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thallium*

David V. Neuffer and Eugene D. Commins
Physics Department, University of California, Berkeley, Ca/ifornia 94720

and Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720
(Received 4 April 1977)

Calculations are presented of the E1 amplitude expected in the O'P»2-7'P», forbidden M1 transition in Tl
if parity conservation is violated in the neutral weak e-N interaction, as proposed in a number of gauge
models, including that of %'einberg and Salam. Valence-electron wave functions are generated as numerical
solutions to the Dirac equation in a modified Tietz central potential. These wave functions are used to
calculate allowed E1 oscillator strengths, hfs splittings, and Stark E1 transition amplitudes, These results
are compared with experiment and the agreement is generally good. The relativistic O'P, &,-7'P, &, M1
transition amplitude 9R is also calculated, and corrections due to interconfiguration mixing, Breit interaction,
and hfs mixing are included. The result, OR,„„«——(—3.2 + 1.0) X 10 'i eih/2m, c, is in agreement with
the experimental value, OR,„s, = (—2.11 ~ 0.30) X 10 'i eih/2m, c. The parity-nonconserving F. 1

amPlitude 8» is calculated, and a value for the circular dichroism, 8=21m(PpNtheo)/ORegpt 2'O X
obtained. Parity-nonconserving effects in other Tl transitions are discussed,

I. INTRODUCTION

Discovery of strangeness-conserving neutral
weak currents in neutrino-nucleon scattering ex-
periments' has stimulated considerable interest in
the possible existence of a weak neutral electron-
nucleon interaction. If such an inter action violates
parity conservation, as predicted by several theo-
retical gauge models including that of steinberg
and Salam' (WS), effects in heavy atoms such as
optical rotation in allowed All transitions and
circular dichroism (dependence of absorption on
photon helicity) in forbidden M 1 transitions may
be observable.

An experiment to study the latter effect in the
doubly forbidden M1 transition O'I'1/2 7 P1/2
(292.7 nm) in atorriic Tl vapor has been proposed. '
The idea, originally suggested for the O'8, &,

—

7 S1 /2 transition in C s as well as the present Tl
transition by Bouchiat and Bouchiat, ~ is that a
short-range, parity-nonconserving, neutral weak
interaction &PN mixes the O'P1/2 7 Pl/2 Tl
with n'S, &, states. Thus the transition O'P, &,

—

7'P»„nominally M1 with amplitude

OR = ( V 'P, („rrt ~ ~M 1
~

6 'I', (s z m ~), (1)

7P

.7nm
2.13 Ghz

535.0

377.

W(R) —W(I ) 2 Im(hn„)OR 2 Im(S~n)
W(I~)+ W(1.) iOR i'-+ iS,„i' OR

The "circular dichroism" 6 can be detected by ob-
serving the fluorescence accompanying decay of
the 7'P«s state (see Fig. 1). The first step in
that experiment was the determination of the SR1

amplitude itself, the result being'

also contains a parity-nonconserving electric
dipole component with amplitude

8„=&7'I „„rn,~ZI ~6sl„„m,&.

It can be shown that interference between % and

SpN results in a dependence of the 6 'P», -7 'P, &,
absorption rate W on right- (R) or left- (I.) handed
photon helicity:

2.2 Ghz

FIG. 1. I ow-lying energy levels of the Tl atom (not to
scale). The hyperfine structure splittings of 6 P&y2,
7 P&g2 states are shown. Absorption of the 6 P&y2-7 P&y2
Ml photon (292.7 nm) is detected by observing fluores-
cence at 535 nm accompanying decay of the 7 P&y2 state.
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16 CALCULATION OF PARITY-NONCONSERVING EFFECTS IN. . . 845

Xf, , = ( 2.11y 0.30) x 10-'P,s, (3)

where p, ~= ~e~h/2m, c. In that measurement and
also in the experiment proposed to detect 6, use
is made of the interference which occurs between
K and/or h» and the Stark-induced electric
dipole amplitude S~ for 6'Pg/2 7 Py/2 transitions
in an external electric field.

In this paper we present results of calculations
of the atomic structure of Tl which are necessary
in order to make useful comparisons between these
experiments and the predictions of models of the
neutral weak interaction. The thallium atom has
81 electrons with a ground-state electronic con-
figuration: 1g'. . . 5d' 6g 6P. Qur approach is to
assume that all singly-excited TlI states of in-
terest have the same inner electron configuration
(1s'. . . 5d M6s', with total L = 0, S = 0}as that of
the ground state, and differ only in the valence
electron orbital. This approximation, while not
strictly correct, is reasonable, since inner-shell
ionization energies are at least several times
larger than that of the 6P valence electron. It also
has the obvious virtue of simplicity, since within
such an approximation most properties of interest
to us can be calculated from the valence-electron
wave function, which is obtained by solving the
Dirac equation numerically in a spherically sym-
metric potential, for all statesef interest. We
have chosen the potential

V(~) =—,e-""——.e'(Z —1) „„e'
y 1+/+ (4)

Without the exponential shielding factor e "", V(x)
is the "Tietz" potential, ' which yields a good ap-
proximate solution to the Thomas-Fermi equa-
tion. The factor e "" is inserted to account for the
exponential decrease of electron density for large

Parameters g and y are chosen so that the cal-
culated and observed 6'P», and 7'P&/2 energies
agree.

We describe calculations of energy levels, al-
lowed F-1 oscillator strengths, and Pz/2p Sz/p
hyperfine-structure (hfs) splittings, all in good
agreement with observations (see Sec. II). ' As is
well known, the 6'P, /, hfs splitting is strongly af-
fected by interconfiguration interaction, and a cor-
rection for this must be applied in order to obtain
reasonable agreement with experiment (see Ap-
pendix A). Our calculation of SII (Sec. III) includes
the one-electron relativistic contribution and cor-
rections due to interconfiguration, hyperfine, and
Breit interactions; the result is in agreement with
the experimental value [Eq. (3)]. Our calculation
of the Stark transition amplitudes S~ yields two
second-order matrix elements n and P for linearly
polarized excitation light parallel and perpendicu-

where G is the Fermi coupling constant of weak
interactions 6= 3 x 10 " in units (8'=m, =c = 1}
used throughout. The current J ~ (x) has both
hadronic and leptonic parts, the former being ex-
pressible as

J & —P' t ~0++"& 2 sjn g J ~&
had W (6)

where V ' is the I, component of the strangeness-
conserving hadronic vector current, A~'0 is the
neutral ~S=O hadronic axial current, J~' is the
EM current, and ~~ is the so-called "Weinberg"
angle, which is given by sin'~~=—0.3. That portion
of the neutral leptonic current involving e is

J,'"" = ——,'[(1 — 4si n&~)+, y, @,+4, ,yy4', ], (I)
where 4, is the electron field operator. The first
and second terms on the right-hand side (RHS) are
respectively vector and axial-vector currents. We
are interested in those portions of 36(x) which are
pseudoscalar, not scalar; thus we consider the
product of the axial portion of J„'""and the vec-
tor portion of J~~d. (The other pseudoscalar term
corresponding to the product of the vector part of
J~"" and the axial part of J„'~ gives a much
smaller contribution since it is proportional to
total nuclear spin, and for a heavy nucleus most
of the nucleon spins cancel in pairs. ) Ignoring
this latter portion, we find

x'"(x)= (c/Ma)T, y-, y,e.
x(V ~ ' —2 sin &q, J"' )

Taking matrix elements of XP"(x) for the static
limit of the nucleus, we obtain the matrix element
of the effective Hamiltonian

(&'") = ( GQ /2~&)4*,-(x)y, t, (x) ~„, ,

where

Q~ = (1 —4 sin26~)Z —R

lar, respectively, to the applied static field E.
The ratio P/n is in agreement with the experimen-
tal results of Chu, Commins, and Conti' (see Sec.
v).

The satisfactory agreement between experiment
and the calculations described in the previous
paragraph provides confidence that our estimate
of the parity-nonconserving amplitude 8» should
be reliable enough so that future experimental
determinations of circular dichroism may yield
useful tests of gauge models. For purposes of the
present discussion, we present the analysis in
terms of the WS model, ' which describes low-en-
ergy strangeness-conserving neutral weak inter-
actions in terms of an effective Hamiltonian den-
sity
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and g, (x) and $2(x) are Dirac wave functions cor
responding to states of opposite parity, and "x=0"
indicates the product is averaged over the nuclear
volume. In fact, only P, I, and S,&, states yield
non-negligible matrix elements. Equation (9) is
derived from the WS model. However, other gauge
models with parity nonconservation would lead to
the same expression with only Q~ of Eq. (10) being
model dependent. In most cases !Q~! - Z. In Sec.
IV we use Eq. (9) to calculate 8». Finally, Sec.
VI contains an estimate of parity-nonconserving
effects for transitions in Tl other than 6 P~(2-
7 Pj&2

II. THALLIUM WAVE FUNCTIONS IN THE ONE-ELECTRON
CENTRAL-F IELD APPROXIMATION

A. Construction of wave functions

the C's are Clebsch-Gordan coefficients, p, =—m, ,
l =!~+-2'!, and the I"s are spherical harmonics.
Equation (12) reduces to the two coupled radial
equations

„=--,f [2-—&, -V(~)]~,K

K—= —g+[Ei+V(x)]f .dr r
(14)

Following the procedure used by Schwartz' to
calculate hyperfine-structure splittings in Tl and
other heavy atoms, we choose for V(x) the modi-
fied Tietz potential of Eq. (4). Parameters q and

y are chosen so that calculated and observed
6'P, (, and 7'P, &, energies agree. The fitting pro-
cedure is as follows:

(i) For very small r (x ~ ro =0.02h/m, c =0.02),
i.e., for r within the nuclear radius r„one of the
following three potentials is chosen:

The Dirac equation is

(& 'p P+—«)0=(1 —& )0

where El is the valence-electron ionization energy
[(1—El) is the total electron energy including rest
mass], and n and P are the usual Dirac matrices.
We write

s(~)/~ ~. ~

&A"(&)/& X'„j

As usual, ~=+( j+ 2) for even (odd) parity states,
the X,'„are two-component spin-angular-momen-
tum functions' given by

/C(2 l, j ~2 02) y'$ ( ~y)

(C(2, l, j;—l, ~+l, V) I'&"'"(~,e)&
'

q=2.5937a2'=355.434 ',
y= 0.2579',-'= 35.34&-' . (15)

Numerical values of f/r and g/x vs r are given for
several states in Table I. These values are chosen
to yield agreement between calculated and ob-
served 6 2P, &„72'»2 energy levels to within 0.1/o.
Other low-lying S,&» D, &» P, &» and P», energy
levels are calculated, and these all agree with ob-
servations to within 2/0. Table II includes a com-
parison of calculated and observed energy levels.

B. Hyperfine structure

The one-electron central-field (OECF) wave
functions described above can be used to calculate
hyperfine-structure splittings for comparison with
experimental values. This comparison provides a
reasonably sensitive test of the accuracy of cal-
culations of 8 „since both the latter and the hf s
depend on values of the wave functions near the
origin. The perturbation Hamiltonian for hfs is

(a) V(2) = —Ze2/x (point nucleus),

(b) V(x) = —Ze'/r, (constant potential),

(c) V(~) = («'/2~. )(~'/~:-3)
(constant nuclear charge density) .

The initial wave-function values for this region
are generated using a power-series expansion to
solve Eqs. (14).

(ii) For r ~r, Eqs. (14) for f (r} and g(r) are in-
tegrated numerically stepwise using a fourth-
order Runge-Kutta method. ' Approximately 5000
intervals of length increasing from 0.001% to 2.0X
are used.

(iii) The eigenvalue condition is that lim„„f(r)
=0. The energy Ez in Eqs. (14) is varied to insure
that this condition is satisfied.

The energy spectrum does not depend strongly on
the choice of potential in step (i}. Of all the quan-
tities computed below, only the weak electron-nu-
cleus interaction depends significantly on this
choice, and for that quantity the dependence is only
-10/g. The number of intervals can be reduced
substantially without significant loss of precision
except for calculation of the forbidden M1 transi-
tion (see Sec. III); however, this reduction would
provide no economic advantage on the LBL CDC
7600 computer. The calculation procedure can be
reversed by choosing an asymptotic form for f and

g at large r, and integrating stepwise toward r= 0.
This yields the same states as the procedure
actually used, but is less convenient for calcula-
tion of SpN.

The values of g and y chosen for most calcula-
tions are
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TABLE II. Energy levels and hyperfine structure splittings.

Spectroscopic
level

designation

6p P)/2
6p P3)2
7p'P«2
7p 2P3/o
8p Pygmy

8p P3(2
7s Sg/2
8s Sg/g
9s 2S

~~2
10s Sg/2
11s S g/)

Fitted energy
level

(ionization
energy, m, c2= 1)

1.1939x10 ~

9.8745 x10
3.6756 x10
3.3937 x10
1.9199 x10+
1.8155 x10
5.4164 x10
2.5169 x10
1.4650 x10
9.594 x10 ~

6.772 x10 7

Spectroscopic
energy
level~

1.1953 x10 5

1.0062 x10
3.6648 x10
3.4219 xl0 6

1.9158 x10 6

1.8254 x10 6

5.5289 x10 ~

2.5521 x10 ~

1.4796 x10
9.6260 x10 ~

6.811 x10

Valence-electron
hyper fine

splitting (GHz)

21.8
3.27
2.71
0.494
0.989
0.187

14.3
4.32
1.90
1.01
0.59

Observed
hyperfine
splitting

(GHz)

21.3"
0.528
2.13 d

0.62
079
0.26'

12.4'

ac
1958)

"A.
'G.

A.
'A.

E. Moore, Atoi'c Energy Levels, NBS Circ. No. 467 (V. S. GPO, Washington, D. C. ,
, Vol. III.
Gallagher and A. Lurio, Phys. Rev. 136, A87 (1964).
Gould, Phys. Rev. 101, 1828 (1956).
Flusberg, T. Mossberg, and S. R. Hartmann, Phys. Lett. 55A, 403 (1976).
N. Odintsov, Opt. Spektrosk. 9, 142 (1960) [Opt. Spectrosc. (USSR) 9, 75 (1960)].

H„~=en A=en. (m„x r/x')

= em„~ (r x (7/r '),

where m„=g„p,„I is the nuclear magnetic moment
operator, p, „is the nuclear Bohr magneton, and
I=-,' is the spin for both stable thallium isotopes,
2 'Tl and O'Tl. Also, g (2 'Tl) = 3.223 and g„(2 'Tl)
=3.255', in our calculations these are averaged to
g„=3.24. It can then be shown that the hfs energy
splittings are given in first order by'

b, W= eg„p„(J+—,')I 8z/(4v' —1)]R,
where

C. Fine structure

Another test of the wave function for small ~ is
the fine-structure splitting ~ =E(j =l+ —,)

E( j = l ——,. )-for l c 0. Nonrelativistically,

In a relativistic calculation such as ours, the fine
structure is part of the unperturbed Hamiltonian,
and the calculated fine structure is simply the dif-
ference between calculated j=l+-2 and j=l —& en-
ergy levels. Comparison of these differences with
observed energy differences from Table II for P
states yields discrepancies & 15%.

Table II includes a list of hfs splittings calculated
for the various energy levels, together with ex-
perimental values where these are available. The
discrepancies are not due to major defects in the
wave functions, but rather to interconfiguration
interaction, which is known to have an especially
large effect on the 6'P, &, state. This is demon-
strated in Appendix A which contains an estimate
of interconfiguration interaction for 6p electron
states. Although the effect on the 6'P», hfs
splitting is large it can be shown that intercon-
figuration interaction corrections to 8» are rela-
tively small.

D. Allowed electric dipole transitions

We also calculate electric dipole radial in-
tegrals and transition strengths using the OECF
wave functions. In the relativistic notation of
Berestetskii, Lifschitz, and Pitaevskii, "the
transition matrix element is

V&,. -—e d'rj&; r,* r (19)

where jz, (x) = gzy'p, is written in terms of the
initial and final Dirac wave functions P, , gz, y
are the standard 4 x 4 matrices, and A„(r) ts the
4-vector potential. In the long-wavelength ap-

, proximation for an electric multipole field of order
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J,M, we have

A„(~)=(A,(r), 0, 0, 0),
d3k J+ 2 &/2 4~2

0( )
(2 )3 g 3 /2

x 5(~k~ — )I'"(k/&u) ~ e~"''

J+1= ~'(-&F"'( J

For El radiation, this becomes

Ao(r) = (-l)™lA-', v'2 (o'/' Y'f(r/r) .
Combining Egs. (19) and (21), we obtain

VlyN ( I))~3/2

(21)

x y'r +ryr~* r~, r (22)

The spontaneous emission rate A is given by

A/. —2w(V/ ),
where (V2&, ) is V/2, summed over photon states
and final electron states ( j/, m/), and averaged
over initial electron states (j„m,). For OECF

wave functions the angular integration is easily
separated, and we find the followirg:

Transition A coefficient

1/2 1/2P 3/ 2 1/2

~x /2- Ps/a

Ds/2" &3/a

D5/2 Ps/

4 e2~3( r) 2
9

8 e2~3(r) 2

4 e2~3(r) 2

.15
8 e2~3(r) 2

2 J~+ 1 A]~
2Jf+2 28'M' ' (23).

where ro is the observed energy difference between
initial aud final states, and (r)/, =fr( f&f, +g/g, )dr
The signs of these radial integrals are fixed by the
convention that f(r)&0 as r-0 for every state. In
Table III, the radial integrals (r) z, and .calculated
A coefficients for nD-6P and nS-6P transitions
are listed, together with observed A. coefficients
for the same transitions as determined by Gal-
lagher and Lurio. " The agreement between theory
and experiment is generally good, the discrepancy
in the transition rates typically being ~ 20%%uo. This
corresponds to a discrepancy in the radial in-
tegrals of ~ 10%, and reveals that our wave func-
tions are reasonably accurate in the range x & 2a,.

The oscillator strengths I"
&, are defined by

TABLE III. Allowed El transition rates.

Transition
A coefficient (10 sec )
Ref. 11 This work

Radial integral Oscillator strength
This work Ref. 12

2 2

8 Sg/2-6 Pg/2
2 2

2 2

10 Sg/2-6 Pg/2
11 S g /2-6 Pg /2

S $/2 6 P3/2
2 2

8 Sg/2-6 P3/2
2 2

9 Sg/2-6 P3/2
2 2

'10 S f/2-6 P3/2
2 2

D3/2 1/2
2 2

7 D3/2-6 Pg/2
2 2

8 D3/2-6 P(/2
2 2

9 D3/2-6 Pg/2
2 2

10 D3/2-6 Pg/2
2 2

6 D3/2-6 P3/2
2 2

7 D3/2-6 P3/2
2 2

8 D3/2-6 P3/2
2 2

9 D3/2-6 P3/2
2 2

6 Ds/2-6 P3/2
7 Dg/2-6 P3/2

2 2

8 D5/2-6 P3/2
2 .

'
2

6.25 +0.31
1.78 +0.16
0.78 +0.10

0.31 +0.06

7.05 +0.32
1.73 +0.18
0.80 +0.08
0.57 +0.06

12.6 ~a.o
4.4 +0.5
1.89 +0.3
0.98 +0.22
0.58 +0.15

2.20 +0.23
0.76 +0.08
0.37 +0.04
0.19 +0.02

12.4 +1.5
4.2 +0.5
1.7 +0.2

5.78
1.75
0.777
0.412
0.244

8.30
2.30
1.01
0.534

16.04
6.39
3.19
1.82
1.14

2.88
1.01
0.498
0.279

16.3
6.06
2.96

294.1
91.5
51.8
35.1
26.0

422.1
103.9
56.3
37.5

-307.7
-154.8
-99.8
-71.9
-55.2

-419.6
-186.9
-117.5
-83.0

-405.6
-186.9
—116.9

0.124
0.017 5
0.006 25
0.003 01
0.00170

0.178
0.018 0
0.006 05
0.002 85

0.368
0.109
0.043 4
0.0257
0.015 6

0.053 8
0.012 9
0.00549
0.002 85

0.489
0.116
0.048 9

0.123
0.017 2
0.006 16
0.002 95
0.001 67

0.162
0.017 2
0.005 9
0.002 86

0.40
0.121
0.053
0.028
0.017

0.052
0.013 6
0.005 6
0.002 9

0.46
0.12
0.051
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TABLE IV. Oscillator strengths for nS-7P, nD-7P
transitions.

Transition
Radial integral Oscillator strength

(r)&, (X.} This work Ref. 12

7 'Sg/2-7 P(/2
8 Sg/2-7 Pg/2

i/2 7 Pi/22 2

10 Sg/2-7 Pg/2
11 Sg/2-7 Pg/2

2 2

7 Sg/2-7 P3/22 2

8 Pf /2 7 P3/2
9 S~/2-7 P3/22 2

10 Sg/2-7 P3/2

6 D3/2-7 P1/22 2

7 D3/2-7 Pg/2
2 . 2

8 D3/2-7 P(/22 2

9 D3/2-7 P~/2
2 2

10 D3/2-7 Pf, /2

6 D3/2-7 P3/22 2

7 P3/2-7 P3/22 2

8 D3/2-7 P3/p
2 2

9 D3/2-7 P3/2
2 2

-1072.6
991.6
219.5
114.3
75.1

-1007.8
1240.2
202.2
100.4

1321.4
-489.2
-254.2
-165.3
-120.0
1328.0
-729.8
-331.0
—204.9

0.315
0.241
0.023 4
0.007 84
0.002 77

0.476
0.297
0.017 6
0.005 50

0.369
0.202
0.073 3
0.035 2
0.019 9

0.015 2
0.039 6
0.009 37
0.004 95

0.440
0.258
0.021 9
0.007 41
0.003 42

0.440
0.294
0.0164
0.005 42

0.340
0.248
0.085 0
0.039 9
0.022 3

0.016 6
0.041 8
0.0116
0.005 06

III. MAGNETIC DIPOLE TRANSITION RATES

A. Relativistic contribution

The relativistic contribution to %, arises from
the transition matrix element'

where J,- and J& are the initial and final total elec-
tronic angular momenta. These quantities have
previously been calculated by Anderson et al."by
a method similar to ours (one-electron Dirac wave
function and central potential). Table III includes a
comparison of their calculated oscillator strengths
with ours for nD - 6P and nS - 6P transitions.
Table IV gives the same comparison for 7P-nS
and 7P-nD transitions, the radial integrals for
which are needed in evaluation of 8» and Ss (see
Secs. D(' and V). Our calculated oscillator
strengths and those of Anderson et al. are nearly
identical, which suggests that the discrepancies
(s 20%) between calculated and observed values are
due to a failure of the GRAF approximation, rather
than merely to an inadequate central potential.
Thus to obtain more accurate results it may be
necessary to go beyond the simple GECF model.

both Px/, states, employing

/O o(t

k~ 0 i

and (o ~ r/r)y, "= -y'„and utilizing the anticom-
mutation of o' r/r and o VY,„, we obtain

V&, = —ie~» d& g (k&)(fgA+f@y)

~ ~

~
~

p g&dX-j. + +~amX-x .
We rewrite this as

Vq;= (-1)"f(2/3w)'~'(v'~'i(,

where & is the spherical unit vector

.„=V[(4~/3)'~'~ Y,„]
and

g, (k~)
py)

' « = —e A' ( fy gg+ graf()

(26)

(27)

A=2vr& JV„.f&'=' (o'(
f

p.„..«„/'), (29)

we sum over final and average over initial states
to obtain

A = 4(dse' ' ( fz g, +gzf,.) dr (30}

This formula was previously obtained by Johnson"
for the 2'S, /, -1'S,/, M1 transition in hydrogen.
The result is also valid for allowed 2-—,

' transitions.
In this case p, &, of Eq. (28) approaches the familiar

e- S
i(,y

~ = (y —L+ $8 — () d (31)

in the nonrelativistic limit. This expression
vanishes if the radial parts of (t(,. and P& are ortho-
gonal.

We use our GECF radial wave functions for
6 Py/2, 7'P, /, states to compute the result

g, (k~)K ) = —e (frigg+ ggfy) d'r

x dQ)(, O' V(4m/3)' ~2m Y,„)t"f

(28)

for P& /2 P& / transitions. The expression for
p,f,. ~ e in the case of S»,-S,/, transitions is the
same except for a change in sign.

To find the transition rate

V&,- = i e v'2' d'~('g(~)~(', (~) ( &,".)~,(»),
2

=-1.757 x10 'p~ . (32)

(24)

where g, (kx) = (m/2k')'~'J, »(kx) is a spherical Bes-
sel function. Using Eq. (12) for g, and g& which are

The extremely small size of this matrix element
implies that relatively large corrections might oc-
cur due to interconfiguration mixing, hyperfine
mixing, and the Breit interaction.
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B. Interconfiguration interaction correction

El.ectrostatic interaction of the outer electron
with excited core states alone (as in Appendix A)
does not directly effect the Ml transition rate,
since it mixes only those states having the same
total L and S (6P, » in Tl)," However, in second
order, spin-orbit coupling allows an admixture of
different L, S atomic states (e.g., «P, /, in Tl) and
this admixture can give rise to a finite M1 ampli-
tude even in the nonrelativistic limit.

A consistent fourth-order treatment is neces-
sary; the calculation which follows is similar to
that done by Phillips for corrections to g~(Cs). '«

Since the ground configuration of Tl is
1s'. ..5d' 6s'6p, we only consider the effects of
6s-electron excitation (the correction due to 5d
excitation turns out to be smaller). The unper-
turbed states are

(I)(6'P, /,-) = Gs'('S, )Gp 'P, /,

0, =4(7'P, /. ) = «'('S.)VP 'P, /. . (33)

The first-order perturbation is the electrostatic
interaction and the perturbing states considered
are

C, = Gsvs('S, )GP 'I „,,

Cv=Gs7s('S, )7P'P, /6 .
Thus the perturbed states are

~s= ~s+ nsC'6+ nvC'v ~

g', = (I), + p,4,+ p,C, ,

(34)

(35)

QP
H =Q $, L, .Sq ———Q — L( S,2 rar i

and rewrite our wave functions as

(36)

where n„n„P„P,are calculated by first-order
perturbation theory, and antisymmetrization of the
total wave function is taken into account. For ex-
ample,

n, = —(3/2)'/'G, (6s, 6P; Vs, GP}/bE

where G, (6s, 6P; Vs, 6P} is the exchange electro-
static integral, bE =E(46}-E((i)6}, and E(46) is a
fictitious energy calculated for a 6sVs6p configura-
tion in the potential of Eq. (4), Numerical com-
putation gives

n, =-0.010, nv=+0. 023, Ps=0.094, Pv=0.006 .
(36)

The Gs sV( 6S)np' P/, states are now mixed with
states

C „"('P,/, ) = GsV s(6S,)n'p«P, /,

by spin-orbit interaction. %'e employ the perturba-
tion Hamiltonian

and

4 ~6 6[ 6 6 6 ( 1/6) v v( 1/2)]

+ P,[C,+ b,e',(«P„,)+ b,e;(«P„,)]

&v v[ 6 6 6( i/6) v v(

(39)

2&2 [E(6'P„,) —E(6'P„,)]
6 9 (41)

where bE =E()1)6)—E(C '6). We find as =+ 0.033, av
=+ 0.0081, be=+0.012, bv=+0.0029, c6=+ 0.061,
c7 + 0.012, d, = + 0.022, d, = 0.0043. The inter-
configuration interaction correction is now com-
puted from E(ls. (39) and (40) by means of the
formula

In the evaluation of all the perturbing terms we
use the nonrelativistic form (31). We find

K„=[ (n,c,+ P,d,)(n sas+ P,b,)

+ (n,c,+P,d, )(n,a, +P,b,)]
x-,'[g( P, /, ) -g('P, /, )] x —,'s

= —1.9x10 p~ . (43)

Inclusion of higher s-state excitations (6s ns np)
does not significantly change Eq. (43). However,
since the electrostatic exchange integrals are
fairly sensitive to small changes in wave functions,
the fourth-order result (43) might be in error by as
much as a factor of 2.

C. Breit interaction corrections

The OECF approximation used up to now does
not include a complete description of electron-
electron interactions, even if we assume a spheri-
cally symmetric core. To order v)'/c', the elec-
tron-electron interaction contributes a term to the
Hamiltonian

' g(sl'vt'k (~l'via)(s '&I )
rsi&0 i& i&y i& rik

(44)

The first term on the RHS of (44) is in fact par
tially included in the central potential [ Eq. (4)],
but the second term is not, and must be regarded
as an additional perturbation. This term may be
reduced to the following expression (Breit interac-
tion)"

+Pv[ev+ dsC '6(«P, /, )+ dv@v ('P, /, )] . (40)

The coefficients a„.. . , d, are calculated from the
observed P-state fine-structure splitting. For ex-
ample,
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e 1Q. —Xp. ~ oB 2 s + i k
k ilk

orbit-orbit correction, "gives the following ma-
trix element:

e' 1 - 1p;p+, (r;, (r;, p~) p).
k f.k

y'
sk

-e3

OR 6

r
y~+(r, ) —, '

p(r, )r~4d~,
+1 0

In order to calculate the contribution of this inter-
action to the M1 transition, we repl. ace p by p+ eA
(electron charge=-e), where A= —,'(B xr). Thus
we obtain

+ p 'P"2 f'2 &'2

x L, B(l},'(r, )d'r, .
For Bile, ~g 2 m~ =~a, this becomes

(52)

3

d), e).r — g (V( x A&)
~ gk

e' ~ d,. j, (r~ d,.)(r,, j,}) (46)

3ii„=- -', e'B(( W)+ ( V) ),
which yields the following numerical contribution
to K:

1.20 x 10"'p, B .

where

x (l),(r, ) d~, ,

p(r, ) = Q q*, (r,) l,()r,) .
k81

For present purposes we choose )(}„)l),' to be 6P, &„
VP», wave functions, respectively; for p(r, ) we
insert the spherically symmetric density obtained
from our central potential, and we set Bile. Then
the amplitude for the m~ =-, -m~ =

& transition is
reduced to a sum of radial integrals:

K~ = —', ea(—,e' (V) + —' e'( W) ),
where

(48)

This expression has been derived previously by
Abragam and Van Vleck" and Schwartz. " We now
consider the special case of one electron outside a
spherically symmetric electron distribution; it has
been shown that only electrons outside of closed
shells give nonvanishing contributions. "

It can then be shown that the matrix element of
the first term on the RHS of (46), called the Lamb
correction, "is

.d(r. )d(r )«,
)

~ = PBg~nZ~B .
In zeroth order

J(J+ 1)+L(L+ 1) —S(S+ 1)
2J (J+1)

J (J+ 1)+ S(S+ 1) —L (L+ 1)
+g~ 2J(J+ 1)

(56)

where g~ = 2.002 319114. The corrections to g~ are
obtained in the same manner as those described in
Secs. IIIA-IIIC, merely by computing 6 P&g2

D. Total theoretical N j rate; corrections to gj(Ti, 6'&1(2)

We collect the four contributions to the M1 ampli-
tude [Eqs. (32), (43), (51), and (54)]:
K =KREL+%„+9K~+ 9RoR = -3.2 x 10 '

p, B .
Our analysis of hyperfine structure indicates that
there is an uncertainty of -20% in the calculation
of relativistic effects. In addition, X„has an in-
dependent uncertainty of -0.15%. The combined
theoretical uncertainty of K [Eq. (55)] is estimated
to be -1.0x10 'p. B.

The Zeeman energy shift in a constant magnetic
field 8 is related tog~ by

(r) "r(r)
(

r', d(r. )dr, )d (r, )r', dr, ,
'

(49)

TABLE V. g-factor anomaly calculation and compari-
son vrith experiment.

(51)3RI = —4 x10 p. B .
The second term on the RHS of (46), called the

r(r, ) r, )rd,(r,
)
rd(r, )r,*dr, ,

(50)
and F, F are the nonrelativistic 6p, vp radial
wave functions, respectively. The resulting con-
tribution to% is evaluated numerically to be

Measured 6 P&~2 g factor
Z ero-order theory
g-factor anomaly
Calculated anomaly

Relativistic
Configuration interaction
Lamb
Orbit-orbit

Total calculated anomaly

~ H.eference 19.

0.665 692 4(18) '
0.665 893 6
0.000 201 2(18) '

-0.000 107
& 0.000 001
-0.000 006
-0.000 082
-0.000 195
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-6'P, /, diagonal matrix elements. The results of
this calculation are displayed in Table V and com-
pared with experiment. " The agreement is very
good.

i
62P, i, E &

=
i
6 ~P, i, E&

&V'P„„EiH„,.)62P„„E&
~6p-Evp

x iv'P„„E&, (5v)

i
7 2P, i,E') = )72Pi g~, E')

(6' P/„E'(H„„iV P, „E')
E7p-E6p

x i62P, i„E'&, (58)

where the
i & indicates a perturbed state, and

H„„, given by Eq. (16), is diagonal inE, the total
atomic angular momentum. This contributes to the
M1 transition matrix element as fol1.ows:

( 7'P, i, &
E' iM 1

i
6 2P, i2, E)„f,

(nPii2, E' iM 1 (nP, i2, E), (59)
6p 7p

where on the RHS we use the nonrelativistic M1
operator, whose matrix elements are independent
of principal quantum number n. It is interesting
to note that the LHS of Eq. (59) vanishes for E=E';
thus this correction, unlike the previous ones, only
affects E=O-E'=1 and E=1-E'=0 transitions.
The hyperfine matrix elements on the RHS may be
computed by the methods of Sec. IIC with the fol-
lowing results:

E. Hyperfine mixing

Next, we calculate the additional contributions to
the M1 amplitude arising from admixture to 6P,
7P wave functions of 7P, 6P components, respec-
tively, due to hyperfine interaction. According to
first-order perturbation theory,

For E =0, E' =1,

(M1 &~ ='~~ =+ 2.6 x 10 6p,

For E=1, E' =0,

(M1&~'* =' —--2.6 x 10 'p

g, (k~) 2

(fsl2& la+ g3l2AI 2) (62)

and similarly for —,
' -—', transitions. The results are

tabulated in Table VI. In the allowed cases, the
M1 matrix elements are within 2/q of the nonrelati-
vistic value -W2/8, while the forbidden (6'P, i,—

7' Pi„6' Pi, - 7' Pi, ) matrix elements are about
10/p of the allowed values, which corresponds to
the expected magnitude of spin-orbit coupling ef-
fects.

These transitions also have nonzero electric
quadrupole (E2) amplitudes. We obtain

00 2

0

since the portion of the E2 amplitude which is pro-
portional to fg~r'g, d~ is finite negligible. Table
VI includes a tabulation of the E2 radial integrals
and resulting A. coefficients. The coefficient
A»(6'P, i, -6'P, i,) has also been calculated by

F. Other N1 transitions

The methods outlined in Secs. IIIA-IIIC and
III E may be used to calculate other Tl M1 transi-
tions, forbidden or allowed. These include the
6'P, i,-62P, i, transition (allowed) which has been
suggested as an interesting candidate for a neutral
current experiment, and the O'P, /, -7'P, /„O'P, /, -
7'P, i, transitions which are not so strongly for-
bidden as 1EPl /2 Pl]2 and 'plP3]2 pl P / cases
since for —,

' -', the radial wave functions are not
fully orthogonal. In what follows we ignore the
small higher- order effects considered in Secs.ID 8,
IIIC, and III E and consider only the one-electron am-
plitude of Eg. (28}. For nP», -nP, I, transitions we
flncl

a„,„,=2m& iV, i&

TABLE VI. Pg/2-p3]2 Ml and E2 transition rates.

Transition

6 Pg/2-6 P3/2
2 2

6 Pg/2-7 P3/2
2 2

7 Pg/2-6 P2 2

7 Pg/2-7 P3/2

%x 3/M2

+ 0.9796
—0.0902
-0.115
+ 0.9822

4.083
3.31
2.18
8.706 x 10 3

fear f;d'g
0

{X2)

2.94 x 10~
-1.27 x 105
-3.00 x 105

2.40 x 10

&S2
(sec ~)

0.158
55.2
72.8
3.69 x10 4
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Garstang" and his result (0.11 sec ') and ours are
in agreement. IK„,&= In'„,&++

" '" —'" '" Ins„,) .
7P nS

IV. PARITY-NONCONSERVING E1 AMPLITUDES

A. 6 I',(2 ~7 Pity transition

As previously discussed (Sec. I) parity noncon-
servation in the electron-nucleon weak neutral in-
teraction manifests itself in the matrix element

&q, IH „Iy,&=( Gq //2~2)q, *(x)y,y, (x)I„,. (64)

Vfe write the perturbed 6I', 7I' states as

I6P &- I6P &++ & / ~ z'NI j. /

n 6P eS

(65)

From (64) we obtain

i GQ„1
&ns„, IH, „In'P„,&

=——- =

x I.f,(r)g.;(r)

f,(-r) g (r)],=.5, , (67)

This expression is averaged over the nucleus
assuming a constant proton and neutron density.
As an alternative, one may assume a pointlike nu-
cleus, and evaluate (ns IH» In'P& at the nuclear
radius; this increases the numerical value by 6%.
The E1 matrix element is obtained by evaluating

(68)

For the E1 matrix elements of the RHS of Eg. (68)
we have

&~IE1IP„,&=.&~ ~..IP„,&

=e fsrf~dr )/"'6 e Xps

e
fsrfsdr, (m, =ms =--,')

Expression (68) is evaluated by two methods:
(1) A sum is taken over the lowest five states

I 6s'ns), n) 6, and the effect of the autoionizing

I
6s 6P 'fP

& state is also taken into account by includ-
ing in the sum a term corresponding to the unphysi-

cal state
I
66'6s &. (See Appendix B for this argu-

ment. )
(2) The operators

InS)&nS [

~ E"z —E.s
are replaced by Dirac Green's functions, described
in detail in Appendix C. This calculation includes
the contribution of all intermediate S states in-
cluding continuum and autoionizing states and is
thus more reliable and complete than method (1).

The results are summarized in Table VlI. The
Green's-function method yields the numerical
value for 6» =& VP, /, IEl I6P«, & in the Eq. (68)

TABLE VII. Calculation of ppN.

Intermediate
s state

Contributions to ppN

&7' /) I Ell ns) &ns I Bpm I 6Pg /p) &7P1/21Hpm I ns& &ns I &ll 6Pi /2&

E E7- &n

~ ss&

7s)
8s)
9s)
10s)

Method 1

i0.197 x 10 -Qwl //s I

+ i5.08
-i 1.77
-i 0.232
-i 0.084

+i 0.631 x 10 ~
Qw( ps (

-i 1.69
+i 0.485
+ i 0.093
+ i 0.037

Subtotals
Total

Total

i 2.81 x 10-"Qwl ~s I
-i O.46 x 10-"Qwl Ps I

i 2 36 x 10 Q.wl .ps I

Method 2

i 2.13 x 10 ~oqw) ps ( i O.2O x lO "qw i Ps)—
i1.63 x 10 "Qwl Vs I
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TABLE UIII. gPN for n'P~/2-nP3/2 transitions.

s&s~snl ~il ss& &ssl Hasl s'&F12&

&P(/2-&S

Intermediate
s state

I ss&

7s)
Ss)
9s)

I 10s)
Total

6 P3/2-6 P1, /2
2 2

-i 4.22
»0 Qwl ua I

-i 2.83
-i 0.264
-i 0.084
—i 0.041
-i 7.45

x&0 Qwl pa I

7 P3/2-6 Pg/2
2 2

Method 1

-i 0.65

+ i 6.76
-i 3.13
-i 0.30
-i 0.10
+ i 2.58
xi 0 "Qwl va I

6 P3/2-7 Pg/2
2 2

-i 0.86

+ i 3.43
-i 0.78
-i 0.14
-i 0.06
+ i 1.58

x10 Qwl Pa I

-i 8.09
Qwl &al

Method 2

+ i1.75
x&0 "Qw I va I

+i 1.25
x10 "Qwl va I

h» =1.93i x 10-"Qw
I &a I i

which corresponds to an A coefficient:

A = 1.20 x 10 "Q' sec '.

In the Weinberg model,

(7o)

(71)

B. Other parity-nonconserving transitions

For Py/ -P,/, transitions we may ignore the ef-
fect of Hpm on the P»z state since J= —,

' wave func-
tions have extremely small amplitudes at the nu-
cleus. Thus,

Qw =Z(1 —4 sins8 w) —N = -140 (V2)
NS Pj /z gS

for Tl, using sin'8~=0. 3 as suggested by the ex-
periment of Heines ef; a/." Thus we obtain from
(VO) and (V2),

These matrix elements were evaluated in the same
way as described above for BwN. The results are
summarized in Table VIII, where

g» =-2.70f x10

For the circular dichroism & it can be shown that
one obtains

21m(8~)% 2Im(ga„)
llz+ I&

lz-

(z,„is&(Ns)= f f

V. STARK EFFECT

A. 6 PI(/2-7 I')(~ transitons

(VVa)

Inserting (73) and the experimental value of %
from Eq. (3) in (V4) we obtain

6 =+2.6 x 10-' . (V5)

6 = 2.5 x ].0-'. (V6)

This result is to be compared with the original
estimate of Bouchiat and Bouchiat, ' 5 =—2 x 10 '.
Our result is also to be compared with the calcula-
tion of Sushkov, Flambaum, and Khriplovich, z'
who obtain, also using SR,„„from Eq. (3),

lnS&(nS le ~ N, i )
n NP& /z nS

~ lnDs~. &(».i.I«sx l»|i.&

aD3/2
E

nD3/z
(73)

We now calculate the electric-field-induced E1
transitions which can occur between 6 Py/z 7 Pz/z
levels through Stark-mixing with 'S»„'D»z states.
The coordinate system is shown in Fig. 2. Action
of the perturbation H' = eE ~ ~r = eE,y results in the
perturbed states
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A(

E F)ELD,
Y

BS=e EOX

2 =mz(6'P, /, )

OR

LASER BEAM,
X

Here

mz(7'P, /, ) = —,
' n cos0 iP si-ne

-ip sin8 o. cos9

(sl)

FIG. 2. Coordinate system and orientation of electric
field E, laser beam, and detectors as described in
this paper and utilized in the experiment of Chu, Com-
mins, and Conti.

1 1 1
9 7PinS~6P&nS E E +

@

2 1 1+ — ~ R7z, „aR6/, „n + (82)
nD3/2 7 nD 6 nD

e =cossg+sin82 (79)

Thus an electric dipole transition stimulated by
laser photons with linear polarization

-1 1 1
9 7P, ns 6P ns

n 6 nS 7 nS

1 1 1
9 ~ 7PnD 6P nD E E E EnD3 g2 7 nD 6 nD

(83)

has amplitude

h. =&7'P„,izl (6'P„,),„„„

p (7'P, /, ice ~ r in)(nieZ, y (O'P, /, )
E6P —En

(7'p, /, ieZ„yin)(nice ri6'p, /, )
E

where E, =E(6'P, /, ), E, =E(7'P, /, ), and R,
= (7'P»,

irwin'8,

/, ), etc. The quantities n and P
have been evaluated by summing over the nearest
S and D states, and also by use of the Green's
function, Appendix C. The results are summarized
in Table ~.

Chu, Commins, and Conti have measured p/n
Their result, '

for n=S»,„D,i, states . (80)
[p/n]. „„=084, . (84)

The result of a calculation of this amplitude may
be represented by a 2 && 2 matrix whose rows and
columns are labeled ybm(z6'P, /) and mz(7'P, /, ),
respectively,

is in good agreement with the Green's-function
value of Table IX. This theoretical value P/n
=0.80 was employed by them to determine the ex-
perimental value of 9R, as described below.

TABLE IX. Calculation of Stark matrix elements.

Quantity summed

Finite sum over
five lowest energy levels

(7 $y]2-11 $gy2, 6 D3/'2-10 D312)

Green's function
method

~'lP, nS~nS&6P
&6- &ns

+7P, nS+nS 6P
&V —&ns

+1P,nD~nD, 6P
86 —EnD

~7' nD~nDe 6P
&~ —&nD

g ~ I'in un'ts pz/(V/cm)j
eP
P/e

3.78 x 10"

2.58 x 10"

3.50 x 10

8.00 x 10"

2.43x 10 5

1.78 x 10-'
0.73

3.64 x10 0

2.71 x 10ii

2,81 x 10io

7.01 x 10"

2.05x 10 5

1.64 x 10-'
0.80
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B. Experimental determination of N1 amphtude

(85)
DF', mF~ 2

mp„m F

Neglecting 19RI' compared to
I hs I' (which is

justifiable for the rather large E fields employed),
Eq. (84) becomes the following for the four indi-
cated cases of interest:

(a) F=I; F'=I eIIE({)=O)

(b) F=0; F'=0 eIIE (8=0)

P == ~49K/n

P=O

(c) F= 1; F' = 1,0 R -L E (8 = 90')

P=-&9R/P (7'P, &, hfs unresolved)

Ri E (8= 90') P= 29R/P-(d) F=o; F =I

A finite 7 P, &, final-state polarization can arise
along the z axis of Fig. 1 through interference be-
tween 9R and/or/. » and gs. Interference between
5K and b~ may then be utilized to measure %. Here
the effects of QpN

' which are in any case very
small, are neglected. In an extension of this ex-
periment now underway, interference between

$pN and g~ is utilized to determine 5» itself .
In order to facilitate comparison with observa-

tions in which some of the hfs components of the
O'P, &,-V'P, &, transition are resolved, we replace
the matrix of Eq. (81) by one whose rows and col-
umns are labeled by F', mp, (for 7'P, &,) and F, mp
(fOr 6'P, ~,), resPectively. Including Sp„, 9R, and

$8, the total dipole amplitude D is given in Table X.
In the experimental determination of SR, the

O'P, I, hfs splitting, but not that of 7'P, &„ is re-
solved. Thus the 7'P, &, polarization is given by
the formula

DF's mF~ 2

P(F) =

We now apply the hfs mixing correction. of Eq.
(60) to case (d) Iit also applies to case (c) but this
was not observed in detailj. The resulting ratio
Ps'""/P, is then in good agreement with experiment.
From their measurements of P, and/or P„Chu et
al. ' obtain the experimental value of 9K given in
Eq. (8).

k(P-f)'- z(P+f)' 2f
s(P+f)'+2(P-f)'+f' P

' (86)

where f=9R- r)8p„, r)=+I for right-hand circular
(left-hand circular) laser light, and the approxi-
mation P = 2f/P is va-lid for large electric fields
(E» 1 V/cm).

VI. PARITY NONCONSERVATIQN IN

2Plt22P3/2 TRANSITIONS

For the transitions O'P, t,-6 P3~„6'P,~,—7 P~~„
and O'P, &,-'7'P, &„ we include E2 as well as M1
contributions and write

(7')=(P,&sIp 2xe+ee ~ r i+(eq ~ r)(k ~ r)IP, &,),
(87)

where g = (eh/2mc) (L+ S), and e = j) cos{)+ 0 sin{) .
The resulting transition matrix is given in Table
XI. The circular dichroism is calculated as in

C. Interference of g&N and g&

When the incident light is circularly polarized,
it becomes possible to measure the interference
between 8» and S~, again by detecting the polar-
ization of the 7'P», state (by means of circular
polarization of its decay fluorescence). The
formulas analogous to Eti. (85) are readily ob-
tained from Table X. We quote only the result for
the I' = 0-E' = I transition

TABLE X. Dipole transition amplitudes D=(M1)+(Zlp )s +(Else~) for S Pf/t {E mp) 7 P&~2 {E',mp, ) transitions.
e'=e Eon. p'=e Bop.

7'Ig]2 I' m &~]2 mF

0 0 n' cos8 (i/W2) (9g sing
—p' sing
+ gpN Cosg)

-3R cos8
+ g pN sin 8

(i/W2) (%sine
+ P' sing
+ gpN cosg)

(i/&2}(% sing G.' cos8 -3g cos8
—p' sing + gpN sing
—gpN Cosg)

( i/W2) (3g sing
+ p' sin8
+ @pe cos8)

0 —3g cosg

(i/v2)(-gg sin8
+ p' sing
—gpN cos8)

(i/~2) (3g sing
-p' sin8
+ gp~ cos8)

n' cosg

(i/v'2 )(3g sin8
—p' sing
+ gp„cosg)

( i/r~)(gg sine
+ P' sin8
+ gpN cos8)

n' cosg+5R cosg
—gpN sln8
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TABLE XI. P3/q-P~/& transition amplitudes.

P1 /2

~ ~&3 Sp .—gg+ —,i sing
&6

+ i g v3 /pe cosg

1
2

—(—) g& eosg

—gg cosg+ gpN sing ———i ssng
2

+ i ~ gpN cosg

———i sing

l.+ pig pj's eos8

—(~) / g2 eosg

—3R cosg+ gpw sing

vY—N+ —i sing
ve

+' 'l. g v 3 SpN eos g

Eq. (V5) with the result

2m rm($„„)
IOKI'+ 3 I (S,) I' '

The numerical results are summarized in Table
XII.

The transition 6'P, /, -O'Ps/, has been discussed
as a candidate for optical rotation experiments to
detect parity nonconservation. VYe compare our
value of 5(6'P, &, 6'P, ~,) =4.1-1 && 10 ', with that
obtained from the calculation of Henley and

filets, "
Q = 4, 80 x ].0 for sin I9@,= 0.3,

The discrepancy of 15' is largely due to the (h,)
amplitude which Henley and Wilets ignored. Once
this correction is made, the two calculations agree
within 20'. Henley and 'A'ilets used a Green's-func-
tion technique with hybrid Dirac-Schrodinger wave

functions; that is, relativistic wave functions are
calculated for very small x and matched to non-
relativistic functions at larger x. Empirical ener-
gies rather than calculated energies (which in
their case differ by -20%) are inserted, although
it is claimed that this does not change S» sub-
stantially. Since Henley and %'ilets do not report
calculations of Tl parameters other than 8»
(6'I', ~,-6'P, ~,) we cannot make an accurate com-
parison of their calculation with ours or with ex-
per iments.

%e note in passing that in calculations"" of the
optical rotation oi the currently investigated
S3 / 2

'D, /, and 'S, / .,—'D, /., trans itions in bism th
the effect of (8,) is ignored. In the calculations of
Garstang" for these transitions, the S, amplitude
n S3 / 2- 'D, /, is in fact neg l igible, but the large

amplitude calculated for S /
— j9,/2 would re-

duce the optical rotation by 30%. A more precise
calculation may alter this result substantially.

The Tl transctions 6 P3/, -7 I', /„6 P, /2-'7 P, /,
may also be considered in optical rotation experi-
ments, although the experimental difficulties are
forIQ

addable.
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APPENDIX A: INTERCONFIGURATION INTERACTION

AND HYPERFINE STRUCTURE OF THE 6 P3~(2 STATE

It is well known that the observed hfs of the
6'I', /, state in Tl differs markedly from that cal-
culated in the DEAF approximation using the sin-
gle 5d 6&'6P3/2 configuration, because the actual
atomic state contains admixtures of other configu-

TABLE XII. Amplitudes for P&/z-P&/& transitions.

Transition
aTQplltude

$4

a(q =-140)

6P3/2-6Pg /2

0.98 ~~2/3

0.22
-i 8.09 x 19 Q~

4.17 x 10"

7P3/2-7Pg / ~

-0.092 W2/3

-0,434
+i j..75 x 10 Q~,

1.67 x10 8

-O.115.5/3
0.767

+i1.26 xlo Qg

4.85 x 10

-v2
(ft/28 / 3&~2i+2fss:)ri(~&) &

fggp fqyg+ d+ II"pl.
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TABLE XIII. Configuration interaction contributions to Hfs.

State

Unperturbed
hfs splitting:
az, {0Hz)

hfs splitting
including (6s7s6p)

col rection:
6E& ——GEO+ 6(6gVs6P)

4E2 ——- &E~+ & (6s8s6P)
+ 6(6ses6P)

Observed
hfs

splitting

6~Pg(p
6 P3

21.8
3.27

22.1
1.37

22,1
0.81

21.33
0.528

&= no&a+ nx&x+ n2&a.

The coefficients o.„n2 are given in first-order
perturbation theory by

, =(C, l ~ls,&/(E. -E,) (A2)

, =(g, l vl(,&/(z, E,), (AS)

where V=+«ze'/r, j and the matrix elements of V
in (A2) and (AS) are calculated from the electro-
static integral

F,(Gs, Gs;Gs, Vs) =
2

4..(x,)P..( )x
l.2

&& g„(x,)P„(x,) d7;dr,

and the similar direct and exchange integrals
F,(6s, Gp; Vs, 6p) and G, (Gs, Gp; Gp, Vs). We use the
Gs wave function (ionization energy= 2.33VG x 10 ')
calculated from Eq. (4). This is not self-consis-
tent, since that central potential already includes
the 6s charge distribution. However, this intro-
duces an error estimated at only 10-15% in the
ionization energy. The 7s and 6p~ states are cal-
culated in the same central potential, and the en-
ergy denominator is approximated by the 68-78
energy difference. Normalizing with no+ a', + o, 2'

=1, we find

6P, ]2. no= 0.97 n, = 0.0097 n2 = 0.23,

6P3/2' ao= 0 97 nx = 0029 a2= 022

The large difference n, (P,&,)-n, (P,~,) occurs be-
cause of a corresponding difference in the ex-

rations, "notably (. . . GsVsGp). We write the unper-
turbed wave function (. . . Gs'Gp) as g&, and form two
possible P,&, (or P, &,) states from the GsVsGP con-
figuration. These are $,(GsVs('S, )6p'P~) with the
2s electrons in. a spin-one state, and

$,(GsVs('S, )GP 'P~) with the total s electron spin
equal to zero. The states and notation. are similar
to those of Koster, "who performs a similar cal-
culation for gallium. We write for the total wave
function

change integral G, (Gs, GP;6P, Vs) between GP, &, and
6P, &2 states.

The hfs splitting is

6,),= b, (6'P, (,)+ —,'n', (6„+n„)
-(4/SV 3)n, n, (4„-5„)
—(2/3&6) n, n, (A„h„)'~',

,g, = &0(6'P, g,)+ —', n', (4„+6„)
+ (2/Sv 3)n, n, (&„-&,„)

+ (4/SV 6)(S„S„)»2,
where only the dominating s-electron. perturbation
is included. In formulas (A5) we use the experi-
mental value of &,~, Eq. (A4), and the calculated
value ~«.= 135 6Hz. The numerical results are
summarized in Table XIII. They show that the
62P»2 hfs is strongly affected by configuration
mixing while the 6'P, &2 hfs is not. Further, simi-
lar corrections can be obtained for 6sns6p con-
figurations with n & 7. That of t,he 6s8s6p an.d
6s9s6P configurations is also included in Table
XQI. We find for 6s8s6p»2, o.,=0.0l2, @2=0.09;
while for 6s 9s6p, &„n,= 0.007, n, = 0.05.
Because of the uncertainties and lack of self-con-
sistency inherent in the present approach, there
is no profit in attempting to include contributions
of configurations 6sns6p3~2 with n & 9.

APPENDIX 8

We demonstrate that the effect of the 6s6pvp
autoionizing state is taken into account (approxi-
mately) by calculating the amplitude 8» if a term
corresponding to the unphysical 6s'Gs state is in-
cluded. The term in question is

(GsGsVP 0 ~ r
l
GsGpVp&(GsGPVP lH~i„l GsGsGP&

E6.6.6&
—E6.6&7~

, (GsG'»
I if'N I

6'Gf Vf»«sG»f
I

~ ~l 6'GsGf»
e

Ees687p Eesepvp
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Now,

&6s6s vp I
a r

I
6s6pvp) &6s6pvp la'

I
6s6s6P&

= —&6s
I

& r
I 6p&&vp IHx zl 6s&

= &vple;„I6s&&6sll. rl6p& (I)

&vp
I

~ r
I
6s&&6s le;„I6P&

(vp
I
yf „I6s&(6s

I
q r

I 6p)

which is the desired result.

(B6)

(6s6svP Iff' „I6s6PVP&(6s6PVP
I
c r

I
6s6s6P)

(vpl~ 'rl6s)(6slHp„l6P). (B3)

Furthermore,

APPENDIX C: CONSTRUCTION AND USE OF THE DIRAC
GREEN'S FUNCTION

The construction of the Dirac Green's function
has been described by Mohr" and Qyulassy, "
with emphasis on the case of a spherically sym-
metric central potential. This function is a solu-
tion of the differential equation:

Es.~ap - E6.6~7m
= (Ee —-E—6.) (B4) [H(r, ) —E]G(r„r.„E)= I5'(r, —r,), (C1)

E.".6~-E-".o= (E" -E-. ). -
Inserting (B2)-(B5) in (Bl) we obtain

(B6)
where II is the Dirac Hamiltonian with potential
V'(r, ) = V( I r, I) and I is the 4 x 4 identity matrix.
Separation of radial and angular variables is ac-
complished by writing

E, ( G'„'(r„r„E)X„"(e,)X„' (e,) —iG„"(r„r„E)X„'(e.)X'„(el))
(C2)

(iG„"(r„r„E)y"„(e,)x„" (e,) G„"(r„r„E)y"„(e,)x"„(e,) )
where the y„(e) are the same functions a,s defined in Eq. (13). Eq. (C2) is justified by the completeness re-
lation

X„" e2Xk~ ea — 5 2- 15 cose2-cosgl(I 0

Only G„'j, contributes to SpN (S,j, states) while for Ss (Stark mixing), the terms G„'~„, (S,&, states) and
G„'~, (D,j, states) contribute. Eq. (Cl) reduces to a 2 x 2 radial equation:

1+ V(r, ) -E

l
9 K——(r )+-

8Y2 2

(r, ) + -— ( G( „r„r)E1 8 K

2

-1+V (r,) -E (G„"(r„r„E)
(C3)

It can be shown that the solution of (C3) is

,, )(F",(,)F,"(,) F",(,)G,"(,)), , /F",(,)F",(,) F",(,)G",(,)I
(,"(,),"(,) ",(,)G,"(,)f (G,"( .) ",(,) G",( .) ",(,))

where Z"(E) = r'( G&( r) F&(r) —G&(r)F&(r)J is the Wronskian and F" and G" are solutions of the equation

r 1+ V(r) —E ———— +—1 d(r)
r dh x I"

1d(r) s, j (G jr dr

(C4)

(C6)

(o&) is the solution which is regular as r-o, while ( &) is the solution regular as r ~. These s-olutions
are calculated in the same manner as the eigensolutions of Eq. (11), that is, by numerical integration of
the differential equation starting with the asymptotic solution either for small r [for F&, G& and using V(r)
in (c) of Sec. IIA] or for large r [for F&, G&, using V(r) - —e'/r]. We note that F and G of (C5) correspond
to f/r and g/r of Eq. (13).

The parity-nonconserving amplitude h» of Eq. (68) can be written as
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2
/

(ry) ~IONG(ry rz E p)ee r~4 2
/

(r )) d r
v

Because of the short-range character of H», the first term in (C6) becomes
W &0

-e f»r, [r,F'"= "(r„E,)] Ck, X,"~ (i e„)x"P

(C6)

&&[[RF&'"= "'(R,E,) ]g,q(R) [RG&'"= "(R,E,) ] fed(R)), R & r,„, (C7)

In practice this expression is averaged over the region R —r„„„where z,„, is the nuclear radius. The
second term in (C6) becomes

+e f,p', [h,F&'"= "(r„E,)] dr, X",' i e„}f",'

(C8)

"f»(r,)r, [r&F&'"= "(r&,E,) ] [r&F&'"= "(r&,E,)]r,f„(r,) Ch, Ck,

&&
~ ([RF'"= "(R E )]g»(R) —[RG&"= ' (R, E,)]f,(R)).

A similar calculation was performed for hs (Sec. V). In this case only "large" components (f, F) contri-
bute significantly. For example, the matrix element nof Eq. (82)'is written

""f»(r, )r, [r&F&'"= "(r&E,)][r&F&'"= "(r&,E,)]r,f,,( h)Ck, dr,

——,'x (same as above with /t=+2) . (C9)

In all of the above expressions, r&= max (r„r,) and r&= min (r„r,) The exp.ression for P [Eq. (88)] is
obtained in the same way.
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