoms or molecules and a conducting surface. ' '
In this work the deflection of an atomic beam pass-
ing near a cylindrical surface is measured. One
then attempts to match the observed decay of the
beam intensity into the shadow with theoretically
'derived expressions. For the case when the inci-
dent beam consists of neutral atoms (no permanent
dipole moment), the interaction potential energy at
a distance B (much larger than the lattice con-
stant) from the conducting surface is expected to
follow the predictions of the Lifshitz' theory: de-
caying first as 8, then as 8 4 when retardation
effects become important. The explicit formula of
Parsegian' yields this behavior in a form that is
readily calculable given the frequency dependence
of both the dielectric constant of the conductor and
the polarizability of the atom —see Eq. (1). We
stress that there are no arbitrary parameters in
this theory.

The surprising conclusion of the experimental
work' is that the above dispersion forces appear to
overestimate the actual interaction significantly.
Shih and Parsegian' are able to fit their data by an
interaction of the Lifshitz form but assert that the
deduced coupling constant is at least 60% smaller
than the theoretical value, with the estimated ex-
perimental errors being less than (5-10)%. They
go on to discuss several possible reasons for the
discrepancy but cannot find a resolution.

In view of the important implications of their
conclusions we have reexamined theoretically the
possible interactions between a moving neutral
atom and a conducting surface, We first essential-
ly duplicated their calculation of the Lifshitz dis-
persion force and confirmed their result. Then we
sought modifications of this force due to omitted
effects. A strong restraint on this search is the
fact that the experiments indicate a weaker inter-
action than expected. Since most of the possible

interactions arise from second-order perturbation
theory„adding extra coupling mechanisms yields
more attraction between the atom and the surface.
However, a careful analysis of the atom's classi-
cal trajectory shows that more attraction need not
imply more scattering. We find that the rate of.

spatial variation of the potential energy is an im-
portant independent parameter. Encouraged by
this general result, we have studied models to de-
scribe the extra interaction energy due to surface
roughn'ess. In the most promising case we find a
potential energy which varies as 8 ', at large 8,
with a strength that is controlled by parameters of
the model. ' This extra attraction does lead to a
lower theoretical scattered intensity: but unfor-
tunately the improvement is marginal with respect
to the data, at least for what seem to be reasonable
parameter choices. Still the model does show how
surface topography might be an important variable
in such experiments.

In Sec. II we discuss the Lifshitz dispersion
force and explicitly show how it fails to explain the
experiments. We also argue that modifications
consistent with the dispersion force mechanism
are negligible. Next in Sec. III we present a phys-
ical picture of our roughness models; the detailed
derivations have been relegated to an Appendix.
We give both a qualitative description of their ef-
fect on an' atom's trajectory and a model calcula-
tion. Lastly we summarize our conclusions in Sec.
IV.

II. LIFSHITZ DISPERSION FORCE

We begin with the result of Parsegian' derived
from the Lifshitz theory' of dispersion forces.
The potential energy of a neutral atom at a distance
A above a Qat metal surface at zero temperature
is

v, (z) = -a,/z',
with
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where h is Planck's constant divided by 2w, c is the
speed of light, and o(iu) and e(iu) are, respective-
ly, the polarizability of the atom and the dielectric
function of the metal, with both evaluated at the
imaginary frequency iu. The full effects of retar-
dation are included in (2). They are suppressed
when 8- 0 (or formally c-~), yielding a constant
for k~. In the opposite limit of large 9,
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The transition between these two regimes occurs
for the ma. terials of interest —alkali atoms above
gold surfaces —around 8 = 10' A and is an import-
ant feature in explaining the data. For an evalua-
tion of (1) we determine the dielectric constant of
the metal (Au) from optical data. , using either the
Drude parameters of Johnson and Christy' or the
more extensive results of the DESY group. ' The
atomic polarizability is calculated from

o. (iu) .= P f„((o;'+u—') ', (4)

where m is an electron's mass and e is the magni-
tude of its charge. The oscillator strengths f«and
the transition frequencies (d; are taken for Cs from
Morc ross. "

Given the potential energy, the computation of
I/Io vs s is a standard central-force problem of
classical dynamics, ' ' where I/I, is the ratio of
scattered to unscattered flux at the detector loca-
tion (a, distance l, = 55 cm beyond the cylinder) and
s is the depth of the detector in the shadow region.
For a detailed description see Ref. 2. We only re-
mark here that for the range of s over which data
exist, 0.005 to 0.15 cm, corrections for the finite
widths of the incident slit and the detector and for
their possible misalignment as well as for the ef™
fective origin for s are generally negligible except
at the lowest values of s where for example they
amount to a few percent significance at s = 0.005
cm. We neglect them here. Further, rather than
average I/I, over the energy distribution of the
beam, we use an average energy E = 1.4k~T,
where k~ is Boltzmann's constant and T is the oven
tempera. ture. We have checked that the errors
thereby incurred are at most a few percent. ' Fin-
ally it is useful to plot not I/Io but rather I/I, vs s,
where I,/I, is the scattering spectrum for a stand-
ard choice of potential energy. We compute I, using
the Lifshitz dispersion force, (1), with k~ set equal
to 14.6 D' for all B. Here D is the Debye unit and

I ~l ( I i J i I
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FIG. l. Scattered intensity I/I, vs distance into the
shadow s for Cs atoms passing over a Au-plated cylin-
der. The experimental data and parameters are from
Ref. 4. The error bars represent+ one standard de-
viation. The theoretical curves are derived from the
Lifshitz dispersion force, Eq. (j.), using the optical
data of Ref. 9, —;or Bef. 8, --—.The values
I/I, =1 represent the scattering due to a potential V
=14.6D /R .

1 D' equals 10 "ergcm'. This particular value
we choose for kz is the 8 =0 limit of Eq. (2) for
Cs over Au using Hefs. 9 and 10.

. In Fig. 1 we compare the experimental data for
Cs over Au with the predictions of the Lifshitz dis-
persion force both including and excluding the ef-
fects of retardation. The latter curve in our
scheme is simply I/I, = 1 for all s. The data lie
some (20-30)%%uo below this curve and in order to
make a fit with a potential of the form k,/B' one-
needs k, = 7 D'.'" Although retardation effects on
t/'~ can account for more than half the discrepancy,
there remains a significant overestimate even in
this theory. Note that the effect of different opti-
cal data is slight. %'e also remark that little sig-
nificance should be attached to the downward plunge
of the theoretical curves as s- 0. The kinematic
complications we have neglected rapidly become
important below s = 0.005 cm, so much so that the
true predicted I/I, probably is increasing with de-
creasing s for s &0.0025 cm. However, since all
this structure occurs below the lowest experiment-
al value of s and is tedious to calculate precisely,
we ignore it.
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Since it is obvious from Fig. 1 that theory and
experiment do not agree, let us now consider pos-
sible modifications to the theory. The derivation
of (1) is in essence a second order perturbation
theory calculation requiring the virtual electronic
excitation of both the neutral atom and the metal
due to their mutual electromagnetic interaction.
The specific form obtained depends further on the
assumption that R is the dominant length in the
problem. One assumes R is much larger than the
dimension of the atom, the width of the metal's
surface structure, and any screening length or lat-
tice constant of the bulk metal. Although a detailed
calculation of corrections to (1) is not easy, ""it
is reasonable that they must be of relative order
5R/R, where 5R is some average of the previously
omitted small lengths and should be no greater than
a few angstroms. Since the atomic trajectories of
relevance to the experiment come no closer than
about 500 A, such corrections to V~(R) are prob-
ably less than a few percent and hence inconse-
quential. This conclusion would be less tenable if
there were a thick overlayer of surface contamina-
tion or a large degree of surface roughness. How-
ever the first possibility was eliminated by an ex-
tra experiment over a, freshly deposited surface in
high vacuum (&10 "Torr) which gave the same re-
sults as previous work. ' The second possibility is
harder to analyze; but the fact that one is making
a relative correction to (1), now of order (5R/R)'
due to its random nature, does not allow large
changes in V~ even for roughness on the scale of
Qi' - 100 A.

average could only. act to increase the predicted
flux.

Another way that surface roughness can influence
V(R) is by allowing a separate coupling mechanism

'

to exist. The I.ifshitz dispersion force requires
the virtual excitation of both the neutral atom, and
the metal. For an infinite plane surface there are
no static electric fields that exist beyond the sur-
face electronic dipole layer. This result remains
true for a closed surface of arbitrary shape as
long as the dipole layer is uniform. The presence
of surface roughness will however allow the ex-
istence of signif icant fringe or patch fields well
outside the metal surface, so we now turn to mod-
els that allow the calculations of such fields.

There are at least two ways in which surface
roughness can make the electronic dipole layer
nonuniform. Over the face of a single microcrys-
talline grain, one can imagine steps between vari-
ous plateaus which in effect discontinuously raise
or lower the dipolar charge density. 0n a larger
transverse scale the different exposed microcrys-
talline faces cause an additional nonuniformity of
the dipole layer due to variations in the work func-
tion with crystal face, giving rise to the classical
patch fields. " Although both effects are simulta-
neously present, for simplicity we treat them sep-
arately (see the Appendix for details). In each
case we can derive a static but spatially fluctuating
electric field outside the metal. Thi.s force acts
on the neutral atom to produce in second order
perturbation theory an additional attractive inter-
action:

III. ADDITIONAL INTERACTIONS

If one accepts our argument above that intrinsic
corrections to the I ifshitz dispersion force are
small, then what we need are new mechanisms of
interaction. One possibility is a, frictional force
proportional to the atom's velocity. Such forces
arise when one considers the first corrections to
the Born-Oppenheimer approximation that we have
so far invoked. "'" Unfortunately, a rough esti-
mate of these, although complicated by the fact
that the moving atom is not "charged, indicate that
they are several orders of magnitude too small.

A second possibility comes from the influence of
large scale surface roughness on the kinematics.
What we imagine here is that surface height varia-
tions along the length of the cylinder give rise to a
random variation in the effective origin for 8. This
effect would necessitate an extra average of I/I,
over the distributions of origins. However, for s
&0.005 cm an uncertainty in its true value of less
than a micron is negligible. Moreover, since 1/I,
has positive curvature for s in this range, the

where o. = o, (0) is the atom's static polarizability
and 8(R) is the roughness produced electric field
at the atom's location. To make our models tract-
able, we replace the squared field in (5) by the
mean-square field at distance R above the mean
surface ((~h(R)~2)), where the average is taken
over the surface roughness, which is represented
by a Gaussian correlation function. We thereby
obtain an expression for 5V(R) whose consequences
can still be analyzed as a central force problem.
The complete formulas are in the Appendix, here
we merely give their large R variation.

For the model of steps on a single-crystal face
we have for R»A~,

where 4meD is the change in electrostatic potential
due to the dipole layer of the smooth surface. The
parameter A~ characterizes the transverse dimen-
sions of the plateau while Z describes the height
of the steps. In the opposite limit R «&~, 6V~
saturates at a finite value.
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The strong spatial dependence of 5V~ in the as-
ymptotic region is an important feature. To clar
ify this point we make a brief digression to discuss
the classical mechanics of an atom's trajectory.
In the limit of large deQections we have found an
approximate analytic solution of the equations of
motion. It predicts

I/I, ~ exp[-(-,'b)'f'sr, /1, ],
where r, is the cylinder radius and s/l, is the angle
of deflection. The parameter b is defined by

d'V '

bE= ———— (8)d~' R=-R 0

where E is an atom s initial (and final) kinetic en-
ergy, V(R) is the total interaction potential energy
with t1:e cylinder, and 9p locates the maximum in
the effective potential energy V,«, which controls
the radial motion:

V ff L'/2M(r, + R)'+ V(A) (9)

where M is an atom's mass and L = (2ME)'f'(r, +a),
with rp+ a the impact parameter, is the conserved
angular momentum. One can easily show to an ex-
cellent approximation' that for all reasonable V(A),
V,ff has a single maximum at some 8 =8„ inde-
pendent of a, or equivalently of s; that the maxi-
Illlllll vallle V ff (A,) grows linearly with a; and that
the shape of V,«near Ap depends only on b. Con-
sequently, there is a value of a=a„at which the
maximum value of V6ff equals E. For a &ap the
atoms will crash into the surface, while for a &a,
the radial motion will recoil against V,.«at a value
of A & Ap Typical values of a„A„and r, are 500
A, 400 A, and 1.25 cm, respectively. The key
point is that for a &ap how quickly an atom reverses
its radial velocity determines the extent it is scat-
tered: a slow reversal implies a large deflection
and vice versa. The speed of the reversal depends
in turn, for a sufficiently close to a, (i.e. , for
lal'ge ellollgh s) ollly OI1 b. Eqllatloll (7), willcil ls
the analytic result of this argument, is formally
valid only in the limit of large deflections but in
practice its predicted dependences are apparent for
deflection angles as small as s/l, = 0.002 rad,
which are well within the range of the data.

The most useful aspect of (I) is that it clearly
shows I/ID to depend on more than the mere
strength of V. For a pure inverse power-law po-
tential energy, say V= -k„/R", a larger k„gives a,

larger I/I, since b ~ (1/0„)' ""~." However, if we
consider a mixture of power laws, say

(10)

then it is possible as we increase A from zero,
that b may increase and thereby lower I/I„even
though the strength of V is increasing. In fact for

a V of the form (10) we can show that I/I, at large
s will initially decrease with increasing k if m
&4. The encouraging point is that if in addition to
the Lifshitz potential energy one can justify an in-
teraction between the atoms and the metal which
varie. s rapidly with B, then there is hope that I/I,
will be lowered even though the extra interaction
is also attractive.

Now reconsider (6) which matches our criteria.
We expect (and find) that the addition of 5Ve to V~
will lower the predicted I/I, . In this regard the
alternative patch model of surface roughness is not
successful. Its strongest spatial dependence is al-
so at large 8 when A»A~ and

5V - —'a(ffe5D—A ) /A

where 4m@'5D measures half of the average varia-
tion of work function with crystal face and A~
characterizes the transverse grain size. Hence
its inclusion acts to increase I/I, . Similarly for
both ~Vs and ~Vs wi. th Ap away from the asymp-
totic region, one expects only increases in I/I, .

%e have carried out many model calculations,
all of which confirm the above qualitative remarks.
For instance if we augment V~ with 6V~ using
4Ife~5D =0.06 eV, then I/I, increases in roughly
uniform fashion for all s &0.01 cm up to a maxi-
mum enhancement of approximately 2% as A~ is
increased to 10' A. For further increases in A~,
I/I, is reduced back to its value for a smooth sur-
face. Qf course the maximum enhancement de-
pends on the value of DD. Our choice here is based
on the calculations of Lang and Kohn, "but we
stress that for no choice does I/I, decrease below
its smooth surface values.

The situation is not quite as bad when we instead
add 6 V~ to V~. Now as long as we keep A~ ~ 50 A
to ensure the applicability of (6), the predicted I/I,
will initially decrease as the product DZA~ in-
creases; see Fig. 2. The maximum reduction oc-
curs for DZA~ = 150 A.. Further increases of DZA~
eventually make I/I, greater than its smooth sur-
face values. In addition, if A~ is increased beyond
50 A at constant DZ, then the predicted I/I, re-
turns to its smooth surface values.

Unfortunately, physical estimates suggests that
the product DZA~ &2 A. To illustrate, we use D
= 0.0128/A (i.e. , 4ffe'D = 2.32 eV) to correspond to
a jellium estimate of the dipole-layer contribution
to the work function of Au (Ref. 17); we take Z
=2.36 A, the spacing of the (111) planes of Au (Ref.
18); and we set Ae = 50 A." Combining these yields
DZA~ =-1.5 A. Even a factor of 10 enhancement
(somehow spread over these estimates) still gives
a product DZA~ far too small to resolve the dis-
crepancy between theory and experiment. Calcula-
tions for the data on K or Hb over Au are similarly
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complicated by kinematic corrections and the large
s region is determined by ('?).

If further work fails to remove the discrepancy,
one may have to question the basic Lifshitz calcu-
lations, a point of view we have not explored here.
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disappointing. Our mechanism acts in the right
direction but with apparently too weak a magnitude.

IV. DISCUSSION

- The outstanding point is the significant discrep-
ancy between theory and experiment. We have
argued that neither intrinsic corrections to the
Lifshitz dispersion force nor new mechanisms of
interaction through surface roughness can resolve
the disagreement. However, even though surface
roughness effects seem too small, they at least
show a, possible way to reduce I/I, without reject-
ing the Lifshitz theory.

We urge that similar experiments be done, but
with a particular regard to characterizing the sur-
face. This will aid in the construction of suitable
models and choice of parameters. An experiment
over a liquid metal droplet would probably resolve
the importance of surface roughness effects. ' It
would be especially useful in ruling out large scale
roughness for which our averaging procedure is
inappropriate. Note that a more extensive range
of s will be of little use: the small s region is

= s(cm)

FIG. 2. Scattered intensity I/I~ vs distance into the
shadow s for Cs atoms passing over a Au-plated cylin-
der. The experimental data and parameters and the
normalization are as in Fig. 1. The theoretical curves
are calculated using for the interaction potential energy
the sum of the Lifshitz expression (1) and the step
roughness model (A6). The latter is evaluated here only
in the asymptotic limit (6) and is parametrized by the
product DZAs.

APPENDIX

To derive the potential energy of an atom above
a rough surface we need by Eq. (5) the static elec-
tric field produced by the surface. We calculate
this field by modeling the spatial variation of the
metal's charge density. For a smooth surface, we
consider the net charge density p to depend only on
the coordinate x normal to the surface and on the
crystal face exposed. The direct effect of lattice
periodicity on the fields produced far above the
surface (with respect to the lattice constant) is
negligible. " Assuming the metal is neutral, the
first relevant moment of the charge density is the
dipole moment/unit area:

]
D (X) = — dx xp( x, X),e (Al)

D (X) = D + &D (X), (A2)

where the average of 5D(X) over X vanishes. To
account for steps in the surface height within a
patch, we use the smooth surface density profile
shifted in x by Z(X). The origin of x locates the
mean surface and we require the average of Z(X)
over X to vanish. Note that our model omits any
"healing" of the charge density in response to the
distortions of the rough surface and hence probab-
ly overestimates the fields produced.

The electrostatic field is given by h = —Vg with

y(~)
@ d2Xg efQ ( X-X')

2m@

x d "-'i"-"'ip(.'), (A3)

where X is a two-dimensional vector in the surface
plane. The X va. riation of D(X) is due to the work
function variation among crystal faces. We re-
mark that a charged cylinder would produce such
a slowly varying average field —proportional to
r,/(x, + R)—that it would be of little consequence
for the experimental range of deflections and in
any case would only raise I/I, .'

Now consider a rough surface. Over a single
patch D(X) will be constant so we write
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where Q is a two-dimensional vector in the surface
plane, Q = ~Q~, and the three-dimensional vector r
= (x, X). Retardation effects do not enter (A3) since

. this potential is due to a static charge distribution.
We want to evaluate (A3) at x = R, fa.r beyond the

dipola. r cha. rge density. Hence we replace @~x
I—x'~ = Qx —Qx' and expand eo" = 1+ Qx'+ ~ ~ .

Then us ing our appr oximat ion for p, we find up to
first order in &D and Z,

O'Q

2m@
(Q, -i Q)exp(iQ ~ X Qx)

x d'X'e-'o"[eQ(D+5D(X'))+ . ]

x [1+Qz(x')+ ]

27r
(—Q, iQ) exp(iQ ~ X- Qx)

and Z(X) so that when we form the mean-square
field we need only specify averages of 5D(Q)5D(Q')
and Z(Q)Z(Q'). To parametrize these we make the
ansatz

((Z(X)Z(X'))) = Z'exp( —~X —X'~'/A', ),
((5D(X)5D(X'))) = (5D)'exp( —(X —X'~'/A~),

where the averages on the left-hand sides of (A5)
1 Iare over the center-of-mass variable 2 (X+X'). Our

use of an average expression here implies an as-
sumption that the roughness is not too large.

From the Fourier transforms of (A5) we can
readily compute ((~Z(R)~')), which separates into
two parts. Using (5) we obtain finally 5V=5V~
+5&~, where

5V, (R) = —2w'o (eDZA, )'

x [5D(Q)+ QDZ(Q)], (A4) dQ Q
' exp(-2@R --,'A~@') (A6)

where 5D(Q) and Z(Q) are two-dimensional Fourier
transforms. The second equality in (A4) shows
how in our approximation the effects of patches and
steps separate. We further assume that there is
no correlation between the random functions 5D(X)

and

5 V~(R) = -2v'o(e5DA~)'

dQ Q' exp(-2QR —4A~ Q'). (A7)
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