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If it is assumed that the electron density of an atom in its ground state is piecewise exponentially
decreasing as a function of the distarice from the nucleus, then it is shown that much improved values for the
energy, and electron densities exhibiting shell structure, are obtained from optimization of the density
functionals of Thomas-Fermi, Thomas-Fermi-Dirac, and Thomas-Fermi-Dirac with inhomogeneity correction.
An inhomogeneity correction which is one-ninth of the original Weizsacker correction is favored. Numerical
results are presented for all Grst-row atoms and selected second-row atoms, and comparisons are made with
results of other methods.

I. PREFACE

If the electron density p(r) of the nondegenerate
ground state of an atom with atomic number Z is
known, the total energy E in principle can be com-
puted from the energy-density functional,

&[pj = T[p)+V,[pl+ V..[pj,
where T[p] is the kinetic energy, V„,[pj is the nu-
clear-electron attraction energy,

V„,[p] = -Z dv„p(1)
(2

1

and V„[p] is the electron-electron repulsion en-
ergy. Furthermore, V„[p] can be separated into
two parts,

where the quantity,

ergy-density functional. The trouble is that,
except for the trivial case of one-electron systems,
the correct T[p] and K[p] are not as yet known.

In the present work, we shall not be concerned
with K[p). We formally neglect the correlation
energy part of Z[p], and we adopt the homogeneous
electron gas approximation of Dirac' for the ex-
change energy, '

-3 3 '~'
Z, [p]=—— p' '(1)dv, =-z p'~'dv.

4 m 1 e

Neither shall we be much concerned with T f p).
For it, we adopt the first two terms of the gradient
expansion, "'

T[pl = T.[pj+T.[pl,

where the quantity,

)f f n( )P( ) q„q,
13

(4) T, [p]= —,', (Sn*)* 'f p du c~f' 'p' '=dv,

is the classical Coulomb repulsion energy between
p and itself, and Z[p) is the rest, the so-called
exchange-correlation energy. If only a normalized
approximation to p is known, say p, inserted into
E(I. (1) it gives a value higher than the true E;
E(I. (1) is a minimum for the true density. That is,

&JE[p] —pN[p])=0, for p= p,

where

&[ pf]p(() ~U

and p, is a Lagrange multiplier, the chemical po-
tential of the atom.

The foregoing theorems, due to Hohenberg and
Kohn, ' hold for any number of electrons and pro-
vide the fundamental basis for the search, now'

more than half a century old, for the correct en-

is the original kinetic energy forMula of Thomas' '
and Fermi, ' b' while the quantity,

(10)

is one-ninth the inhomogeneity correction T~ in-
troduced by Weizsacker. ' Although some of it is
very new, the evidence for Eq. (8) is strong. Not
only has. it been derived theoretically, ""'but also
it has been shown to give the Hartree-Pock kinetic
energy within 1/q for many atoms, when p is taken
to be the Hartree-Pock density. '

It is commorily thought that the shell structure
of atoms is inaccessible through simple energy-
density functionals. " We shall show that, to the
contrary, shell structure can be obtained if we
impose a certain constraint on the atomic density,
that it is piece wise exponentially decaying.
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II. MODEL 12.0

Hartree-Fock electron densities" for ground
state of the atoms He, Ne, Ar, Kr, and Xe are
shown in Figs. 1-5. Note the remarkable accuracy
of the generalization: The electron density of the
ground state of an atom is a monotonically de-
creasing function of r,"well represented as a
continuous piecewise exponential function of x
with as many different exponential regions as there
are principal quantum numbers.

In an actual or Hartree-Fock atom, the transi-
tions from one exponential to the next occur over
certain intervals and cannot be associated with
single points. However, the minima in the radial
density are well-defined and physically meaningful
points, which allow one to separate an atom into
different exponential regions. " This fact about
electron densities is our point of departure. We
shall see that, when it is imposed as a constraint,
approximate energy-density functionals give much
improved results.
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FIG. 2. (a) Radial distribution function for Ne. (b)
Electron density of Ne.
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FIG. 1. (a) Radial distribution function for He. {b)
Electron density of He.

The piecewise exponential behavior holds as
well for other atoms as for noble gas atoms. While
Figs. 1-5 depict Hartree-Fock and not exact den-
sities, we may presume that exact densities will
show similar behavior. '~

In the present paper, we will discuss first-row
atoms in detail, and we also will present some
results on second-row atoms. Third- and fourth-
row atoms will be discussed in a later paper.

Table I gives the Hartree-Fock energies and
energy components for the first-rom atoms in their
ground stateh. Table II gives the parameters
characterizing the electron densities. The latter
show that the number of zones in an atom is the
number of distinct values of the principal quantum
number. A minimum in the radial distribution
function defines a good radius for separating the
atoms into zones. The number of electrons in the
zone near the nucleus is close to the number of
electrons in the K shell.

The measure of validity of an approximate ener-
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FIG. 3. (a) Radial distribution function for Ar. (b)
Electron density of Ar.

FIG. 4. (a) Radial distribution function for Kr. (b)
Electron density of Kr.

gy functional we take to be the extent to which a
minimization with respect to p, in accord with Eq.
(5), gives energy quantities in agreement with
Table I and densities in agreement with Table II."

These considerations lead us to postulate, as
a constraint on the electron density,

A, exp(-2&, x), 0~ x~ R, (K shell),

p(t) = A, exp(-2&p'), R, ~r R, (L shell), —

A.,exp(-2&p'), R, ~ x—R, (M shell),

etc. , with 0&R, &R, &etc. and &, ~&,~ ~,~etc.
We assume that p is continuous but dp/dz not
necessarily so.

When Eq. (11) is inserted in energy functionals
of the form of Eq. (1), we obtain modifications of
the customary statistical models for atoms; we
call the models so def ined Modif ied Models. Dif-
ferent models are defined by different assumptions

on T[p) and K[p], and also by whether a correc-
tion is included for the discontinuity in dp/dr
One determines the parameters: A„A„.. . ;
~„&„.. . ;R„R„.. . ; by minimization of the
approximate functional, subject to continuity and
normalization constraints.

If the %eizsacker-type inhomogeneity term of
Eq. (10) is regarded as arising from a kinetic en-
ergy increment of the form -(—,',)J p'~2&'(p'~') dv,
we would expect contributions to the kinetic energy
due to discontinuities in &p, of magnitude

(12)

If the proper inhomogeneity term is merely Eq.
(10) as it stands, on the other hand, there would
be no need for such a contribution. Vfe have made
calculations both with and without these singularity
contributions.
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TABLE II. Hartree-Fock electron-density parameters
for the ground states of first-row atoms. '

72. - Atoms N) A(

t8. -

Q

Be
C
0
F
Ne

3.38
5.].0
6.56
7.44
8.16

0.59
0.99
1.30
1.43
1.55

1.096
0.621
0.419
0.356
0.307

2.05
2.13
2.19
2.20
2.21

354
128
312
449
620

12.0

9.0

~ 6. 0

0 3.0

-3.0

0 I I
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(b)

Parameter values from Ref. 1.3(a).
b2k& is the exponential parameter for 0 ~r s R; 2Q is

the exponential parameter for A —&. N& is the number of
electrons in the region 0 ~r~A. The number of elec-
trons outside that region is (S -N&). A& is the electron
density at the nucleus.

III. CALCULATIONS

We label as follows the various modified statis-
tical model calculations which we here report.
All models make use of Eq. (11) for the density.

TF:E[p] = To[p]+ V„,[p]+J [p], (13)

TFD:E[p]=T,[p]+V„,[p]+J[p]+K, [p], (14)

TFD —', W: E[p] = T, [p]+ T, [p]+ V„,[p]

+Z[p] pK, [p],
TFD —', SW;E[p] = To[p]+ T2[p]+ T [p]

+V„,[p]+J'[p]+K,[p]. (16)

-6. 0

FIG. 5. (a) Radial distribution function for Xe. (b)
Electron density of Xe.

Atom (z) +ne

~ne

J

TABLE I. Hartree-Fock energy components for ground
states of first-row atoms. '

In all cases, the energy expression is minimized
with respect to the parameters in the density,
subject to continuity and normalization constraints.
The virial theorem is always satisfied for the final
energy, as one can prove by Fock's method. "

For Ne and other first-row atoms, our model is
a two-shell model. The parameters determining
the density are A„A„&„&,and R(R =R, here).
Given the total number of electrons, N, the con-
tinuity condition and the normalization condition
leave three independent parameters. The ortho-
gonality between the first and the second shell
allows us to rewrite the normalization condition
of Eq. (6) as

N =Nl+N2. r (17)
Li (3)
Be (4)
B (5)
C (6)
N (7)
0 (8)
F (9)
Ne (10)

-7.433
-14.57
—24.53
-37.69
-54.40
-74.81
—99.41

-128.5

-17.15
-33.64
-56.89
-88.14

-128.4
-178.1
—238.7

31101

4 1
7.2

11.7
17.8
26.2
36.6
50.9
66

-1.8
2 07

-3.8
—5.0
-6.6
-8.1

—10.0
-12

4.2
4.7
4,9
5.0
4.9
4.9
4.7
4.7

in which

N, = p y 4my2A.
0

(18)

N, = p r 4m''dy

is the number of electrons in the first shell, and

' Wave functions from Ref. Il(a).
b Kinetic energy T =—E.

Values of X are taken from Refs. 8(b) and 16.
is the number of electrons in the second shell. In
actual calculations, we take the independent param-
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TABLE III. Modified statistical models for the ground state of Ne. '

Model &ne Pp error)

Accurate
Hartree-F ock b

TF
TFD

TFD-W
9

TFD-SW 9.11 1.56 1.890 0.262 —298.4 66.25 —10.54 —121.4

8.16 1.55 2.205 0.307 -311.1 66.64 -12.60 -128.5
14.65 1.69 1.145 0.175 -317.6 68.61 none —124.5
15.10 1.86 1.119 0.163 -334.2 74.44 -11.46 —135.6

9.67 1.67 1.719 0.239 -304.5 69;08 -10.81 -123.1

(3.1)
(-5.5)

(4.2)

(5.5)

' See text for definitions of parameters and models.
See Table I and II.

~ From Ref. 16.
The contribution of the singularity to T is 1.64.
T =—E.

eters to be N„~, and ~, . In certain calculations,
we have set N, =2 or its values as determined from
Hartree-Fock calculations, and we have only two
independent parameters. "

For the modified TF model, a general solution
valid for all atomic number can be found. This is
presented in the Appendix, together with a cor-
responding analysis for the TFD and TFD +W cases.

A. Neon atom

Results for the Ne atom are presented in Table
III. The modified TF energy -124.5 agrees with
the Hartree-Pock energy -128.5 well and is con-
siderably better than the original TF value
-165.8." The energy of the modified TFD model,
-135.6, is lower than the Hartree-Fock value.
However, this value is much better than the orig-
inal TFD value of -1V8.'0

As soon as the inhomogeneity correction is
added, the results become very encouraging. The
energies are above the Hartree-Fock energy, and
the electron densities approximate well the Har-
tree-Fock density, indicating that the functional
(with imposed boundary conditions} is beginning

to be a remarkable approximation to the true ener-
gy functional for the system. There is little dif-
ference between the TFD —', W and TFD-', SW descrip-
tions.

Figure 6 shows the radial distribution function
obtained from the TFD—', W model, compared with
the Hartree-Fock density. The shell structure is
well represented and the minimum in the radial
distribution function is well predicted.

B. First-rom atoms

For the "two zone" atoms I.i through Ne, the
results are presented in Tables IV through XI.
These results show a generally considerable im-
provement over the original TF and TFD models,
for both energies and electron densities. Detailed
trends are discussed in Sec. IV below.

C. Second-row atoms

The natural model for a second-row atom is a
three-zone one. It is known that the radial distri-

TABLE 1V. Modified and original Thomas-Fermi mod-
els for first-row atoms: energies.

12.0 Atom
Modified TF energy Original TF energy '

('fo error) (~$ error) b

8 0

4 y0-

Li
Be
B
C
N
0
F
Ne

-7.502 (-0.93)
-14.68 (-0.76)
—24.71(—0.73)
-37.81(-0.32)
-54.17(+0.42)
-73.98 (+1.1)
-97.37(+2.1)

-124.5(+3.1)

-9.978(-34.2)
-19.52 (—34.0)
—32.86 (—34.0)
-50.29 (-33.4)

. -72.05(-32.4)
-98.39 (-31.5)

-129.5(-30.3)
-165.6 (-28.9)

0 1.0 2. 0 3.0 %. 0

FIG. 6. Radial distribution functions for Ne. Dashed
line, Hartree-Fock density; solid line, modified Thomas-
Fermi-Dirac-

&
Weizsacker model density. .

Model defined by Eqs. (11) and (13) of text. See Ap-
pendix Eq. (A7).

Errors are relative to Hartree-Fock, for which ener-
gies are given in Table I.

'E&F is calculated from EY F
——-0.7687 Z, Ref. 19.
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TABLE V. Modified Thomas-Fermi model for first-
row atoms: electron densities.

TABLE VII. Modified Thomas-Fermi-Dirac model for
first-row atoms: electron densities.

Atom

Li
Be
B
C
N

0
F
Ne

9.807
10.79
11.63
12.36
13.01
13.60
14.15
14.65

1.133
1.247
1.344
1.428
1.503
1.572
1.635
1.693

0.2610
0.2371
0.2201
0.2072
0.1968
0.1882
0.1809
0.1747

0.3435
0.4580
0.5725
0.6870
0.8015
0.9159
1.030
1.145

116.5
207.2
323.7
466.1
634.4
828.7
104.9
129.5

Atom

Li
Be
B
C
N

0
F
Ne

10.48
11.40
12.20
12.89
13.51
14.08
14.61
15.10

1.385
1.476
1.556
1.627
1.692
1.752
1.808
1.860

0.2255
0.2100
0.1981
0.1887
0.1808
0.1742
0.1684
0.1634

0.3260
0.4389
0.5520
0.6653
0.7787
0.8922
1-006
1.119

A(

140.6
242.].
370.4
525.3
706.8
914.9

1149
1410

' Model defined by Eqs. (11) and (13) of text.
For corresponding parameters for the Hartree-Fock

electron density, see Table II.

'Model defined by Eqs. (1.1) and (14) of text.
For corresponding parameters for the Hartree-Fock

density, see Table II.

IV. DISCUSSION

A. Other forms for the electron density

An assumption on electron density alternative
to Eq. (11), suggested by angular momentum con-
sideration, would be

A, exp(-2&, x), 0~ x~ R„
p(r) = A, x'exp(-2&, x), R, ~ r~R„

Ap' exp(-2&, r), R, ~ x(R„
(20)

bution function r'p has two minima (Fig. 2).
Therefore, we separate the density into three
zones by these two minima. Results are given in
Tables XII and XIII for TFD—', W and TFD —', SW
models of selected second-row atoms. The numer-
ical techniques for obtaining these results are
straightforward extensions of those used for the
two- zone model.

etc. , with 0 &8, &8, & etc. and ~,)&, ~ ~, etc.
We have carried out a number of calculations"
with this constraint. The results for two-shell
models are in fact generally better than those ob-
tained from Eq. (11). The energy for the modified
two-shell TF model with density given by Eq. (20)
is

MTF (21)

while the energy for the model with Eq. (11) is
—0.5VV9 Z'~' (see Appendix). The electron den-
sities of the model with Eq. (20) are in better
agreement with the Hartree-Fock densities near
the nucleus while in worse agreement as ~-~,
as compared with the model with Eq. (11). How-

ever, for three-shell cases, the energies obtained
from Eq. (20) are generally higher than those ob-
tained from Eq. (11). A functional form which is a
mixture of Eq. (11) and Eq. (20) for some purposes
might be preferable to either.

TABLE VI. Modified and original Thomas-Fermi-
Dirac models for first-row atoms: energies.

Atom
Modified TFD energy Qriginal TFD energy

(/p error) (% error) b

Ll
Be
B
C
N
0
F
Ne

-9.054 (-21.8)
-17.16(-17.8)
-28.2 7(-15.2)
—42.61(-13.1)
-60.35 (-10.9)
-81.6 7(-9.17)

—106.71(-7.34)
-135.61(-5.49)

—11.64 (—56.6)
-22.20 (-52.4)
-36.75(—49.8)
—55.56 (-47.4)
-78.86 (-45 ~ 0)

-106.9 (-42.9)
-139.86 (-40.7)
-177.95(-38.4)

Model defined by Eqs. (11) and (14) of text. Also see
Appendix.

b Errors are relative to Hartree-Fock, for which en-
ergies are given in Table I.

'EqFD is calculated from E~D=-0.7687Z -0.266Z
Ref. 20.

B. Stability of neutral atoms and negative ions

It is known that negative ions are unstable in the
original TF model of atoms and ions because the
classical electrostatic self- interaction of electrons
is included in the energy functional. " For the mod-
ified statistical models in this work, we find all
negative ions to be unstable with respect to the
corresponding neutral atoms with the same number
of shells. For the Ne atom and the positive ions
Ne' and Ne", we also obtain negative ionization
potentials. The results are shown in Table XIV.
This means that these atoms and ions are incor-
rectly predicted to be unstable with respect to
ionization processes. Similar results are found for
other first-rom atoms. These are undesirable re-
sults; nevertheless, we note a favorable trend,
that the better the energy functional used, the bet-
ter the ionization potential obtained.
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TABLE VIII. Modified TFD-W model for first-row atoms: energies and energy compo-
9

nents a.b

Atom Tp E c
(/0 error)

Li
Be
B
C
N

0
F
Ne

6.492
12.82
21.77
33.56
48.39
66.45
87.89

112.9

1.072
1.848
2.813
3.958
5.278
6.765
8.415

10.22

—17.98
—35.33
—59.68
-91.62

-131.6
-180.2

23707
-304.5

4.341
8.371

13.96
21.23
30.29
41.23
54.13
69.08

-1.492
-2.387
-3.444
-4.649
—5.994
-7.473
-9.080

-10.81

-7.565
—14.67
—24.58
—37.52
—53.67

73021
-96.31

—123.1

(-1.78)
(-0.69)
(-0.20)

(0.451)
{1.34)
(2.14)
(3.12)
(4.24)

Model defined by Eqs. (11) and (15) of text.
For corresponding components for the Hartree-Fock energy, see Table I.' The total kinetic energy T =Tp+T2=-E.
Errors are relative to Hartree-Fock, for which energies are given in Table I.

C. Unconstrained TFD 9 W and TFD —,W models

One may ask whether a completely free functional
form in the TFD—9W model would not be best.
Comprehensive calculations on atoms with this
functional (and no constraints) would be desirable
to carry out; they seem not to have been done here-
tofore. We have done some calculations using
our multizone technique to anticipate what the re-
sults of such unconstrained TFD-', W calculations
would be, however. If we calculate Ne with two
zones and three zones, the results for the TFD —', W
energy are -123.10 and -131.4; for TFD —,'SW mod-
els, the results are -121.4 and -126.7. The Har-
tree-Fock energy is -128.5. As we go to an in-
finite number of zones, the limit for the modified
TFD —', W model would be the unconstrained TFD —', W
result. While this result would be much better
than the original TF and TFD results, it would be
below the Hartree-Fock and exact energies. Hence,
the TFD9W energy functional must be deficient in
some sense.

The residual deficiency is at least in part as-

TABLE IX. Modified TFD9 & model for first-row
atoms: electron densities. "

sociated with the nuclear cusp condition. Uncon-
strained TFDW calculation would produce the cor-
rect cusp; the factor ~9 with the Weizsacker
inhomogeneity correction ruins that. From this
point of view, the TFD —', W functional as proposed
and tested by Tomishima and Yonei" is somewhat
superior, although still lacking. These authors in
fact have obtained very good energies with this
functional, but it must itself be deficient because
it gives kinetic energies too high by about 10
percent if Hartree-Pock densities are put into it."
Also this functional has not been derived theoreti-
cally, although a result close to it has been ob-
tained. "

For the unconstrained TFD —,'% model, neutral
atoms would be expected to be stable with respect
to ionization, and the asymptotic behavior of the
electron density should be quite good.

0. Z-dependence of atomic energy

The simplicity of our modified models and the
good atomic energies they give allow us to discuss
the interesting problem of Z dependence of atomic
energies.

'The original TF energy for a neutral atom with
atomic number Z is given by"'~"'

Atom. N( A, E» = -0.7687 Z'~3. (22)

Li
Be
B
C
N

0
F
Ne

4.962
5.863
6.653
7.361
8.007
8.603
9.157
9.677

1.174
1.267
1.349
1.424
1.492
1.555
1.613
1.668

0.4224
0.3683
0.3312
0.3037
0.2824
0.2652
0.2410
0.2390

0.6525
0.8191
0.9785
1.133
1.283
1.431
1.576
1.719

32.17
65.27

112.4
174.7
253.0
348.0
460.2
590.3

~Model defined by Eqs. (11) and (15) of text.
For corresponding parameters for the Hartree-Fock

density, see Table II.

The modified TF model energy for a two-shell
atom is, from the Appendix

EMT~ = -0.5779 Z'~', (23)

EMTp 0 6599 Z (24)

From the results in Table IV, for first-rom atoms
the errors in Eg. (22) are of the order of 30% while
the errors in Eg. (23) are less than 3.1%. For sec-
ond-row atoms, the errors in Eq. (22) are of the

while for a three-shell atom is, from the Appendix,
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TABLE X. Modified TFD-SW model for first-row atoms: energies and energy compo-
9

nents a.b

Atom Ko g C (4 error)

Li 6.190
Be 12.30
B 20.96
C 32.42
N 46.87
0 64-49
F 85.46
Ne 109.9

0.9927
1.728
2.649
3.748
5.018
6.453
8.049
9.801

0.1780
0.3056
0.4623
0.6468
0.8576
1.094
1.354
1.638

-17.34
-34.22
-57.99
—89.25

-128.5
-176.2

232 ~ 7
-298.3

4.046 -1.430
7.854 -2.297

13.17 -3.324
20.12 -4.500
28.81 -5.815
39.34 -7.264
51.80 -8.840
64.63 -10.84

-7.361
-14.33
-24.07
—36.81
-52.74
-72.04
—94-.86
-121.4

(0.969)
(1.65)
(1.88)
(2.33)
(3.05)
(3.70)
(4.58)
(5.92)

Model defined by Eqs. (11) and (16) of text.
"For corresponding components for the Hartree-Fock energy, see Table I.

The total kinetic energy T =T+T2+T, =-E.
Errors are relative to Hartree-Fock, for which energies are given in Table I.

order of 25%, while the errors in Eq. (24) are less
than 10%, as shown in Table XV. Modified TF
energies for four-shell atoms will be lower than
Eq. (24) yet higher than Eq. (22).

Csavinszky" has obtained the approximate (one-
zone) solution of the Thomas-Fermi equation for
atoms which decreases exponentially with z and
finds

that the inhomogeneity correction is far less im-
portant than the Fermi energy or the exchange
energy may not be valid. From our modified
TFD—', %' model calculations, we in fact find that
the inhomogeneity correction to kinetic energy
is more important than the exchange energy as
Z becomes large. The calculation by Kim and
Gordon" and by Shih' support these results.

E =-0.5855 Z'~'. (25)
E. Extension to molecular systems

This formula gives values lower than does Eq.
(23) yet higher than does Eq. (24). Politzer and
Parr" gave as an empirical formula,

E =-0.6000 Z7

which gives good agreement with Hartree-Pock
results for first and second-row atoms. Our Eqls.
(23}and (24) are better, however.

For the TFD —', W model, we cannot say that the
inhomogeneity correction has Z'~' dependence,
as some authors claim' ' ' ' because the exponential
parameter ~, in the inner region of an atom strong-
ly depends on Z. Because of this, the prediction

The extension of our modified atomic models to
molecules would be of interest. It is known that
Thomas-Fermi-Dirae models of molecules cannot
lead to binding 2' " Several investigators have
shown that corrections for inhomogeneity of the
Weizsacker type account for the formation of
stable molecules in statistical theories. ' '" It
has been shown that the unconstrained TFD —', W
model of a diatomic molecule can lead to good
binding energy. " %e encourage studies of both
unconstrained. and modif ied statistical models of
molecules using inhomogeneity corrections of
—', T type.

TABLE XI. Modified TFDG SW model for first-row
atoms: electron densities. '

Atom

Li
Be
B
C
N

0
F
Ne

4.403
5.296
6.081
6.788
7.433
8.030
8.586
9.107

1.020
1.124
1.215
1.296
1.369
1.437
1.499
1.558

0.5138
0.4333
0.3812
0.3442
0.3162
0.2942
0.2764
0.2615

0.8039
0.9729
1.135
1.293
1.446
1.596
1.744
1.890

26.34
55.00
96.60

152.3
223.0
309.4
412.3
532.1

~Model defined by Eqs. (11) and (16) of text.
For corresponding parameters for the Hartree-Fock

density, see Table II.

V. SUMMARY

(1) The shell structure of atoms can be obtained
from statistical models if the assumption is made
that the electron density is a piecewise exponen-
tially decreasing function of the distance from the

nucleus. "
(2) Energies good to about 5% and electron den-

sities showing semiquantitative agreement with
accurate electron densities can be obtained from
the modified Thomas-Fermi-Dirac model, with
one-ninth of the %eizsacker correction for inho-
mogeneity added.

(3} There is a compelling evidence favoring the
factor ~9 in the Weizsacker correction for
inhomogeneity.
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TABLE XII. Modified TI D9% and TFD9 SW models for selected second-row atoms: ener-1 1

gies and energy components. ~

Atom (Z) Model To Vne p b

Na(11)

Cl(17)

Ar (18)

9

-SW1
9

1

9

-SW1

9

-W1

9

-SW1
9

80.81 -12.25 -164.5
76.18 -11.79 -158.7

-397.5
-381.8

147.5 17.0 (N.A.)

139.2 14.6 5.00

418.2 40.0 (N.A, ) -1112.4 221.2 -25.22 -458.2

397.6 34.9 12.08 -1075.5 210.5 -24.39 -444.7

479.5 44.7 (N.A.) -1232.0 240.6 -2V.73 -524.2

456.4 39.1 13.55 —1273.3 252.6 -2 V.73 -509

{jo error) '

(-1.61)

(1.98)

(-0.28)

(3.22)

(0.49)

(3.36)

See text for definitions of models, which are three-zone ones.
The total kinetic energy T =-E.' Errors are relative to Hartree-pock, for which energies are EN~ =—169.9, E, c,= —459.5, and

EA~ =526.8, from Ref. 11b.

(4) Corrections for the effect of the singularity
in the derivative of the density can be included. ,
but they do not much affect the numerical predic-
tions.
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s =Z'"~ S =Z'~'Z ~ =Z-'~'E

Z-~/3y ~ Z-~ l~y

Q(s) =Z 'p(s)

Then we find

(Al)

t(q)=K f Q
i dV

q(s) d
S

d'U.

two-shell (K and I. shell) case in detail; for the
three-shell case we just present some results.

We introduce the transformations,

APPENDIX. UNIVERSAL SOLUTION FOR THE MODIFIED
TF MODEL AND CORRESPONDING ANALYSIS FOR

MODIFIED TFD AND TFD 9W MODELS

1'2 q(s, )e(,)„„„„
sy san12

with the constraint

(A2)

A. Modified Thomas-Fermi model

For the modified TF model, the dependence on
atomic number Z may conveniently be explicitly
displayed. For simplicity, we only discuss the

C, exp(-2&, s), 0 ~ s ~ S,

C, exp(-2&, s), S ~ s ~ ~.

The normalization condition, Eg. (17), becomes

TABLE XIII. Modified TI D 9
W and TFD9 SW models for selected second-row atoms: electron densities.

Atom (Z) Model N2
C

1
C

2

Na(11)

Cl(17)

—W1
9

-SW
9

-W1
9

-SW
9

-W
9

-SW1
9

21.00 5.534 1.410 0.077 0.395 0.464 2.797 2174.2

15.88 4.302 1.224 0.110 0.516 0.754 3.310 1421.8

85.00 2.529

43.58 1.324

6.237

3.708

7.031

4.244

28.67 6.785 1.615 0.058 0.329 0.601 4.199 6938.1 243.8

22.58 5.508 1.439 0.078 0.409 0.897 4.876 4814,0 142.5

29.85 6.967 1.645 0.056 0.321 0.623 4.428 8070.1 279.7

23.63 5.685 1.4 70 0.0 V5 0.397 0.919 5.128 5641.5 166.0

See text for de&~~~tions of models, which are three-zone ones.
Parameters defined by Eq. (11) in text.
The quantities D1 =61 pR and D2 =A2 pR are the electron densities at the radii which separate the zones.

2 2 R2
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TABLE XIV. Energies of modified statistical models
for Ne and its ions.

Atom
or ion HF TF TFD TFD-W TFD-SW

Ne
Ne+
Ne+2
Ne+3
Ne'4

-128.5
-127.8
-126.4
-124.1
—120.5

—124.5
12701

-129.3
-131.0

-135.6
-138.0
-139.9

12301
—124.7
-125.6
-125.9
-125.0

—121.4
-122.6

12303
12302

-121.9

' See text for definitions of models, which are two-zone
ones.

Hartree-Fock energies are from Ref. 11b.

ratio is 7, which is much higher than most Har-
tree-Fock values. The modified model gives a
ratio of 4.630. For some actual Hartree-Fock
values, see Table I.

While the parameters in Eq. (A6) do not provide
a particularly good representation of the electron
density, this representation is considerable better
than that provided by original Thomas Fermi theo-
ry (for which p=~ at x=0 and p falls off as x~,
not exponentially, as x-~, and the shell structure
in r'p is missing).

For three-shell models, the modified TF energy
is given by

EMT p 0 o6599 Z

N= p(r)ch =z f Q„(s)dv, N, +Ã, . (A4)
which agrees within 10% with the Hartree-Fock
energies of second rom atoms ~ The parameters
for N=Z are as follows:

For a neutral atom with N=Z, we have

Q(s) dv, =1=M, +M„
g, = 74.95, g, = 8.040, g, = 1.342,

M] 0 0092) ~2 0 1828~' ~3 0 3462 (A9)

in which

Q(s)4ws'ds =M„ q(s)4~s'ds =M, . (A6)

S, = 0.05632, S2
.= 0.5975.

The ratio ~V„,/V„~ is 5.393.

B. Thomas-Fermi-Dirac model
The constrained variation'can be carried out and
the best values of the parameters obtained num-
erically. For N=Z, the results are as follows:

Again making the transformation of Eg. (Al),
we find upon introducing the exchange correction
of Eq. (7) is place of Eq. (A2),

f, =6.800, g =0.7858,

0 1145r M2 =0.8855

S =0.3764.

For the energy we obtain

Z„„=-0.5779 Z'i .

(A6)

(AV)

Q(, Q(.)„„,„'2 S" 1 2

—z"' q"'dv .e S' (A10)
As in the original TF model, we find that the ratio

~
V„,/V„~ is constant. '~ In the original model, this The best Q now depends on Z, and a universal

TABLE XV. Modified and original Thomas-Fermi models for second-row atoms:
energies. '

Atom
Hartree-Fock

energy b
Modified TF energy

(jo erro r)
Original TF energy ~

(% error) c

Na

Mg
Al
Si
P
S
Cl
Ar

-161.8
-199.6
—241.9
-288.8
—340.7
-397.5
-459.5
—526.8

-177.6 (-9.75)
—217.6 (—9.00)
-262.2 (-8.40)
—311.7 (-7.94)
—366.2 (-7.48)
-425.7 (—7.09)
-490.4 (-6.72)
-560.3 (-6.3 7)

—206.9(-27.8)
—253.4 (—27.0)
-305.5 (—26.3)
-363.1(-25.7)
—426.5 (-25.2)
-495.9 (-24.7)
-571.2 (-24.3)
—652.7 (-23.9)

Model defined by Eqs. (11) and (13) of text. See Appendix Eq. (A8).
"Hartree-Fock energies are from Ref. lib.

Errors are relative to Hartree-Fock energies.
EpF is calculated from ET F =-0.7687 Z, Ref. 19.
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EMTFD = Q(Z)Z + p(Z)Z (A11)

where n(Z) and P(Z) are weakly varying functions
of Z. For Z in the range 3 to 10 and N =Z, a good
approximation is

EMTpD =-0.576Z' '-0.248Z' '.
In the original TFD theory, "'"the result is

(A12)

solution for all Z is not possible. The total energy
as a function of Z may be written in the form

siderably better representation of actual energies
than is Eq. (A13), as is shown by the numerical
values given in the text.

C. Thomas-Fermi-Dirac-9 Vfeizsacker model

If the inhomogeneous correction of Eq. (10) is
added, giving the TFD —', W model, there is added
to Eq. (A10) a term

gz7/s PtZ5/3TFD (A12)
Z'~' — ' dv (A14)

where the constant n' is equal to -0.7687 and is
valid for all Z, and the numerical value of P'
varies according to the specific boundary conditions
placed on the density. " Equation (A12) is a con-

which is explicitly proportional to Z' '. There is
a noticeably changed coefficient of Z ' in the
energy expression. Qualitative discussion may
be found in Sec. IV of the text.
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