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This work advocates the use in atomic physics of a new relativistic two-body formalism equal in rigor to
the Bethe-Salpeter formalism and clearly superior to it in several respects. Outstanding among these is the
existence of a Coulomb-like kernel for which the exact analytic solutions of the bound-state equations are
known. These solutions are derived and applied in a calculation of the O(a m lna ') contributions to hfs in

muonium and positronium. Three previously unknown contributions are found. Theory and experiment are
compared.

I. INTRODUCTION

In this paper we treat the bound states of spinor
quantum electrodynamics (@ED) using a new two-
body bound-state formalism. The general frame-
work is based upon a bound-state equation for the
Bethe-Salpeter (BS) amplitude with one particle on
the mass shell, which originated with Gross' and
has subsequently been discussed by several au-
thors. ' ' Though similar in spirit to quasipotential
methods, this treatment is equal in rigor to that
of Bethe and Salpeter. Furthermore, it is clearly
superior to the BS formalism in several respects:

(i) The bound-state equation in the Coulomb lad-
der approximation reduces to the Dirac-Coulomb
equation when the mass of the particle held on the
mass shell is taken to infinity. This is very im-
portant as the Dirac equation is the exact bound-
state equation in this limit. As is well known, the
BS equation reduces to the Dirac equation in the
limit of infinite mass only when all cross ladders
of all orders are included in the kernel.

(ii) The bound-state equation is essentially a,

single-particle equation, the dynamics of the sec-
ond particle being greatly simplified by keeping it
effectively on the mass shell.

(iii) It is shown that the bound-state equation
can be rewritten as a Dirac equation for a single
effective particle not only in the infinite-mass
limit, but for arbitrary constituent masses. One
of the most important advantages of this approach
is that there exists a Coulomb-like kernel for
which an exact analytic solution is known. Clearly,
it is most desirable that an exactly so)uble zeroth-
order problem exists when computing corrections
to energy levels or decay ra, tes in high orders of
perturbation theory. No similar solution exists
for the BS equation, and in the past the unperturbed
BS wave function has been found by iterating the
equation. This latter procedure is fraught with
peril as will be well illustrated below [see also

Ref. 9]. The method of solution used here was sug-
gested by the work of Grotch and lennie on an ap-
proximate version of this equation.

(iv) Given the equivalence of this equation in the
Coulomb ladder approximation to the single-parti-
cle Dirac-Coulomb problem, the scattering ampli-
tudes generated in this formalism (in the ladder
approximation) become eikonal-like, reproducing
the results of Ref. 7. This suggests that this ap-
proach might have some applications in the analy-
sis of high-energy diffractive scattering in field
theory. These applications will not be pursued in
the present paper.

This equation is most conveniently applied when
one of the two constituents in a bound state stays
very near the mass shell, i.e., either when one
mass is much greater than the other or when the
binding is weak. However, we emphasize again
that the formalism involves no approximation and
so may be employed wherever the BS formalism is
applicable.

To illustrate the use of this equation, we com-
pute the n'n~ inn ' contributions to the hyperfine
splitting (hfs) in muonium (p, 'e ) and positronium
(e'e ). This work is the first practical application
of such a single-particle formalism in QED. Most
of the results of Refs. S-10 are reproduced. In
addition we find three contributions not previously
known. The asymmetric treatment of the constit-
uents posed no problem in extending the results to
positronium. Indeed the requirement of symmetry
under exchange of constituent masses of the energy
levels served as a useful check on the results.

In Sec. II we briefly derive the equationandortho-
normality relations for the wave functions. The de-
rivation given there is equivalent to that of Refs. 1,
3, and 4, but is more convenient for our purposes.
In Sec. III we derive perturbation theory. Sections
IIand III serve primarily to establish notation. In
Sec. IV we transform the bound-state equation into
a simple single-particle Dirac equation and obtain
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an analytic solution for particles of arbitrary mass
interacting via a Coulomb-like potential. Finally
in Sec. V we apply the formalism in computing the
o.'Inn ' hfs contributions in muonium and positro-
nluIQ.

II. BOUND-STATE EQUATION.

To arrive at a new formulation of the two-body
bound-state problem, we consider a Dyson equation
for the two-particle Green's function with one par-
ticle (m, ) on the mass shell (Fig 1.):

+ BlG(kTP)= '
(,)
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where G~ is the Green's function without external
fermion legs. %e define K such that

Gr(k TP) = lim iG(klP),
0

1 ~-E)

(2)

where G(klP), the usual two-particle Green's func-
tion, satisfies the BS equation. '

d gG(kl P) =K(klP)+
(

)4K(kqP) (~
zx

(~ )(,) G(qlP) . (3)

Kernel K(klP) is the two-particle irreducib]e pS
kernel. Taking K =K~»Q = & „Q=+, is incorrect; in
stead, new terms must be added to account for the
various poles and cuts in K(klP) (Fig. 2):

K(k 1 P) = K(kl P)j Q- „Q=, +
( )

K(klP)
(~

X — —— +~, & qlP ~o-E, io=~r+
i 2v5(q' —EG) (,)

((I' —m, )&» 2E,

Formally this result is derived by solving the equation [which follows directly from (1)j'

G P — Bl2

(4)

for K where Gr is related to kernel K by Eqs. (2)
and (3). In cases where the binding is weak oy
where m, »m, the approximation K=K~„Q z „o z
is quite good and the remaining terms in (4) can be
incorporated perturbatively. When the binding is
not weak, the full BS kernel K itself exceeds (4) in G(k 1 P) -0 (kP„)4'(I P„)/(P' P„') (5)

complexity and so nothing is lost in using this for-
malism.

Like G(klP), G(k 1P) has poles at the m, m,
bound-state energies

P-k P-(
as P'- P„'= (P'+M„')'~', M„being the mass of the
bound state. Substituting (5) into (1) and evaluating
as P'- P„, we obtain finally the covariant bound-
state equations (Fig. 3):

+ ~ ~ ~

+ + ~ ~ ~

FIG. 1. Dyson equation for the two-particle Green's
function with one particle on mass shell. Fermion lines
marked with an x are on the mass shell.

FIG. 2. Definition of the new kernel K in terms of the
usual BS kernel K.
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d'l
(g „-g -m, )"~(kP„)= (y+m, )&'&

2E, (2m)'

&&iK(kl P„)4(TP„), (6a)

(g-m, )'"e(kP„)=0, I'=E„P„=(P,P). (6b)

Equation (6a) is an eigenvalue equation for the total
energy P of the bound state and for the 16-compo-
nent wave function O'. Equation (6b) follows from
(6a) and implies that

ting the residues of the poles on each side of (8),
we obtain the normalization condition'.

J4,"E'"2'.4(kP. )
2
—"-2E (2r)'6'(k- I)

OiK(k 1P) 4(1P„)= 1.
BQ

(lo)
We obtain an orthogonality relation by taking the
limit P -P' for m Wn corresponding to a different
eigenstate of (6a):

4(kP) (E~+~ )~i2
|t (kP )

g(kP)

where g(kP) is an eight-component wave function
having four spinor indices for m, and two spin in-
dices for nz, . In the limit m, - ~, k becomes m,
and Eq. (6a) becomes the Dirac equation for parti-
cle m, moving in an external field, as required
(and for @ED, one obtains the Dirac-Coulomb equa-
tion).

Equation (5) fixes the normalization of the wave

functions. This normalization condition is most
simply obtained by rewriting Eq. (1) as follows'.

3 3

,+(kP„)SV(k 1 P„P„)4(1 P„)= 0, m & n.

G(qkP)(P - ti —m, )'"

= 2E, (2m)'6'(k —q) (f+ m, )'"

d'l
+ —,G(qIP)iK(I kP)(]t'+m, )'".

2E, 2v

If this equation when multiplied on the right by
4(kP„) is subtracted from Eq. (6a) multiplied by
G(qkP) on the left, and the result integrated over
all k phase space, the following result emerges'.

J
d'k d'l

, G (q k P)sx&(k 1 PP„)e (TP„)

P=(P', P), P„=(P„',P), (8)

where
y(2)

W(k 1PP„)-=' [2E,(2w)'6'(k —1)]
1

iK(k 1P ) —iK(k 1 P~)
P —I'„

In the limit P'-P„', G is specified by (5) and, equa-

FIG. 3. Bound-state equation.

III. PERTURBATION THEORY

The stationary perturbation theory usually applied
to the Schrodinger equation is easily adapted to this
problem. The derivation will be sketched only

briefly here, ' the reader is referred to Ref. 11 for
further detail. For simplicity we work in the rest
frame of the bound state (P =0). Furthermore, all
integrations over constituent momenta will be im-
plicit; only the total energy (E) carried by a given
function will be exhibited. Assume that 4&~ are the
eigenfunctions with total energy E,' of Eq. (6a.)
with kernel K,(E), and let G, (E) be the correspond-
ing two-particle Green s function. Again for sim-
plicity, we assume that the levels E,. are nonde-
generate. If G(E) is the Green~s function for the
kernel K(E) =Ko(E)+5K(E), then

G (E) = G,(E) + G, (E)i6K(E)G(E)

= P [G,(E)i6K(E)]"G,(E) (11)
n=0

and G(E) has poles at the perturbed bound-state
energies Ej.'

G(E)-4, 4,/(E -E,.) as. E- E,
We define an integration contour I"j in E space
encircling F»I'-jy and no other poles of t", G» or
K. Cauchy&s theorem implies

E,[4,'qq(E,
'E, )4, ][4.,WV (E.,E. ,

'
)4. ,

']..

—;~;~V(E,'E)G (E)~V(EE,'. )eo,8dE —
O

[4 'W(E E~@ ] [4 ~(.E E ).4.]

—. 4,'. XV( E,'E )G ( E)W(EE,.)4, ~~

rj 2"
The contour integrations can be expressed in terms
of known quantities by using Eq. (11) to remove
G(E) in favor of 6K(E) and G,(E). The result is a
perturbative expansion for Ej in powers of I
[using Eq. (8)]:
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4'i5K(E)g [G,{E)i5K(E)]"4'.
'~a~i s-z,' n =0

ii) . . (; i", iiili(Z)r [G,(Z)iiK(Z)] "i]
n=0

The contour integrations in each term of the ex-
pansion can be performed as the only poles im-
plicit in the integrand occur in G, (E) at E =E~ and

have well-defined residues [using (6)]. Carrying
out these integrations we obtain the familiar per-
turbation series

+ 0(5K') . (»)

The perturbed wave functions are used primarily
in computing decay rates, scattering amplitudes,
and the like. They will not be needed in this paper.

IV. EFFECTIVE DIRAC EQUATIONS AND AN EXACT
SOLUTION

Equation (6a) is greatly complicated in coordinate
space by the term on the left-hand side containing
0'=(k'+m', )' '. Grotch and Yennie, ' in their treat-
ment of a related quasipotentia1. equation, expanded
k' to first order in k'/m'„but this procedure is ap-
proximate and leads to divergences in high-order
terms that can be ignored only when rn, »m2.

To remove k' from the left-hand side, we first
rewrite (6a) as an equation for g(kP), the eight-
component spinor. '

(14){g —t(] —m, )g(kP) = —,
E iK(k 1P)g(1P),

where E is defined such that

(1)(k )] i)K(k 1 P)g(1) (1 )]) = X
) tK(k 1P)xy i (16)

y„being a two-component spin-wave function for
particle 1. %e note in passing that all of the for-
malism described in Sec. II and Sec. Ill could easily
have been developed in terms of (C(, K, and G (de-
fined analogously to K) rather than 4i, K, and G.
Working in the center-of-momentum frame (P =0),

E, =E, + (4', i5KC',. ) 1+ 4, i5K+, —
E=E

0 0+, 4;+ 4,'.i5K G, ——', i5K%,' . +0(5K'). (l2)
t z-s,. E= Eo.

Similar arguments give the perturbed wave func-
tions

0

4,.~ +,0. + - -.— G, E i5K E

we multiply both sides of (14) by y'(g + t(I —m, )/4P E„
to obtain

P', +m', m', —, - 'y{kP)

y'(p +) (]—m, ) d 1 . -- $(l P)
4PpE(, (2 v) 2E,

This is an effective Dirac equation for a particle
of mass m2, momentum —k, and "energy"

2 2 2P0+m2-nZ,
2P0

=tP22 —E —+ 0 ~Sl2 —& aS Wl g~~
~P0 2P

where e is the binding energy (P'=m, +m, —e).
We emphasize that Eq. (16) ls exact.

When seeking analytic solutions describing bound
states in QED (muonium, positronium, etc.), the
physics requires that (16) reduce to the Schrodinger
equation with reduced mass in the nonrelativistic
regime, and to the Dirac-Coulomb equation when
m, -~. This is accomplished if we take as our
unper turbed kernel

-Z 2

iK,(k 1 P) =
P+g-m, )k-1('

because then Eq. (16) becomes

$(kP) 2m~(Ey +k y —m. ) -- — = -Ze —
(&2F~ P

d'f 'yo '

(1](1P)
(2v)' ~k-T~' 2E,

The solutions of this equation are the familiar
Dirac-Coulomb wave function (t]„.,-(-k) (f(]' is a nor-
malization constant)

q{kP)= ' 4"'( k) '"
( )z/2

which implies

but with an effective fine-structure constant:

Zc(-Zn'=—Zn '- =Zo. ' +0 (Zo,)™
P0 m, +xi 2

Z mPP
(

mg +fP(2
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I

The scale of nonrelativistic momenta in the wave functions is set by y, which correctly incorporates the
reduced mass of the system. The total energy of the bound states is obtained by solving the following
equation for P:

2 2 2

(1 + (Z ))2/f [ ( + 1)2 (Z~ i) 2] g/2+nl)2) g/2 ) t H ) ' '

therefore

(Za)' m, m, „4m,m, 1 3 4~2 g ~ 1P =m+m, —, —(Zn), , —,+O (Zn), n=n'+j+ —, .2n' m, +m, m, +m, 2n j+-, Bn

(19)

In the Appendix we show how, following Grotch and Yennie, this treatment can be modified when wi, »nz,
to incorporate part of the instantaneous transverse photon interaction (Breit interaction) into K„ thereby
obtaining the complete fine structure to O((Zn)'m, /m, ) .

% e will require the 1s wave function in Sec. V. In momentum space, the wave function for particle 2 is

X/2
8m

3 (I + k2/y2)2- K /2

cos $ tan ' — + sin $.tan ' —.
y 2 y

cos tan '- i+, -sin tan '—
—«'y(1 —5)

g =I —[I, —(Zn')']' '= ,'(Zc(—')', k = )k(,

where y is the spin wave function for particle 2. It is convenient to expand (t) in powers of $ as only the

lowest and first-order terms are required in Sec. V:

~~(.)( k)
y' ' ' 8vy («')'

(k'+ y')' 4
y2 + 2k2 y2 + k2 3k2y +ys k -g» k

$,2
-+ln 2

— 3 tan '—
y 2m2

(20)

» I~o(k .IP) is not symmetric under exchange of k and 1 (i.e., non-Hermitian), the adjoint wave function
$(kP) is not simply P y . Rather, it is easily shown that

$(kP) =)I)t(kP) ~ ~ ' =g~(kP) 0 1+ ~
2E~

+
2~ o

Note that the correction to p y is of relative order n'm ,/m, whe. n k- O(y).
The normalization of this wave function is fixed by E(I. (10) with

g2 2

Setting E„=m, +k'/2m„ the normalization is determined to O(o)') by:

1 d k—
2'IR) (2W J
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The last two terms are equal to O(n') by Eq. (14)
and thus

S~F(2=-i) ( )
2

+ 1 ——' +O(o. )2' ]m 2 2' y

= 1+ (4 —ln2) +— —1 — ' + O(c.') .(Z u')' y' m,
2 2&K gm 2 2fPl g

V. HYPERFINE SPLITTING IN MUONIUM

AND POSITRONIUM

We now use this formalism to compute the hyper-
fine splitting of the 1s level in muonium where it
is natural to set m, =no„and m, =m, ." Each term
to be computed below is also a part of the positron-
ium hfs, and its contribution there is found simp-
ly by setting m~ =m, . In addition, there are an-
nihilation kernels contributing to positronium hfs
only, but these will not be evaluated in this pa-
per

KERNEL

COEFF IC I ENT OF

a —
p log 0 Efz

(
fTl g + in~)

I

(c): I I
I + r0

I
/%

me
+

mp

0 ~ I ~ I

(d} ~ ~ i — ~ (
~ ~ I ~

I I & r
{e) I I

'+

0
~ I

0 ~ ~ 0 ~(g)::-~: +.::.
F '%

~ ~ ~ Coulomb Interaction

Transverse Photon Tnteraction

Unperturbed Kernel Ko

FIG. 4. Diagrams contributing to Q(0. 2ypg //m„ ln~ Ez)
hfs in muonium. The contribution to positronium hfs is
found by setting m„=m, The double iteration of Zo has
been omitted from (g) as it (like Ko) contains no spin-
spin interaction.

The dominant contribution to muonium hfs is the
Fermi splitting:

E~ = —,'(y'n/m, m, )(o, ~ o„),
which implies

All terms of O(o.E~), O(n'Ez), and most radiative
corrections of O(n'E~) have also been computed
and are discussed in the literature. " At present
many terms of O(n'm, /m, E~) remain uncalculated.
In this paper we compute the n'm, /m, inn 'Ez
terms coming from single, double, and triple pho-
ton ladder kernels. The diagrams considered and
their contributions are presented in Fig. 4. Con-
tributions from diagrams (a), (e), and (g) were
computed in Refs. 8 and 9 and agree with those
computed by the author using the techniques des-
cribed above. Diagram (f) has been computed for
positronium only in Ref. jI.O. The calculation for
constituents of arbitrary mass is described below.
Diagrams (b), (c), and (d) were also considered
r(b) explicitly, (c) and (d) implicitly] in Ref. 8,
but the contributions listed in Fig. 4 can only be
found with BS techniques if the BS equation is
iterated twice to produce a wave function (not just
once as was done in Ref. 8).'~ Such omissions can-
not occur in our treatment as the unperturbed
problem has been solved exactly. The calculations
for these diagrams will also be exhibited below.
Note that although contributions from individual
kernels may not be symmetric under the inter-
change of masses m, m~, the sum of all terms
is symmetric, as it must be.

For all of these diagrams it is found that lno. '
terms come only from the region of nonrelativistic
momentum in all integrations, as only there are
the propagators in the kernel sufficiently singular
for the binding energy to be of importance. There-
fore the general procedure to be adopted is to ex-
pand all propagators and energies in powers of
k'/m~ and then to isolate the logarithmically diver-
gent terms as these are the source of inn ' contri-
butions. " The coefficient of inn ' is easily com-
puted using Table I. Of course the divergences
are ultimately cut off by the propagators when the
momenta become relativistic. The one- and two-
loop graphs contribute to O(nEz) and O(o.'Ez), re-
spectively, this coming when the wave-function
momentum is nonrelativistic. As 5@-O(a'Po) in
this regime and is of O(ng, ) elsewhere, P,',"may
be replaced by P,"' for all calculations of O(o.Ez)
and O(o.'E~) modulo 1nn ' contributions from these
graphs. ln addition g = g~yo can be assumed in
computing these contributions.

To verify the analytic results presented in this
paper, all graphs [except for (f), which has been
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TABLE I. Integrals of the form

J dkdq f(k, q)

required for analytic evaluations (Ref. 8).

f(k, q)

dex v) and, in particular, on all photons insimple-
ladder and cross-ladder kernels. " Unfortunately,
this class of gauges does not include the Coulomb
gauge, though any gauge-dependent terms originat-
ing with these photon lines must vanish as m, -~
(the Dirac limit).

k4, q'

kq

k k'q, qk'q
(k q)'

evaluated elsewhere] have been computed numeri-
cally without approximation. Furthermore the new

contributions (b}-(d) have also been computed us-
ing a doubly iterated wave function in the Bethe-
Salpeter formalism.

Finally we note that all calculations are per-
formed in the Coulomb gauge. As in the BS form-
alism, the wave functions and kernels here are
not gauge invariant, though physically measurable
quantities such as energy levels and decay rates
must be. The Coulomb gauge seems to be optimal
for atomic physics insofar as it incorporates the most
physics in the simplest graphs. ' Note thatbecause
m, propagates on mass shell, this formalism is in-
variant under the general class of gauge transforma-
tions

-g „-(g „+ )A„k„/A k)

performed on all photons interacting with m, (in-

A. Single transverse photon exchange

The kernel describing single transverse photon
exchange is [Fig. 4(b)]":

iK r(k 1 ) = —[e~/(k —l)2] y' y' 5', &(k - 1),

~0

where

&l;(k- 1)-=~;;—(k -1)'(k- 1)'/Ik- 1 I'.
The second term in 5',&, though very important for
fine structure, is easily shown to contribute only
to O(n~E„) in hfs and so will be neglected here.
Noting that

~(k~')y*~(») = [(E.+m. )(E +m.)]'"X~.

l+il Xi k —zk&&0

E)+m~ E~+m „

the contributions of iKr to hfs from po and 5p, re-
spectively, are

M =BE +BE

e'X' d'kd'1 [(E,+m„}(E,+m„))'~',
( k)

l'+0 —m, ; ( 1) („), i» c'„ ik«, ' (, )

N'y' d'kd'1 [(E~+m )(E, +m„)]' ' k' 1' k 1

(k'+y')'(1'+y'}' (E~ —E,)' —
) 6 Ri~ 4m-,E„E,+m~ E~+m~

m k~l l2 k ~ l
+ 1+ +

2E E;+m E„+m„

e'fP d'kd'l [(E„+m„)(E,+m„)]'"
2m (2v)6 (k- 1)

y' y' d'0 d'1 4', k k'
~ m, m„4v' (k'+y')' (l'+y')' y y
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As 5E, is of order o.'E~, we have approximated
E'„and F., by m„, and have retained only the log-
arithmically divergent term. To check for such
terms in 5Eo (which also contains E~), we expand
all factors in powers of k2/m2„or 12/m2„:

FIG. 5. Coulomb-transverse-photon ladder kernels.

k'(k 1-1') k +T' —2k 1' (
(k'+ y')'(P+ y')' 4m', 4m, m, IT k I

' 8m'„ Il
I

The k', k4, and l~ terms in the integrand result
in linear divergences and correspond to an O(o.m, /
m~Ez) contribution from the relativistic region of
phase space. The remaining terms are logarith-
mically divergent and, using Table l, contribute

2
nz (n'(na ')= (-—— ' E Inn'.

2 m ~ @lcm~

The total contribution to the hfs from single trans-
verse photon exchange is found to be

)

m m 2

mg mg mern p

The O(nm, /m, E~) term is completely canceled by
terms from the Coulomb-transverse ladder ker-
nels. The 2n'E~ is the usual Breit-Dirac wave
function correction.

B. Coulomb-transverse photon ladders

The perturbation due to ladder graphs containing one Coulomb and one transverse photon is [Fig. 4(c), 5]':
2y'n2

M'cT= 6
7r m

d kd l
[ )( )]&&2

d q &y'(P' —g+m )yo&

(k'+ y')'(l'+ y )' ' 2m/i Il & I2(k q)2[(~ )2 a]

(21)

where (keeping only terms relevant to hfs):

u(kX')y'(/+md)y u(1X) . ~ qo+m qo —m
(y ( (1f-+) o&y" -=[(E, )(,' )pi2

= l"I (l. (7 — ' X Q'. + 1 X Q.

with similar expressions for &y'(p-q+m, )yo&'" and &yo(g+l -g+m, )y'&("). For reasons to be discussed
below, terms proportional to both k and l cannot contribute to O(n'inn 'E~) hfs and so have been omitted.
Furthermore, only the &,&

part of &,z contributes to this order. Thus the relevant terms in the numerator
from each graph (ladder and cross ladder) are

'(P q(+~ ) &(e)& ol($+~ ) o&(g) & e
'

v& 2 2 l ™ek . q ™u2k. + (q ™u( q ™e)k2

(J' —q —I,)- q' —I„- (q' —m, )(P"—q' —m,),
}

+ '1 q+ '21 q+
m (E, +m„)m,

(22a)
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(y'( ji —y+ m )y) "'(y'{4+ f'- y+ m )y') '" '

(P'-q'+m, ) - r'+E, - (H+E,)(P' q +m )
(E,+m„)m,

(P —q —m, ) (E„q')— (E„-q )(P —q' —m, )+
m, E, +m, (E, +m, )m, (22b)

with r=—0+/-q.
The ladder graph contains the iteration of the single transverse photon interaction with K„which must

be removed to avoid double counting of its contribution:

y'a' d'k d'E

2E ll —pl'(0 —q)'[(P-q)'-m, '] [(E,+m„)(E,+m„)]'~' ~ E~+m„

(y'(P-q+m, )(P+$+m,))"' 4E,P' (y'(J —$+m, )(P+f'+m, ))"' 2E,(P +m, +E,) ]
2P' (P+q)' m,' — P +m, +Eg (P+l)' —m', j

'

(23)
This is actually not essential as we have already computed the contribution to hfs from exchange of a
single transverse photon (5E»= 2&Er). However this procedure does provide an excellent check on the
algebra and is well suited to numerical evaluation. The two electron traces compensate for the asymmetry
of K,(q 1P) under interchange of q T (i.e. , the iterated diagram and its conjugate are not the same). Re-
callingthat (P —$ m+,)(P $++m)=2P'(Eyo+q y+m, )y', we have

iy'"" gxo — '+ 'kxo„y'"'(y'(Ey'+q y~m )yQ"'
X~+m„

(o, o„) 2, E+m, k E,+m, E+m, E,+m„2 E-m,

E.+m„- ' „,(y'(g'- q+m, )(P+g+m, })&'&

(o. ~.) 2~ P'-E.+m, „- E,+m„,„- P E,+,E,
3

l2 I"-F. -m-
2m, (P'+ E,+m, ) Pl (24)

We perform the q' integration in (21) by closing the q' contour at infinity in the lower half plane encjrc
ling the poles:

(p, ) qo =E,—ie ~ (P —q)~ —m 2 —[(m „+m, )/m „](q2+y2),
(ladder only) for k, q-y;

(u-q)'- —~k- q~';
(25a)

(y} q'=E.+ Ik-~l -i~ ~(P-q)'-m'. --2m, ]k- j(,

q -m„-Rm„[r q[(i
m„ lk —ql ) «rk, l, q-y; (25b}

(~+1-q)2 m2- 2m. ~k q~ 1 q ~ l-l k

rn, Ik-ql
&
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(e) qo=ro+ (q'+m,') -i~ ~ q2-m2„--4&'m. ,

(k+l —q)' —m', -4m', , for k, l, q y;

(k —q)' -4m'„

(25e)

(p, ) q'=E, +Eg+E, ~, —ic ~ (p —q)'-m,'-4m', ,
(cross ladder only) (25d)

(k —q)' -4m', ,

All poles contribute to O(o'.m, /m E~) when q is relativistic and k, l-y (Ref. 2). However only the (p) md
y) poles are singular enough to contribute to O(e('m, /m, Er) when q, k, l-y, which is where inc. ' terms

have their origin.
We examine first the (u-pole contributions (ladder graph only). Following our general procedure, we ex-

pand all propagators and energies in the nonrelativistic limit. By counting the number of powers of mo-
menta (-y), including phase space, in the numerator and denominator of the integral, we find that terms
quadratic in momentum in (22a) contribute at order Ez. Comparison with (24) indicates that these are all
canceled when bE» is subtracted. Terms quartic in momentum contribute to O(n'm, /m E~) modulo
inc" . They also appear to diverge logarithmically for k, q, l nonrelativistic, but only when one or the
other wave-function integrations factors out —that is, when either k or / can be set to zero in the kernel.
These are the n'1no. 'E~ terms. Terms proportional tobothk and l do not diverge in this region and thus need
not be considered here, though power counting indicates that they do contribute to O(o.2m, /m„Er). Sub-
tracting the iteration 5E« from the p. -pole contribution, we are left with

5E (p) —5E,

y3 d'3k d'l
F +6 (k2+ y2)2 (l2+ P)s

m 1 ~q-kj l q ]..q qk q qk ql'q,2

(q2+ y~) (k qP g q~
2 4mgm~ 2m~ 4m)lm~ 4mgm() 4m~me

The final result follows immediately from Table I:

5EeT(((() —5E,T = (-2+m, /m„)(y'/m, m„)Erlno. '.
We now examine the y-pole contributions from (21). Power counting indicates that only terms quadratic

and cubic in momentum in (22a) and (22b) need be considered to O(n E~) when k, q, l-y. It is easily seen
that when corrections from the muon propagators (25b) are included, such terms in the ladder diagram are
exactly canceled by terms in the cross ladder diagram. Therefore the y poles generate no further contri-
butions of order n2lnn 'm, /m Er.

C. Double-Coulomb-single-transverse-photon ladder kernel

The most singular parts of this kernel [Figs. 4(d), 5] contribute only to O(o."m,/m„ inn 'E~) once the itera-
tion of the Coulomb-transverse ladder has been subtracted. Thus we need consider only p. -pole contribu-
tions to both the qo and r integrals (when the contours are closed below the axes), and then only for r, q
nonrelativistie. Also lnu terms are found only when both wave-function integrations factor out (i.e.,
k=1=0 in the kernel). Thus the perturbation is

d r nz„. 1 ~d3q nz„1 1
2m„m„+m, r'(r'+y ) 2m m„+m, q'(q'+y') ~q

y — +m, — +m, y E +m„2~„' '
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P-r P-q P-r P-q

r q

FIG. 6. Double-Goulomb-single-transverse-photon
ladder kernel.

q

FIG. 7. Single-Coulomb —double-transverse-photon
ladder kernel.

For r, q-y,
(

=+2)(((lxg,)X(-2'r ), &y (g+~„)y & =IX ((Ixc„)q y

and thus the hfs from this kernel is

CCT ICT (e 13N 424 ~ 2)I Q(2y2+ y~) 2( 2+ y2)
~ ~

2 ~~ Iy

D. Single-Coulomb-double-transverse-photon ladder

The same approximations used in evaluating the previous graph may be applied to this graph (Fig. 7):

y3C(3 ] ylt d32 sl d3q ]
4y (I„+I,) f y (y*+y )f ty (q . +y) )yI y(

x f&y'(P - t'+ .)y'(P'- 4+ .)y'&"'&', (~)&'„(a)&y"(P+~.)&(4+~.)y'&'"')I,

where for r, q-y
M" = ',y'(g+~-„)y'(((I+~. ) &y"'

=z)(t[z„„o,r (I+(r x(I)'o„'

+ (r x q) IH —0"rx (I a„]X,

&yI(p —g+ m, )y (I'- ((t+ 2)2,)y'&"'

=M with 0'~

Therefore,

Z*IV' ( )a' ( )I"'
= &c, o,&&2(r qp+ +3 I

r x (I I
' —+3

and the final contribution is

mTCTI 3I. -I=&4(y2/m, m, )inn 'Z~.

Taking m~ =m, we obtain the result presented in
Ref. IO for positronium.

E. Other diagrams

y 0

0

~ 00+0

The diagrams in Fig. 8 appear to contribute to
order (22 Inc( 'E~ (note that there is no factor m, /
2)I„as above). In fact, it is trivially shown that
these terms exactly cancel to this order in pairs
as indicated in Fig. 8. Note that the diagrams in-
volve retardation corrections to single and double
transverse photon exchange.

'i /
N

)( ~ )(
r' ~i ~

FIG. 8. Diagrams cancelling in pairs to order
e'lna, 'E~.

VI. CONCLUSIONS

In this paper we argue that it is essential in at-
omic physics to have the exact analytic solution
for some zeroth-order interaction which contains
the basic physics. We have obtained just such a
solution using an effective single-particle formal-
ism equal in rigor to the Bethe-Salpeter formal-
ism. This solution incorporates both reduced mass
corrections of the sort encountered in Schrodinger
theory as well as the correct Dirac fine structure
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TABLE O. Comparison of theory and experiment for
muonium hfs. Uncertainties shown in theory due to un-
certainties in p„/p& (Ref. 20). Terms of order 0.' (m~/
m„) log(m~/m~)&~ -0.01 MHz have yet to be computed
and are not included.

within errors for positronium. However, the situ-
ation will be satisfactory for neither atom until
all contributions of order a'E~ for positronium,
and u'.(m, /m„)E~ and u'Ez for muonium have
been computed.

Theory

E~+0(n(m, /m, }EF,~'E~, & &p)

2& (m /m„)E~lno-'

Total theory

Experiment

Ref. 20
Ref. 21

4463.293 {6)MHz

0.011

4463.304 (6) MHZ

4463.302 35(52) MHz

4463.304 00(180) MHz
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APPENDIX

in the limit of large mass for one of the constitu-
ents. The corrections to the basic interaction are
specified unambiguously by perturbation theory
(once a gauge has been chosen).

Applying these results, we have computed the
first new results in QED obtained from an effective
one-particle formalism. Theory and experiment
are compared for muonium hfs in Table II and for
positronium hfs in Table III. The a'lno, ' contri-
butions to each are

aE=2 u' ' ",lnu 'E~(p, e)
(m, +m&)2

= O. OII2 MHz for muonium,

&E = 8 u' Inu 'Ez(ee) = 0.01916Hz for positronium,

where corrections from the annihilation graphs
have been included for positronium. "'" No diagram
other than those considered above seems sufficient-
ly singular to contribute to 0 (o 'lnu 'E~) hfs in
either atom.

Little can be said about agreement with muonium
experiments until all contributions of the form
a'(m, /m&) In(m&/m, )Ez (-0.01 MHz) have been
computed. " Theory and experiment are consistent

TABLE III. Comparison of theory and experiment for
positronium hf. Terms of order o,' m~/2-0. 01 GHz
are not yet computed.

Theory

Here we show how Ko may be modified to include
the entire Breit interaction (Coulomb and trans-
verse instantaneous photon exchange), thereby ob-
taining the complete fine structure up to and in-
cluding 0((Zu)'(m, /m, )m, ) for m, » m, . The
treatment given here is very similar to that of
Grotch and Yennie' and so will be only briefly
sketched. The main advantage of this approach
over theirs is that k'= (k'+ m', )'~' need not be ex-
panded in powers of k'/m', .

We work in coordinate space and only to first or-
der in m, /m, . Eq. (14) ean be rewritten

(P —E» —V+ u k —Pm2)(}(=0,

where a = goy, P = y'. Multiplying by (P'+ E» —V

+u K —Pm, .), we obtain

V ak2

E+u k-Pm, —%+2 o
— V,

+ o, V + V, ~() (I(=0, (26)
2PO &

where E =m, —em, /P, + e'/2P' [Eq. (16)]. Ignoring
hfs terms, the interaction due to exchange of a
single instantaneous photon ean be written (in
Coulomb gauge):

+o (za) ~,(=*)*,
where Ue = u/x and W-= ar Reea-ll th. at the
momentum of m, is -k. Putting V= V,„, Eq. (26)
becomes

O(+4m„&5m, )

—0'. mein& )
5

203.3812 GHz

0.0191
[E+a .k Pm, - ((Po —Pm, )/P, )U, ]g = 0, (27)

Total theory

Experiment

Ref. 22

Ref. 23

203.4003 GHz

203.3849(12) GHz

203.3870(16) GHz

where we have used the follcnving results of first-
order perturbation theory:

[V,E ] =0 [«(Za) m2/m, ],
(1/4P')[u .k, [k', W]] = —tr,'/2P',

and have dropped all terms that contribute only to
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O(n'm, (m, /m, )') or higher. Equation (27) can now
be solved exactly by mixing the components of g
so that the Coulomb term is proportional to the
identity matrix in spinor space:

0=(1+~P)4,

2 2

which implies

(E'+n k —Pm')g=-(Zn'/r)g,

where (expanding to first power in m, /m, )

(1+&')E —2m, ~ m,m, m, +m,
I —A.

' ~ o +

m, (1+ V) —2m m,m,I-x = P' ~

(1+&')Pp - 2m, A.

(1 ~2)pp. Zn —Zn .

Thus the binding energies g (where Pp = m, +m, —&)
are found by solving.

2

mg+ f82 2(PB~+m~J '

(Zn)z m,m2, m,m2 1 3 1 m,m,

where mf(n', j) are the usual Dirac-Coulomb ener-
gies [Eq. (19)]. This equation contains the com-
plete fine structure up to and including
O((Zn)4mz(m, /m, )), as desired. The wave func-
tions are again directly related to the Dirac-
Coulomb wave functions.

All calculations in this paper can be performed
using this solution of the bound-state equation.
However it is generally simpler to use the solution
described in Sec. Dt, except possibly when working
to low order in m, /m, « l.

Note added in Proof. W. E. Caswell and G. P.
I epage have completed a new analysis of the hy-
perfine splitting due to annihilation kernels in
positronium. '4 This study confirms the
O(n'm, inn ') results of Barbieri and Remiddi,
and Omen. " In addition, a new contribution of
—,'n'm, inn ' is found to arise from the kernel with
exchange of a single transverse photon followed
by annihilation into one photon. This term has
been included in Table III.
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