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The theory of the field ionization of the hydrogen atom is developed analytically. The leading term of an

asymptotic expansion for the ionization rate—the reciprocal lifetime —is derived. In the weak-field limit, the
formula for the ionization rate reduces to 1/r = n '[n2! (n2+ ~m~)! ] ' (n F/4) "& ' ' 'X
exp[3(n& —n2) —2/(3n 'F)], where n, m, and n, and n, are the usual principal, magnetic, and parabolic
quantum numbers, respectively, and 'F is the field strength in atomic units. For the ground state, this
formula agrees with that of Landau and Lifshitz. For all m ' = 1 states, the formula agrees asymptotically
for large n, with that of Lanczos after correction of the latter for an error. It is in disagreement with the
result of Oppenheimer and with the low-field result of Rice and Good. Significantly better agreement with

numerical calculations of Alexander, of Hehenberger, McIntosh, and Brandas, of Damburg and Kolosov,
and of Bailey, Hiskes, and Riviere is obtained with a formula for not quite such small F,
1/r = (—2ReE)"'[n, ! (nz+~m~)! ] 'f exp[ —1/(6f)], where E is the perturbed energy, where

f = [(—2E) "'F]/4, and where 8/2 = Pz„, is. the usual perturbed separation constant

[P2~ nz+ ~m $2+ 1/2, as F-6].

I. INTRODUCTION

In a uniform external electrostatic field, the
energy levels of atomic hydrogen shift and broaden.
The potential in the direction of the anode tends
toward -, and an electron initially localized near
the proton will eventually tunnel through the
"barrier" created by the field, and will ionize.
There are no true bound states, and the usual Hay-
leigh-Schrodinger perturbation expansion. for the
energy' ' is an asymptotic expansion for the real
part of a pole of the Green's function associated
with the perturbed Hamiltonian. ' The imaginary
part gives the reciprocal lifetime of the state.

The theory of the field ionization of hydrogen
was first discussed by Qppenheimer, ' who gave a
"golden rule"-type formula for the ionization
rate. Lanczos, ' "and later, others" "gave a
JWKB treatment. More recent theoretical work" "
has focused on obtaining to high accuracy, often
by numerical methods, the field dependence of
the perturbed levels, their widths, and the in-
tensities of the perturbed spectral lines.

The purpose of this paper is to clarify analyt-
ically the behavior of hydrogen in the Stark effect.
A primary goal is to derive a simple formula for
the width at low field strength [Eq. (125)].

The treatment here builds on the theory developed
in an earlier paper" (hereafter referred to as
Paper I) in which (a) the connection of the perturbed
real energy levels and ionization rates with the
complex energy eigenvalues associated with purely
outgoing-wave eigenfunctions was demonstrated via

the evolution operator, (b) the problem of calcu-
lating the complex energy eigenvalues was de-
veloped formally. by the techniques of Kapur and
Peierls" and Bloch;sc (c) the nature of the Ray-
leigh- Schrodinger perturbation series as an asymp-
totic expansion came out in a simple way, and

(d) a perturbation theoretic formula for the half-
width was derived, which we shall exploit in
this paper,

ImE = -g, (E»)4» (a) C „s(x)'dx.

Here E» and C» denote the energy and wave func-
tion in Rayleigh-Schrodinger perturbation theory,
andg, .(E») is the imaginary part of the logarithmic
derivative of the outgoing-wave eigenfunction, evalu-
ated at a suitably chosen point a.

In some respects, the hydrogenic problem is
more difficult than the one- dimensional finite- range
potential problem of paper I." Since the Coulomb
field has no cutoff, there is no natural radius a for
the atomic potential, nor is the exact wave function
known far away from the origin for calculating
g, (E). A less troublesome difference is the higher
dimensionality of the hydrogenic problem. These
differences must be dealt with before the results
of paper I can be applied to hydrogen (Secs. II,
III, a,nd V).

In one respect, the specific hydrogenic problem
is simpler than the arbitrary genera. l problem in
that the solutions of the field-free Schrodinger
equation are well known and well characterized.
Consequently, it is possible to solve the complex
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eigenvalue problem by the elementary "matching
method" in the small-field limit (Sec. IV).

In See. VI we briefly consider another approach
to the complex eigenvalue problem that was sug-
gested to us by Breit's" treatment of nuclear dis-
integration. Rather than divide coordinate space
into two distinct regions as in I, we partition (in
a loose sense) function space and the Schrodinger
equation into two parts, one of which carries the
outgoing-wave boundary condition, the other
of which carries the behavior near the nu-

cleus. One then solves for the "outer" func-
tion in terms of the "inner" function using a
Green's function, in order to obtain an effective
Schrodinger equation for the "inner" function.

In Sec. VII we compare our formula with those of
Oppenhe jmer, Lanczps, Rice and Gppd, and
Landau and Lisfshitz. " It would seem that the
field ionization of hydrogen is unsuspectedly in-
sidious, having left a legacy of errors.

In Sec. VIII we give a numerical comparison of
our results with ionization rates calculated by
pther method

Z, and Z, denote separation constants whose sum
is unity,

Z, +Z, =1.
Throughout this paper we use atomic units, the
unit of length being the Bohr radius a„and the
unit of energy being e'/a, . At the origin, C, and

42 satisfy the boundary conditions

(]) p(g (Iml+r)/2)

(ri) 0(ri
(I tel +1 )/ 2) (12)

while at infinity, both functions must vanish.
When the electric field vanishes, both the g and

q equations have a partially discrete eigenvalue
spectrum for Z, and Z~, characterized by three
integers: the parabolic quantum numbers n, and
n„and the magnetic quantum number m. The
eigenvalues Z, and Z„and the energy E are given
by the formulas

zr=(nr+2 lml+2)(-2E)"' (n, =0, 1,2, ".), (I&)

Z, =(n, +2 lml+2)(-2E)' '
(n =0, 1,2, . . . ) (l4)

II. SCHRODINGER EQUATION FOR THE HYDROGEN ATOM

IN A UNIFORM FIELD, IN PARABOLIC. COORDINATES
E=-g(n, +n, + lm l+1) ' (16)

x= (gq)'/' cosQ,

y= ((rl)' 'sing,
~ = 2 (4 —'g)

(2)

(8)

(4)

g2 1——+E& —E
2 y'

s s s s 1 s2

$+rl s$ s$ srl "sq

In this section we set down the basic equations
to be solved and establish notation.

The Schrodinger equation for the hydrogen atom
in a uniform electrostatic field separates in para-
bolic coordinates, as was exploited by Schro-
dinger':

,' n '
(n——=n, + n, +

I
m

I
+ 1) (16)

where n is the principal quantum number.
When the external electric field does not vanish,

the spectrum of the ( equation becomes entirely
discrete, while the spectrum of the g equation be-
comes entirely continuous. The continuum eigen-
functions, however, are not as useful in describing
ionization as the discrete set obtained by replacing
the finite boundary condition at infinity by a purely
outgoing-wave condition, as developed in paper I.
With the outgoing-wave boundary conditions on

4,(rl), and for arbitrary values of E and F, the
spectra of Z, and Z, are both entirely discrete;
the set of values of E for which Z, + Z, is unity is
then also discrete.

To simplify the solution of Eqs. (8)—(10), it is
customary to make a change of scale:

1+ *&(6—n) —&if,g+ ri

' m'
+ + 4 F$' —pgz —Z, 4, (g) =0,

(6)

(7)

o= $( 2E)r/2

p= n(-2E)'",

p, =z, ( 2E)-'",

p, = z, ( 2z)-"',
f= 'F( 2z)-"'-

(17)

(18)

(19)

(20)

(21)

m2
2 2+ -,'Fri' —,'re Z, C, (q) -= 0. (9)

With these quantitites, solution of the Schrodinger
equation is reduced to the solution of

o+ -+fo'+ o p, 4, =0, (22)-
d m —1

do' 4g



16 THEORY OF THE IONIZATION OF THE HYDROGEN ATOM. . . 879

'd ' m' —1
+ f-p'+4P P-. @.=0, (23)

dp 4p

P, +P2=(-2&) '" (24)

The eigenvalues P, (f) and P,(f) are clearly di-
rectly functions off. The energy E is from Eq.
(24), an explicit function of f, but because of Eq.
(21), an implicit function of Ii.

The usual textbook treatment of the Stark effect
is to expand P, and P, in power series in f:

P/(f) =P/ "+fP/"+f'P"'+ (j =1 2) (2~)

P/"'=n/+2(lm I+1) (j=l 2) (26)

P,
' "= (-1)'"(6n',.+ 6n, )

m
(

+ 6n, + m'+ 3
(
m

( + 2)

(j=1,2), (2'I)

x [17(2n',.+2n/ )m )
+2n/+ (m ))+4m'+ l8]

(j = 1,2) . (28)

In the case of P„ the usual perturbation series is
an asymptotic expansion for the real part of the
complex outgoing- wave eigenvalue. The imaginary
part of P, is O(e-'/'/), which vanishes faster than
any power of f, and is lost in the Rayleigh-Schro-
dinger approach.

In the sections to follow we will refer to 0, p,
and f as if they were real, rather than complex.
One could at the end use the appropriate complex
value of f; the justification would be by analytic
continuation.

fP+ 4 ——— + 2 4(P) = 0.
dp' p 4p'

Langer's method gives
3

@ ( )
d(28)'/3 '/'A;(+)( (3 g)2/3)

(29)

(30)

where Ai" is an outgoing-wave Airy function
(defined in paper I),

It is the nature of the barrier region that makes
the hydrogenic problem more difficult than the
case treated in paper I. There the atomic potential
ended abruptly at a point a (which one may take
as the boundary of the atomic region). The analy-
tic character of the wave function changed abruptly
at that point, and outside of the atomic region—
both inside the barrier and beyond —the wave func-
tion was exactly given by Airy functions.

In the hydrogenic case, there is no such-boundary
point. The wave function must change gradually,
not abruptly, from p 2 e ~/2 in the atomic region
to an Airy function in the exterior region. In
further contrast with the nonhgdrogenic case, there
is no convenient exact solution for the wave func-
tion outside of the atomic region.

A uniform asymptotic solution, valid for most
of the barrier region, for the neighborhood of the
outer turning point po, and for the exterior region,
can. be obtained via Langer's generalization of the
JWKB method. " We begin by rewriting Eq. (23),
by putting 4(p) for 42(g), and by dividing by p, to
obtain

III. ASYMPTOTIC REPRESENTATION OF THE %AVE
FUNCTION IN THE BARRIER AND EXTERIOR REGIONS

Ai "(—z) —= Bi(-z)+ i Ai(-z)

~/2z &/4 exp[i( —z3/2+ —p)]

(31)

The effective potential for the p coordinate has
three distinct regions: an interior region in which
the effect of the external field is sma, ll; a class-
ically forbidden barrier region, bounded by the
classical turning points p, 2P, + (4P2 —m'+1)' '
and p,

—(4f ) ', between which the potential gradu-
ally changes from Coulombic to linear; and an ex-
terior region in which the potential is essentially
linear. We shall use "atomic region" to mean the
entire interior region plus a little bit of the barrier
region —that is, that part of space in which the
electron has appreciable probability density in
the absence of the external field.

To impose an outgoing-wave boundary condition
on the eigenvalue equation (23) for P„ it is essen-
tial to have a representation for the wave function,
valid from infinity down to the edge of the atomic
region, which is well inside the barrier region.
To derive and characterize this asymptotic wave
function is the immediate task.

asz -~, (32)

~-1/2( z) 1/4(e~[ 2
( z)3/2]

+-,'i exp[--3'( z)"']J,
as -z -~, (33)

and where 8 is given by

P 1 P, m' 1fp- —+ —' — dp4 p 4p' p p

P0

(34)
P a/2.-f p —+—-3 t/2 0 1 P2 m

4p'

(35)

In the calculations that follow, the asymptotic
function C ~(p) plays a key role.

We conclude this section with four remarks
characterizing the behavior of & and 4z: (i)
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We note first that 8'/' is analytic at p, »f:
3 f '(fp —»)'" (p»f),

(z8)"' f"'(p-'f) (p»f).
(ii) For large p, we compute 8 from Eq. (34),

8 r'f '(fp »)'/'-+P, m, as p-~,
d(3 8)2/3 f )./3

(36)

(37)

(38)

(39)

P, P,'"+i ImP, ,

+»+ 4, ——' C(p)=0.(
m' —1 P,.

4p2

(44)

The solution involves the (Kummer) confluent hy-
pergeometric function' M(a, b, z):

4.(p) = p"'""'e "'M(z+ 'lm I

-- p. 1+ lm I P).

atomic region, ReP, is essentially the unperturbed
value given by Eq. (26), and we may write

so that [from Eqs. (30) and (32)]

4~(p)-f ' 'e "Ai"(f ' '(» fp))-, as p- ~.
(40)

This simple Airy function behavior is what one
would obtain by dropping the —P,/p and (m' —1)/
4p' terms from Eq. (29). (iii) For p inside the
barrier, p;«p«p„we compute for 8 (c.f. Landau
and Lifshitz32),

8 e"'"[--'f '(-' fp)'"-+ P. ln(fp)], p; «p«p.
(41)

and then for @z(p)

C', (p) )T "'('- fp) "'((f-p)" exp[ 'f '(' fp-)'" ]-
+ 2i(fp)"

xexp[- -',f '(» fp)]'"]-,
(42)

-(2/v)"'f(fp)" exp[(12f) '- 'p+ -'fp']-
+ -,'i(fp) "exp[-(12f)-'+ -.' p —.

' fp']],
(43)

This last equation is quite revealing in that it dis-
plays both the p~2e' ' term that smoothly connects
4~ with the field-free hydrogenic solution in the
atomic region, and the p ~2e' ' term, with rela-
tive weigth ,f '~2e '/'/, tha—t represents the con-
tribution of the field-free solution that is irregular
at the origin. (iv) Finally, we note that away from
p„C ~ is essentially just the JWKB approximation.
The JWKB "connection formulas, " insofar as they
are implicit in Eqs. (32) and (33), come out auto-
matically in Langer's method.

IV. ESTIMATION OF IMp2 BY THE MATCHING METHOD

Perhaps the simplest way to evaluate ImP„and
then ImE through Eq. (24), would be to find a solu-
tion 4„of Eq. (29) valid in the atomic region, and
then to match the two solutions, 4 „and 4 ~, at
some point inside the barrier. Equation (29) is
suceptible to such a treatment when the external
field is neglected in the atomic region, .

For small enough f, -fp is negligible in the

eP ~2 j./2~)ml/2ep2-
I'(-p2+ —'+ —' Im I) ' (47)

and, with Eqs. (26), (44) and (46), and the I' func-
tion, we find that

(-I)"2p()2e-' 'Im! I p-()2e' 'Im I!C&(p), '
+ . ~

(n, + Im I )! I"(-n, ilm-P, )

(48)

But from the I' function reflection formula, '4

1/I'(-n, —i ImP, )
- (-1)"2"n, !i ImP, ,

so that

(49)

p)
(- I)"2p('2e ' '

I m I !
(n, + Im I)!

ilmP, (-1)"&
I
m

I
!n-, !p- ~&e' '. (50)

Comparison of Eq. (50) for C„(p) with the expres-
sion (43) for 4~(p) immediately gives

Imp, - ——,'f '82e ' ' /[n, !(n, + Im I)!] as f-0.
(51)

Considering how smoothly Eq. (51) was obtained,
one might digress for a moment and ask whether
there is an alternative route to the key Eq. (48)
when the differential equation is not so well known.
The alternative is quickly exhibited via Green's
functions: if C, (p) and 4,(p) are the regular and
irregular eigenfunctions of the operator -d jdp'
+ V(p), with unit Wronskian,

d . +)'(o))»;(o)=()'"»;(o), i =(,&,
dp

~.(p) 4, (p)' ~.(p)'4, (p) =-1,

then the asymptotic solution of

(52)

(53)

(46)

For large enough p, M has the asymptotic form

M(-(8, + z+z lm I, 1+ Im I, p)
tm) 1

exp[i'(-P, +-,'+ -,' Im I)]p
2-'/'-( r I

. I'(P.+,'~ ,' Im!)-
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, + v(p) —P' ') 5„(p) =( (mt)@„(p)
dp

is given approximately by

C', (P) ~,(p)+2 lmP@. (P) [4',(P)]'dp

(54)
the atomic region, which is to be a point well in-
side the barrier p, «p, «p„whose precise loca-
tion is not crucial.

In the derivation of the above equation in I, use
was made of the explicit functional form of g"
to show (in the present context) that

V. EXTENSION OF PAPER I

A. Adaptation

The aim of this section, is to adapt the method of
paper I to hydrogen. The basic method of paper I
is to solve the Schrodinger equation on a finite in-
terval, to which we refer here as the atomic re-
gion, with the condition that the logarithmic deri-
vative at the boundary be g". In. paper I, the
atomic potential vanishes identically where g" is
evaluated, so that g" is a known. function of the
energy. If we assume for the moment that we know
g"(P2), then, with three minor changes, all of
paper I is applicable here, except for those formu-
las that make use of the explicit fun. ctional form ofg". The three minor changes are: (i) ))1 /2m in
I becomes 1 here, to account for the difference in
kinetic energy operators [-pds/dp' versus
-()I2/2m)ds/dx']; (ii) the volume element here is
p-'dp, versus dx; (iii) Bloch's boundary condition
operator here should be defined by

n=t()(t t.)(—„-t"(8,))- (56)

Thus one can solve variationally according to
Eq. (50) of I, or by perturbation or other methods
according to Secs. 3 and 4 of I, for the Kapur-
Peierls eigenvalue u&„,(P2), from which the nsth P,
eigenvalue, P, „ is determined by the consistency
requirement

as p- ~. (55)

Equation (51) gives the leading term in an expan-
sion for Imp, valid as f-0. We now turn to two
different methods capable of improving the esti-
mate, one based on paper I, the second inspired
by Breit's treatment of the compound nucleus. "

t)2 (Pst t)2 Rtt) @ (p)2p 1 dp

g "(P.)= ' ' 4'(p) ',sc(p )
Bp

(60)

and that [Eq. (52) of I]

».,(P...„as) sa "(P„„„as) @.„Rs(P.)'

(61)
so that

B(d ( ~a
»n2, RnS2~ @ (p)2p 1 dp2t

Psy nsy Rs

=C. , as(p.)'@(p.) ' c(p.)» c(p.)

s4'(p, ) 94 (p,)
sP2..„as sp. (62)

But since C (p) is an "eigenfunction" for p» p„we
have, integrating by parts,

f t '~(t) ().+t„+ft)' -.t-
2 p(t dp

) t (t) dt, (63)

4 p'p'dp+ p'4 p,+p, + p'-~p
Pg &a dp

(m'-1) sC(p)d
4P

Rs p p dp 59
f'a

We must obtain the same result here without ex-
plicit reference to the functional form of g", to
&ustify Eq. (58). We note that g'' is defined by

n2 2 n2 2sn2 ' (57) (64)

What we shall apply here to hydrogen is the per-
turbation formula referred to in Sec. I [Eq. (101)
of I]:

4'»2. as .)'
P2, n2 [ m-t (P2, n2, RS)] f' @ (p)2P-ldp

'
n„RSP P

(58)

(C)'ppdp @(p.)» -~(p.)

s@(p.) sc'(p. )
sp. sP,

If one makes the identification

@.„RS (66)

Here 4„, » and P, „, „s denote the ordinary Ray-
leigh-Schrodinger expan. sions for the wave function
and energy (P, „), and p, denotes the boundary of

Ps,...as (67)

then Eq. (59) is clinched. [Note that from Eq. (40),
it would appear here that in C(p)2p "dp exists (for
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real f) in fact, rather than only in the asymptotic
sense discussed in L]

(f)P' =4 —fp —A. —+A.
1 P m —1

4p'

B. Application 1!(.-2( Pf)1/2 ( Pf) 1/2
d'p (V6)

We now develop Eq. (58) in more detail. The
Img" can be obtained asymptotically from Eq.
(43),

Img "(P,)- im(4,'/4, )

-2f 222e 1 fp 22e [1+0(f)]
(68)

(p; «p «p. ) (69)

For C „,»(p), we take the zeroth-order approxima, —

tion —the unperturbed eigenfunction

@.„»(P) @.' (P),

4'"( )p=[ n)/(n +m)t']' 'p'"' '4'/'e ' 2L' '
(p)2'

(71)

n2t

(n, +!m!)!'
- l/2

pl foal
/2+1/2e Pl 2

X
d

e — pn2+Imte P (72)

=(-1)""'"'[n,!(n, + (m()!] ' '
pn24)m)I 241 2/s IP[21+ 0(-p-1)] (73)

I „',~'
~

denotes the usual associated Laguerre poly-
nomial, and 4„'" is normalized to unity. With Eq.
(69) for Img", with Eq. (73) for 4,„», and with
Eq. (26) for P, „ in the limit f-0, we obtain from
Eq. (58) for small f and large p (but not too large;
p'«1, p«p, ):

—f Be-1/6/

Equation (74) is the same result as Eq. (51).

-1/2
c'(p) = Ai "(-~"'0)

dp
(75)

The equation satisfied by P, that makes 4 satisfy
Eq. (29), is

C. Higher approximations

To improve on Eq. (V4), one must estimate both
Img" and C„„smore accurately. There is no
difficulty with the Rayleigh-Schrodinger expansion,
4 „». On the other hand, a better estimate of g"
requires a better estimate of 8 [Eq. (30)], which is
not so easy to obtain. We only indicate how it
might be done.

The procedure that seems most tractable" is the
generalization of Langer's method given by
Cherry "Instead .of (28)2/2, we write ~2/2p, so
that Eq. (30) has the form

where A. is an order parameter set equal to unity
at the end. An expansion in X ' for Q is substituted
into Eq. (76), and terms of the same order are
equated:

p = p + A. 2Q + A. 'p + ~ ~ ~ (77)

$0$()'= (4:-fp), (V8)
2

(79)

and so forth.
The resulting system of equations is solved so

that Q is analytic and has a zero at p= (4f) '. The
results for P, and P„

4.=f '"(4 fp), - (80)

1/2 1 -1/2 1 —(1 —4fp)
4, =5.f '( fP)' )" ( ((-4f) *) (5))

P.f'"( -fp) "'[lnfp-+ o(fp)] (82)

lead to Eq. (43). To obtain P„P„.. . is, unfortu-
nately, rather tedious and shall not be pursued
further here.

VI. PARTITIONING TECHNIQUE

In this section we develop a third approach,
which we were led to by Breit's" treatment of nu-

clear resonances, and which is also related to
Lowdin's" partitioning technique. The basic idea
is to write C'(p) as a linear combination of two

functions, one of which holds the asymptotic be-
havior for large p, the second of which takes care
of the atomic region:

4 (p) =@1...(p)+@,.&.,(p),

4'.„...(P)-@,(p), as p-
(83)

(84)

—Pd' l m' —1„.+ .P+ 4
- P.+-y', -fp' 4'..5.,(p)

dp2 4p. 2

-fp'4 1...(p) (86)

The two functions are required to satisfy two cou-
pled inhomogeneous differential equations, chosen
so that the homogeneous version of one is just the
unperturbed Schrodinger equation, while the exact
solution of the homogeneous version of the second
is an asymptotic solution of the (perturbed) Schro-
dinger equation:

(
d2 m2 1
, +,P+ —l),) „„4,( )=PV 4(P), (55),,„2 inner
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The sum of the two equations is just the original
Eq. (29). The choice of V~ will be discussed later.
One solves the second Eq. (86) for 4,„„,in terms
of 4, „with the aid of an appropriate outgoing-

A( )wave Green's operator G",
',(.,(~) = G "fp~(...0), (87)

and then puts the result in the first Eq. (85) to ob-
tain an effective eigenvalue equation for 4„„„

+ p+ 4
—VzG''fp —',)4„„,=0. (88)

dp' 4p

if one then solves Eq. {88)with an appropriate
boundary condition at infinity so that G' fp4„„,
exists, then one has solved the Schrodinger equa-
tion. with an outgoing-wave boundary condition.

In the end, we get the same formula as obtained
in the two preceding sections. Along the way, how-
ever, we get an incorrect result that sheds some
light on an earlier, similarly incorrect treatment
in the literature.

V. imG "fp=(fp'+ReP, —H ")ImG "fp
+ImP, ReG"fp

-(fp'+ ReP,'o)- H'") ImG"fp,

(96)

(97)

Imp,("-— dp(Re4, '„'„'„)fp(imG") fp(Re@',„"„'„).

(98)

To proceed further, we must specify V~ and 6".
B. Initial choice for G~+ and VL

As 4,.&., must be asymptotically correct as p-", we first try [cf. Eq. (40)]

(p)- f "'Ai "(f '"(-'-fp)) (99)

where the omitted term Imp, ReG"fp is O(f Imp, }.
According, Eq. (94) becomes, again with the aid
of Eq. (92),

V~—= P, —(m' —1)/4p, (first attempt). (100)
A. Formal approximate solution

(89)

%e anticipate that the ratios of the imaginary
part to the real part of G", P„and 4 are of the
order of e '/o', and webreakup Eq. (88) accord-
ingly:

(H'o' —
V~ ReG

"fp- ReP, ) Re@;„„„-0,

That is, we choose V~ so that the homogeneous
part of Eq. (86) is essentially Airy's equation.
We take for G" the Green's (integral) operator
for the Airy equation that satisfies a vanishing
boundary condition at the origin,

(H'" —V~ReG "fp- ReP, ) Im4. „„ )(Ai,(f '/'(-, 1- —fP&))/(1+iC) (101)

where

(0) —pd' p m'
dp' 4 4p

=(V~ImG "fp+ImP, ) ReC. „, (90)

—cBi(f ' '(-,' —fp)), (102)

where p& and p& are the larger and smaller of p
and p', and

A(.[f""(-'-fv)]=A1(f "'(-'-fp))

A,

We regard —V~ReG )fp as a perturbation, and

take the corresponding zeroth-order equations: c =Ai(4 f ')/Bi(g f ' ') (103)

(H"'- Rep,'")Re@,'„'„'„=0

(H(o) ReP(o)) ~@,(o)

(92)

p R 4'
inner V~ ImG "p Re@ ' '

(94)

To simplify V~lmG') fp, we use the Green's func-
tion property of G" [cf. Eqs. (86) and (87)],
(H'"+ V, fp'- P.)G"=p, - (95)

=(V~ImG(')fp+ImP, 'o)) Re@(:) . (93)

We multiply Eq. (93) by Re4', „",„[which is clearly
just the unperturbed eigenfunction given by Eq.
(71)] and integrate, using the fact that Rec '-,„'„'„
satisfies Eq. (92), to obtain

-(6f) 0 (104)

"d, A~.(f""{-'-fp'))
(1+c')

0

(105}

From. Eqs. (98) and (71),

(106)

After a close examination of the behavior of the

To evaluate ImP,"' in the small f limit, we put
Eq. {101)into (98), carry out the integrations, ~d
take the leading term as f-0. From Eq. (101),

ImG(+) f 1/3~A)(f~/o( fp))
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integrand in Eq. (106), one can conclude that the
dominant contribution is from the interval [0, (4f) ],
and that the contribution from the CBi term in Ai,
is negligible compared to that from Ai. For the
la, tter, we may use the asymptotic formula, "valid
for p«(4f) ', everywhere, as the region p —(4f) '
contributes negligibly either way. We obtain

ImP,"'-—o E' exp[-(12f) '+ o p —2fp']
0

2

x PC'„' '(P) dP (107)

For 4„'"(p), it sufficies to take the leading term
in p [Eq. (73)], and we obtain for Im)6,(o) the formula

&o)

2n !(n +!I!)!
00 2

exp[ (12f) 1+ p
) fp2] po2+

(ml/2+3/2eP/2 dp (108)

+ (~ () )] -(Z
( & +, )~ )

+ o)22n2+&)))I/2+(/of-(n2+( )))(/2+)/2)e o/) (109)

Equation. (109) is in clear disagreement with Eqs.
(51) and (74). The dominant contribution of the
integral in Eq. (98) turns out to be that from the
barrier region, but the functions used to construct
G'+' in Eq. (101) are irrelevant to hydrogen
throughout most of the barrier region. If me im-
prove 6", we get the correct result.

C. Second choice for G~+~ and V&

A better asymptotic estimate of 4 is given by
Eqs. (30), (34), and (35). Accordingly, we pick
V, so that C~ is an exact solution of the homo-
geneous version of Eq. (86), with one modifica-
tion: we alter the definition of 8 near p=O so that
the integral in Eq. (35) remains well behaved,
real, and positive as p-0. [This nicety is of no
numerical consequence here because of the dom-
inance of the barrier region in Eq. (98)]. Following
Eqs. (102) and (103), we define Co by

where c is chosen so that Co(0) vanishes. The ex-
act value will depend on how V~ behaves at the
origin, which in turn will depend on the behavior
of 0. What is clear, however, is that

c=0(e (o/' )
A

With 6"defined by

G(.), "d, 4's(p))@o(p()
1+zc

(112)

we find

Imc" = ve, (p)
"d, c'.(P')

dp' (113)

Analogously to Eq. (107)-(109), we find [cf. Eq.
(43)]

~,&o) =( *„„) &) )&-(le)"')

-cai[-(-', 8)'/']], (110)

h P&o)-
(o 2

(fp) "e~l-(12f) '+-'p- 'fp']PC.'"(p) dp- (114)

oo 2

exI)[-(12f) '+2p-kfp']f "pe "dp

-~2[n, !(n,+ )m ))!] f ~oe "/) (116)

This agreement of the partitioning method with the
"matching" and perturbation method points out the
need for an accurate wave function in the barrier
region. We shall return to this point in Sec. VII.

To carry out the partitioning method in a lees
approximate way, one would need to specify more
precisely t/'~ and G '~. By introducing an appro-
priate basis set, e.g. , the unperturbed functions
[Eq. (71)], one could then solve Eq. (88) as a ma-
trix eigenvalue problem more in the spirit of
Breit." The major computational difficulty in

such a scheme would be the evaluation of the ma-
trix elements

-(@,&o)I/ G(+)f C, (o) (117)

VII. STARK WIDTHS IN THE SMALL FIELD LIMIT

A. Formula for the ionization rate

In the preceding sections we have derived a, form-
ula for ImP, that is asymptotically valid as F- 0.
From Eq. (24), which relates the separation cons-
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tants to the energy, we have

E= '-(P-, P.),
ImE —[Re(P, + P,) ] ' Im P, .

(118)

(119)

-2 ImE-(-2 ReE)'/'[n, !(n, + (
m

~ )! ]~f ao e " '

(125)

n 0[n, !(n, +
~

m
( )!] '( —n'F) '"0

It is straightforward to obtain the asymptotic form
of ImE as F-o, since

x exp[3(n, n—,) —2/(3n'F)] . (126)

P, +P, -P,'"+P,'"=n, as F—O,

f --, n'F, as F-O,

(6f) '= [-:(-2E)""F]'

(120)

(121)

(122)

(2/3F)[( 2E (0) )3/2 3( 2E (o&))/0E ()&F]

(123)

=2(3naF) ' —3(n, —n, ), as F-O, (124)

where we have used the usual formula for E'":
an(n, n,). Putting together Eqs. (118)-(124)
with Eqs. (74), (51), and (116), we obtain for the
ionization rate, -2 ImE,

B. Comparison with other analytic formulas in the literature,

and a discussion of errors in some of these formulas

There are a number of analytic formulas for
ImE in (or that may be inferred from) the litera-
ture, some of which are listed in Table I. The dis-
agreement is striking.

Oppenheimer's formula, ' which is the oMest, is
the oddest, because of the factor F' '. It would
seem that Oppenheimer made a slight computation-
al error, for when we repeated his calculation,
we obtained instead, the result listed in Table I
under "Oppenheimer (corrected). " But even the
"corrected" result disagrees with all the others.

TABLE I. Comparison of analytical formulas for the field-ionization rate of hydrogen in a weak
electrostatic field (in a.u. ).

Authors
1/T = —2 ImE

(a.u. )

Oppenheimer ~

Ground state

0.1093F 8

Oppenheimer {corrected) 8-2/3F
p 7l'8

Landau and Lifshitz (4/F)g 2/3F

Present work (4/F)~c /3F

Lanczos "'

Lanczos (corrected)

States with m =1; p2
——n2+1

P(0) -2g (0)
(-0)

2
(2 2g(0)) i 2

2 Qn F) 2 exp 3(n -n )—1 2

p(0) -20) (0)
{2zn ) Qn F) 2 exp 3(ng —n2) —'

3

Rice and Good ~ (nF/n) exp(-2/gn ~F )

Present work~

Present work"

Reference 8.
'See text.
'Reference 32.

[n (p2
' —1)!p2 '1] '(4n F) ~2 exp 3(ng-n2)— 3n3E

States with arbitrary n), n), and m; p)( ) nt!+a! m=.+a1 1

!( g I I)l)'( ')") +) ) (3( g- )—
3n3F

Equation (126).
'Reference 11.
Reference 12.
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(127)

to represent

(128)

The subtletly is that in hydrogen, U, which is the
potential for the g coordinate, depends implicitly
on E through the separation constant Z„

Z2 = Z2(E, F)

Z, (E,F).
(129)

(130)

The correct formula for y, in the present nota-

Apparently there is a more subtle error, which we
attribute to an incorrect description of the ionized
states: Qppenheimer took as the "final states" in
his calculation, an electron in a uniform field,
with the Coulomb potential completely neglected.
Although physically appealing, we saw in Sec. VI
that a similar assumption for the p coordinate
led to an incorrect final result.

The formula we attribute to Lanczos" is actually
the E-0 limit of his more general result. Rice
and Good" detected an error in Lanczos's formula
that they attributed to his "one-dimensional" treat-
ment versus their "full three-dimensional" treat-
ment. Lanczos's error actually occurs in his Eq.
(16),"where he calculates the "phase shift" of the
JWKB wave function in the atomic region at the
inner turning point of the barrier. He writes

tlon is
Z 1/2

y= 4 —+ —2 +Eg-
2 q 4rP

dg (131)

(132)

In the limit that I = 0 and for m' = 1, it is straight-
forward to evaluate y. The change in Lanczos's
formula is in this case simply the factor P,"'/n.
Comparing now the "Lanczos (corrected)" result
with ours for m'= 1, we find their ratio to be

2&(P(o) /&)2&2 /(P(0& 1) I P(o) ~ 1+O(P(o)-1)

(133)

which by Stirling's approximation is asymptotically
unity for large P,. Thus we have asymptotic agree-
ment with Lanczos's formula and ours for small
F, large P„and m'=1.

Rice and Good" set out to correct Lanczos's
treatment in two ways. They treat the origin fol-
lowing Langer, "and they correct the oversight
discussed. above. Nevertheless, their small I'
formula does not seem to be correct, since it
should agree with the Lanczos (corrected) formula,
and it does not.

The Landau and Lifshitz treatment, which is
related to the "matching method" given here,
agrees exactly with ours for the ground state.

TABLE II. Ionization rates for the ground state calculated by Eqs. (125) and (126), compared
with accurate numerical calculations by Alexander and by Hehenberger, McIntosh, and
Brandas. " In Eq. (125), P2 is calculated by 4th order perturbation theory, while Re(E) is either
calculated by 4th order perturbation theory or taken from the numerical calculations, as
indicated. The notation N" is short for N && 10".

y' (a.u. ) Eq. (126)

-2rm(E) (a.u. )
Eq. (125) with

ReE (4th) ReE (num)

p2 (4th) pg (4th)

Accurate
numerical

calculations

0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13

2.98-'
5.78 6

1.30-4

9.96
4.18 3

1.20
2.70
5 09
8.48
1.29
1.82

2.24-'
4.00-'
8.25 5

5.83
2.25
5.94
1.22
2.11+
3.23-2

4492
5.82

3.99
8.21-'
5.vv-4

2.21-3

5.84 3

1.21-2

2.13
3 34
4 79
6.43

3.98
V.V2-'

5.15
1.85
4.54
8.80"
1.45
2.16 '
2.99
3.92

Reference 16. Professor Alexander kindly provided us with his calculations for +=0.03
and 0.04 to three significant figures.

The values for &=0.05 through 0.13 are taken from Ref. 19.
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TABLE III. Ionization rates for excited states calculated by Eqs. (125) and (126), compared
with accurate numerical calculations by Damburg and Kolosov. ~ In Eq. (125), P& is calculated
by 4th-order perturbation theory, while Be(E) is either calculated by 4th-order perturbation
theory or taken from the numerical calculations, as indicated. N" means N & 10".

ni n2 m E (a.u. ) Eq. (126)

-2Im(E) (a.u. )
Eq. {125)with

ReE (4th) ReE (num)

Pp (4th) Pp (4th)

Accurate
numerical

calculations

2 0 1

2 0 0

0 4.000 3

8.000
1.200
1.600"
2.000

4.000 3

8.000 3

1.200 ~

1.600
2.000

1.09~
4.55
4.34-'
1.04
1.51

1.75-s

1.46-'
2.O9-'

6.6s-'
1.21

4.12 6

7.97
4.01"
5.65
3 71"

7.87 ~

3.15
2.20
3.89
4.26

4.09 6

7.88"
5.66
1.01-'
5.94

7.85"
3.08
2.59

2.15

4 44-6

4.16 3

1.90
4.41
8.74

8.10
2.02
1.17 2

2.76
5.19

2 1 0 0

5 0 4 0

5 4 0 0

5 3 0

4.000
8.000
1.200
1.epp
2.000

1.OOO-4

1.500 4

2.OOO-4

2.5OO-4

3.OOO"

3.5OO-4

4.ooo-'
4.5oo-4

1.500
2.000
2.500+
3.OOO-4

3.5OO-4

4.ooo-4

4.5oo-4

5.ooo-4

1.556-4

1.945+
2.139-4
2.528+
2.917-4
3.3oe-4

2.81 ~

4.70 3

1.O1-'

4.29
9.V3-'

2.OV-"

2.83-'
1.54
4.28-'
2.90
9.18
1.86'
2.S3'

1.OO-"

5.46
9.05 5

2.64+
2.87
1.69
e.eo-'
1.94

3,5V-'

2.16 6

2165
V.16"
8.96"3

5.99

1.21-7

S.7V"
7.66
1 39"
1.73

v.vv-"
3.10
5.es-'
6.2V"
2.00 3

3.49
4.32 3

4.15 3

1.O2-"
2 58 s

1 95 s

2.50
1.14+
2.66
3.93-'
4.35-4

3 10~io

1.02
7.51
1.32-'
8.61
2.92-4

1.21
s.v4-4

8.43 3

1 26 2

2.41+

V.V1-"
2.95
4.79
6.08 4

3.06
8.41"
9.72 3

1.16 3

03~ii

2 67-s
2.OV-'

2.V3-'

3.oe-4

3.86
1.84-4

13-io

1.p4 ~

7.68"
1.36-'
s.ss-'
3.1O-4

1.36
8.51~
6.88
1.71-2

3.04

420i2
1.92
1.VS-4

8.53
1.97
3.64
6.35
1.27

2.OO-"

4.O3-'

3.27
4.1V-'

1.V9-4

4.2S-4

V.59-4

1.15 3

4.20
1.44 ~

1.O6-'

1.76 5

9.vv-'
2.V9-4

Reference 25.

VIII. STARK LEVELS AND WIDTHS
IN APPRECIABLE FIELDS

As F increases from zero, so does -2ImE. The
functions f '~& and e ' '~ are extremely rapidly
varying functions of f. Very quickly f ' 2e ' '
differs significantly from

(4 n'F) ~~2 exp[3(n, —n, ) -2/3n'F],
and Eq. (126) loses its validity. Equation (125),
which differs from Eq. (126) in that F. , P„and

f [= «(-2E) '~'F] appear explicitly, remains valid
to higher values of F, if one has perturbed values
to use for F. and P,. At still higher values of F,
Eq. (125) is no longer sufficient, and one would
need the next term in the expansion of, say Eq.
(58). At still higher values of F, Eq. (58) would
no longer be valid, and one would have to resort
to a more numerical procedure, either along the
lines suggested in paper I or as developed by pre-
vious workers.
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TABLE IV. Ionization'rates for excited states calculated by Eqs. (125) and (126), compared
w'ith numerical calculations by Damburg and Kolosov, ~ and with JWKB calculations by Bailey,
Hiskes, .and Riviere. " In Eq. (125), both Re(E) and p2 are calculated by 4th-order perturbation
theory. N" means N x].0".

nf n2 m E (a u. ) Eq. (126)

Eq. (125)
with

ReE (4th)

p, (4th)

-2Im(E) (a.u. )

Accurate
numerical

calculations
Lane zos
method

JWKB approximation"
Rice and

Good
method

10 0 9 0 7.892 6

8.951
l.007
1.131 5

1.3O5-'

7.23-12

1.46 8

6.O8-'

9,4O-4

1.62

4.O8-"
3.O1-"

2.48
1.09 7

1.69
3 17
1.62 6

3.06 ~

1.79
1.80
3.36-'
1.81-'
3,34-'

1.99-'4

1 g4-fi

3.45-'
1,83
4.68 '

10 9 0 0 1.572"
1.776
1.986
2.435-'
3.195

5.13
e.ol-'
2.81 4

1.12
5,781

643 fi

3.06
5.57
2.66-'
2.V2-'

1.45""
v. ev-'
1.59
8.70 6

1.01

06~f0

2.39

1.50 4

3 72 10

2 06 8

4.36
2.38-'
4.62

Reference 25.
"Reference 13.

To illustrate the usefulness of Eqs. (125) and

(126), we report some calculations for field
strengths and states already reported in the litera-
ture. Most of the calculations in the literature are
at rather high field strengths.

%e first tabulate —2ImE for the ground state for
various field strengths in Table II, along with ac-
curate values computed by Alexander" and by
Hehenberger, McIntosh, and Brandas. " For orien-
tation, one should note that the natural linewidth
of the Balmer series is -10 ' a.u. , so that even
the smallest field (0.03 a.u. ) in Table II is not
very small. The first column of computed values

is based on Eq. (126). The second is based on
Eq. (125), in which P, and ReE (which also enters
in the definition of f) are evaluated by fourth-
order perturbation theory. " The third differs
from the second in that the energy shift is taken
from Hehenberger, McIntosh, and Brandas" (but

P, is still taken from fourth-order perturbation
theory). The fourth column is by numerical meth-
ods. Even at the lowest field strength (0.03 a.u. ),
Eq. (126) is less accurate than Eq. (125), but the
agreement of Eq. (125) with the accurate numerical
results at the lower field strengths is remarkable.
For more orientation, we remark that at 0.03

TABLE V. Ionization rates for highly excited states, calculated by Eqs. (125) and (126),
compared with JWKB calculations by Bailey, Hiskes, and Riviere. ~ In Eq. (125), both Re(E)
and p2 are calculated by 4th-order perturbation theory. N" means N x 1.p".

nf n2 Z (a.u. ) Eq. (126) Lanczos method

—2Im(E) (a.u. )
Eq. (125) JWKB approximation

with Rice and
Reg (4th) Good

p2 (4th) method

25 0 24 0

25 24 0 0

2.725
2 ~ 839
2.960
3.094
3.351

5.782
6.221
6.674
7.147 ~

7.524

4.12-'
3.06
1.81"2

1.07
8.36

4.70
8.02"
7.87'
5.03
9.S44

1.32-22

3 07
5,58 '0

9 19 i9

6.99

1 54-12

4.46-"
e.ve-"
5.98 8

2.29-'

8.35
2.48
5.44-'
8 89 8

2.04 6

2.O9-"
817 fo

1.70 8

2.02 ~

9.13

3.59-"

2.1O-"
3.56-'
1.84

g8 10

8.32-'
1.71
1.68

~Reference 13.
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a.u. , the perturbed energy shift is 0.4% of the un-

perturbed energy and is accurately given by fourth-
order perturbation theory, but that at 0.13 a.u. ,
the energy shift is 8% and is overestimated by a
factor of approximately -' by fourth-order pertur-
bation theory.

In Tables III-V, similar calculations are com-
pared with numerical calculations by Damburg
and Kolosov, " and with JWKB calculations by
Bailey, Hiskes, and Riviere. " For small I and
n„ the results are in reasonable agreement. At
high I' and high n„ they are not in such good agree-
ment. It should be noted that in Tables IV-V the
field strengths are all so high that the perturbed
energy and P, are very poorly given by fourth-
order perturbation theory. Unfortunately, accurate
numerical calculations do not seem to have been
published for smaller values of I'.

is particularly easy to apply to hydrogen. The
second, based on perturbation theory, has the
promise of greater generality. The third, a parti-
tioning method, brings out the sensitivity to the
wave function in the barrier region and one probable
difficulty with Oppenheimer 's treatment.

Numerical agreement of the analytical low-field
formula with accurate numerical calculations is
quite good for small I and small n„n„and m.
Agreement is significantly better when perturbed
values of ReE and P, are used in the formula rather
than their unperturbed field-free values. To get
better agreement at higher values of I' and of n„
it wou1. d be necessary to obtain the next term in the
expansion for ImE, and to have methods more
accurate than fourth-order perturbation theory for
calculating ReE and ReP, .

IX. CONCLUDING REMARKS
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