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The dissociation energy D, and the equilibrium proton-proton separation R., of H, are calculated using the
methods of arrangement-channel quantum mechanics. This theory is the channel component version of the
channel-coupling array approach to many-body scattering, applied to bound-state problems. In the
approximation used herein, the wave function is identical to that of the classic Heitler-London-Sugiura
valence-bond calculation, which gave D, = 3.14 eV and R, = 1.65a,, values accurate to 34% and 17.8%,
respectively. The present method yields D, = 4.437 eV and R.,~142a,, accurate to 6.5% and 1%,
respectively. Some implications of these results are discussed.

I. PROCEDURE AND RESULTS

We have previously described’ a new method for
bound-state calculations and applied it to the H,*
molecular ion. This method is based on the chan-
nel-coupling array theory of multichannel scatter-
ing? Here, we present results for the H, ground
state, also based on the theory of II. As we show,
the values of R,,, the proton-proton equilibrium
separation, and D,, the dissociation energy into
two ground-state hydrogen atoms, are more ac-
curate than their corresponding values' for H,*,
even though correspondingly crude wave functions
are used and the present system is more compli-
cated, being a four- rather than a three-body mole-
cule. The implications of this are discussed below.

The form of the channel-coupling array theory
used is denoted arrangement-channel quantum
mechanics.}*®> The channels correspond to dif-
ferent partitions into bound clusters of the particles
forming the system (distinguishability of particles
is initially assumed; particle identity is introduced
by taking appropriate linear combinations of dis-
tinguishable particle wave functions or amplitudes).
In this theory, the Schrédinger wave function ¥
is expanded into channel components'’?® §; corres-
ponding to the various channels (denoted j):

~1:=\;zpj. )

In order that (1) be exact, the sum on j should run
over at least all two-body channels** [i.e., chan-
nels in which there are only two bound clusters of
(distinguishable) particles].

Equation (1) is an “expansion” into nonorthogonal
states ¢,;: (¥;|9,)#0, k#j. The ¥; are defined'-
by the set of equations

(E-H)p; =5 WiV, allj, 2)
k

plus appropriate boundary conditions (E<0 or
E=0). The notation of (2) is as follows. E is the
energy; W;, is an element of the (real) channel
coupling array W satisfying Ej W;,=1, examples
of which can be found in Refs. 2; and H; and V;

are the channel Hamiltonian and channel interaction
in channel j, such that V; is the intercluster inter-
action, which goes to zero as all intercluster sep-
arations become asymptotic. H; contains the kin-
etic energies and the intracluster binding inter-
actions, and is related to the Schriédinger Ham-
iltonian H by H;=H -V ;. We note that Eq. (2) is
exact, and if both sides of it are summed on j, can
easily be seen to lead via (1) and the normalization

"condition Z}i W;.=1 to the Schrédinger equation

(E - HY¥ =0. Equations (1) and (2) are the basic
equations of theory. We now apply them to the H,
molecule.

H, is made up of two protons, labeled A and B,
and two electrons, labeled 1 and 2. For positive
energies, H, can exist (asymptotically) in six
different two-body channels as follows:

channel (1): (A,1)+(B,2)
b,

channel (2): (4,2)+(B,1)
channel (3): (A,12)+B}
channel (4): A+(B,12)) T *H"

channel (5):
channel (6):

(AB,1)+2}
(4B, 2)+ 1"+

We use the notation (nucleus, electrons) to denote
a bound cluster of particles and “+” to mean non-
interacting. The calculations we report on here
are based on a two-channel approximation in which
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we retain only channels (1) and (2) above. Sche-
matic diagrams of the coordinates used in our
analysis of H, and the partitions forming channels
1 and 2 are shown in Fig. 1.
In the Born-Oppenheimer approximation,’ the
Schrodinger Hamiltonian H is
2
H-x- £ _€¢_ €& & .¢.¢
Y Va2 Vp Va2 %2 R

where K is the sum of the electron kinetic ener-
gies, 7,; and 7,; are relative separations of elec-
tron j from protons A and B, 7, is the interelec-
tronic separation, and R is the usual proton-proton
separation® (Fig. 1). The partitionings of H into
H;+V; for the two channels we retain in the cal-
culation are (Fig. 1)

(b)

(c)

FIG. 1. Schematic diagrams of the Hy molecule: (a)
coordinates; (b) bound clusters (labeled H atoms) form-
ing channel 1; (c) bound clusters (labeled H atoms) form-
ing channel 2.
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The channel-coupling array W appropriate for a
two-channel problem is!'s?6

W= (0 1> . (5)
10
Use of (5) in (2) yields”
(E - H))Y, =V, (6a)
(E = Hy) Y, =V, ¥, (6b)

where from (1), ¥ =¢, +¢,.

Comparison of Egs. (6a) and (6b) with those of
Ref. 1 for H,* show that they are the same pair in
each case; only the detailed structure of the H; and
V; will change as we go from H,* to H, (or® to
H-,He, Li*,etc.). Notice, however, that this is the
pair for a two-channel, not a two-particle system.

We may obtain approximate solutions to (6) by
using the projection-diagonalization method of
Ref. 1. In this method, each ¢;, H;, and V; is
projected onto a subspace spanned by a limited
number of states defined for each channel j. In
accordance with the E >0 result proved in Ref. 3
that ¥; asymptotically is the full ¥ in (two body)
channel j, these states are chosen from the bound-
cluster eigenstates of the H;, although one could
of course include continuum states (as would be
necessary in an exact expansion of zpj). In the
present case, this means using one or more pro-
ducts of the form n,(x, Js(Fse), j=1, k=2, or j=2,
k=1, where 7, is the ath(a=nlm) state of hydro-
gen. In our calculations we have retained only the
ground state, a=1s, for each atom:

¢1 = al (R)nls(’rAl)n],s(sz) ’ (73)
Py =a, (R)"hs(”,qz)"hs('ym) s (o)

where a,;(R) is to be determined.

According to the theory given in Ref. 1, the a;
and E are determined from a secular equation ob-
tained by substitution of (77) in (6) followed by pro-
jection of both sides of (6a) onto a;*y, and of (6b)
onto a;'y,:

(EO—E M(R)\ [a,
e
M(R) €,-E/ \a,

where €,=-¢*/a,, and M(R) is either of two ma-
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trix elements, e.g.,

M(R) =€ {1y (7 41)115(7 52) [(1/”A1 +1/7p,
- 1/7’12 -1/R) l 7713(7’31)7113(7’42» s (9)

with all lengths in units of the Bohr radius a,. We
point out that, while an alternative equation can
be obtained by projecting (6a) onto a3y, and (6b)
onto a;'y,, the fact that we are working with the
negative energy continuation of an E >0 theory
means that (8) is the proper form.!

This latter point is extremely important, since

inspection of the pair (6) plus the ansatz (7) does
not imply a unique way to proceed. Indeed, ad-
dition of the alternative equation noted in the pre-
ceding paragraph [below Eq. (9)] to (8) would lead
to the variational equation as an approximation to
the Schriddinger equation, obtained by use in the
Rayleigh-Ritz variational principle’® of ¥ =3, + 9,
as a trial function, with variational parameters
a, and a, from the ¥, and ¢, defined by (7). How-
ever, as stressed in II, one must project in the
manner stated above Eq. (8), in accord with the
present approach being the negative energy con-
tinuation of an E >0, many-body scattering theory.
For, when E>0, the projection in channel j is onto
the bound states of the bound clusters forming
channel j, i.e., onto the bound states of that por-
tion of H; describing the internal states of the
bound clusters. In the present case, this means
(6a) is to be projected onto states of (K, — €2/
7 )+ (K, - €/7y,), while (6b) is to be projected
onto states of (K, — €*/7p,)+(K, - €/7 ). The
states to be used, respectively, are those occur-
ring in (7a) and (7b), that is, a7*y, and @;'9,, as
stated above Eq. (8).

Equation (8) yields two solutions for E given by

E*(R)=¢,+ M(R), 7 (10)

corresponding to bonding (+) and nonbonding (-)
orbitals. We consider only the former case here.
The dissociation energy D, is given by —M(Re,,),
where R,, is the value at which E* is a minimum.
The four terms in (9) are well-known quantities
in molecular quantum mechanics and have each
been evaluated analytically.>® We show in Fig. 2
plots of E*(R) —€,, comparing the present results
with those of Kolos and Roothaan who used a 40-
term variational wave function'® and also with those
resulting from use of the simple Heitler-London
valence-bond variational wave function.!

The variational method, and in particular the
Heitler-London calculation, is of sufficient inter-
est for our purposes that we briefly review it here
(see Ref. 5 for details). For a trial function one
uses
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FIG. 2. Comparisons of E* (R) — ¢, for (a) the Kolos-
Roothaan calculation. (solid line); (b) the Heitler-Lon-
don calculation (dot-dashed line); and (c) the present,
arrangement-channel calculation (dashed line).

YL =alm (7 g )0, (7 5)

+ aénls(yAz)nu("’B;) ’ (11)

with a{ and aj being the variational parameters of
interest. Evaluation of

E, =W H|WH-Ly /(@ L g1y

with H given by Eq. (3), leads to an upper bound
for the energy. It is found that E, is given by®

Ej=¢,+(Q+A)/ (1 4%, (12)
where®

Q =€ (M (¥ )My (750) | (/7 gy +1/7 5,

=1/7, = 1/R) |y r ) (rso)) s (13)

A=M(R), (14)
and

AR) =y (r 0;) | 1y (75,0

=(1+R+3R%e®, j=1,2.

Since M(R) is given by Eq. (9) we see that @ and A
correspond, in the language of arrangement-chan-
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nel quantum mechanics, to direct and exchange
matrix elements of (either of) the channel inter-
actions. We postpone a comparison of the expres-
sions (10) and (12) for the energy until below, but
we note here that® af =+aj =(1+ A% and also that
the a; of Eq. (7) are equal to a): a;=a}. Hence,
just as was found' for H,*, the approximate ¥ ob-
tained from the channel-coupling calculation is
identical to the wave function found from the simple
variational approach, in this case ¥#-Z  even
though the two approximation methods, viz. the
diagonalization approach of arrangement-channel
quantum mechanics and the Rayleigh-Ritz varia-
tional method, lead to different energies.! We
also comment on this below.

The values of R,,, D,=¢€,- E(R,,), and E(R,,) for
the bonding case are given in Table I for the non-
relativistically “exact” calculation of Kolos and
Roothaan (which agrees with the experimental re-
sults of Stoicheff'? as quoted by Pilar®), for the
Heitler-London valence-bond calculation, and for
the present, arrangement-channel case. The ac-
curacy of R,, and D, for the valence-bond calcula-
tion is not good, as is well-known, being 82 and
66%, respectively. On the other hand, for the
arrangement channel case, R,, and D, are 99 and
93.5% accurate, respectively. Clearly the dynam-
ical procedure in this latter case is superior to
that of the standard Rayleigh-Ritz variational ap-
proach, since the resulting approximate wave func-
tion is the same in the two methods. Indeed this
must be the case, because the variational proce-
dure leads to a dissociation energy containing no
effects of correlation, while the arrangement-
channel calculation yields a value of D, containing
2% of the correlation energy'® of 1.11 eV, even
though ¥ =9, + ¢, for the bonding (spin singlet) case
contains Pauli principle correlations but no in-out,
left-right, or angular correlations. Also, the ap-
proximate arrangement-channel wave function has
the correct dissociation behavior.

The valence-bond wave function is, of course,
not the only relatively simple variational wave
function used for H, calculations. While its D,

TABLE I. Comparison of H, ground-state observables.

E*(Rg,) D,
Req/a 0 (ev) (eV)
Exact? 1.40 -31.956 4.746
Heitler- 1.65 -30.35 3.14
London®
Arrangement 1.42 ~31.647 4.437
channel

2References 10 and 12.
PReference 5.

is more accurate than that from a molecular-
orbital calculation,’® it would seem that almost

all other trial functions have led to values of D,
and R,, more accurate than those of the valence-
bond approach, as, e.g., the tabulation of McLean,
Weiss, and Yoshimine'* shows. Nevertheless, of
the more than 50 sets of variational results listed
by these latter authors, only four, apart from cal-
culations of Kolos and collaborators, yield values
of D, more accurate than obtained from the com-
bination of Heitler-London valence-bond wave func-
tion and diagonalization procedure of this paper.
The less accurate results include those based on
scaled wave functions, correlated wave functions,
and multiparameter, single-center wave functions.
Thus, for H,, not only is the simple arrangement-
channel calculation more accurate than the valence-
bond computation, it is also more accurate than
most of the reported variational calculations, un-
less these calculations employ (apparently) very
accurate trial wave functions.

II. IMPLICATIONS

The preceding analysis and remarks suggest
several conclusions:

(i) In terms of obtaining velatively high accuracy
using velatively simple input, the arvangement-
channel method is, thus far, supevior to the Ray-
leigh-Ritz variational approach for ground-state
calculations. This is achieved not by using an
approximate function constrained as in the varia-
tional approach,' but by effectively altering the
Schrédinger equation itself. Relatively accurate
results are achieved by applying a new dynamical
procedure in which the channel nature of a many-
body system is emphasized,' and not by seeking
an unusual wave function to be used in a traditional
calculation. This raises some questions to be
sure (see below), but also allows one to gain some
insight into the dynamics of the system. We do
this by comparing the two expressions for the en-
ergy, Egs. (10) and (12), in the case of bonding.

It is clear from the discussions of H, given by
Pilar® or Slater,’ that no special significance can
be ascribed to the structure of (12): the physical
picture of bonding arising from the Heitler-London
approach is a result of the structure of the trial
function (11) and its use in determining the kinetic
and potential energies of the system.>*®® There
seems, in the H, case, to be no special role played
by the valence-bond Coulombic and exchange inte-
grals @ and A. A very different situation is ob-
tained in the case of Eq. (10), for M(R) is the key
to understanding bonding in the arrangement-chan-
nel approach. As noted in II (see also below), the
channel components ¥, and ¥,, when combined to
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form ¥, lead to symmetric or antisymmetric
states: effects of the Pauli principle are treated
by particular combinations of labeled-particle
quantities, and thus enter the results by means of
matrix elements taken between states in different
channels. M(R) is just such a matrix element. If
M(R) is set equal to zero (no channel interactions),
then the approximate energy is just the sum of the
energies of the two ground-state H atoms; the
value is the same no matter which channel is
considered, and the system is essentially in a
state in which R=w, i.e., in its asymptotic chan-
nel states. By evaluating M(R), we allow the two
channels to interact and form the (possibly) bound
H, system. If M(R)<0, the system will be bound.
Binding results if the magnitude of the channel-
averaged (electron-proton) attraction in either
channel is greater than the magnitude of the chan-
nel-averaged (electron-electron and proton-proton)
repulsion.! Obviously bonding occurs, and, for
example, we find that at R,,, the channel-averaged
attraction is —-24.775 eV while the repulsion is
20.338 eV. M(R) articulates this interplay in what
we believe is a particularly simple way.

(ii) The vesults of this paper for R,, and D, seem
accurate enough, unlike those of the Heitler-Lon-
don procedure, to validate the classic picture of
covalent bonding in H,: two ground-state H atoms
sharing electvons. Although this physical picture
is suggested by the Heitler-London results, these
results are not accurate enough to use ¥#-Z and
the variational procedure as a model for H,. As
refinements are made in the trial wave function,®**
the accuracy of R,, and D, and thus the model of
H, improves, but the physical picture, and conse-
quently our understanding of the bonding mecha-
nism, deteriorates. The ultimate and not unex-
pected conclusion is that the most accurate varia-
tional calculations of R,, and D, give essentially
perfect agreement with experiment,*? but fail to
provide a physical picture from which any simple
bonding model can be constructed.® This lack of a
simple model which produces relatively accurate
results has long been an unsolved problem in the
quantum theory of chemical bonding. By use of
arrangement-channel quantum mechanics we have
provided a solution to this problem by demonstrat-
ing the existence of a new calculational technique
which, when coupled with the old valence-bond
wave function, yields a model whose results are
sufficiently accurate as to validate the classic pic-
ture of the covalent bond.

(iii) The present vesult, along with that for H,*,
Sstrongly supports our previous expectation* that
arvangement-channel quantum mechanics could be
a useful technique for solving bound-state prob-
lems, that is, the results for H,* ave not fortui-
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tous (as the He atom calculations also indicate?).
What is most interesting in comparing our H, and
H,* results is that use of equally crude approxima-
tions in each case has lead to more accurate val-
ues of R,, and D, for H,, the more complicated
system. The implication, which we endorse, is
that H, is better approximated as a pair of ground-
state H atoms (subject to the Pauli principle) than
is H,* by its one electron being in an H-atom
ground state. This is easily understood classically,
despite R,, being smaller for H, than H,*. The
point is that in H,*, the proton not forming the H
atom will, because of its net nonzero charge, po-
larize the H atom much more easily than either of
the (neutral) H atoms will polarize the other one

in the H, system. Hence, H,* should have consid-
erably more nonspherical components than should
H,, and this is reflected in the calculated H,* en-
ergy being less accurate than that of H, in the sim-
ple arrangement-channel calculations reported so
far. A possible, further implication is that in
larger neutral molecules, use of the ground states
of the constituent atoms may be as accurate an
approximation to the molecular wave function as we
have found for H,. :

(iv) The preceding thvee conclusions suggest a
fourth: arvangement-channel quantum mechanics
may provide a framework that can validate the
“atoms-in-molecules” method of Moffitt,}""*® which
has not been as successful as Moffitt had antici-
pated.® Such a validation would occur if, on using
the ground states of the constituent atoms in a
molecule as the channel states, with their con-
comitant ground-state energies playing a role anal-
ogous to €, of Egs. (8) and (10), the calculation of
the quantity analogous to M(R) of Egs. (8)-(10)
would lead to a value of D, for the molecule whose
accuracy would be comparable to that obtained in
the present case for H,. Certainly, one can say
that the atoms-in-molecules method does work for
H, when we use the framework of arrangement-
channel quantum mechanics.

In addition to suggesting the preceding conclu-
sions, our work raises a number of questions:

(i) Accepting the above conclusions, particularly
(ii) at face value, what then is the meaning of the
approximate ¥ ? Or alternatively, as in the second
of Ref. 1, according to the present method, how is
the electron density distribution to be determined ?
The answers are essentially the same: the approx-
imation to the exact wave function is precisely the
¥ as given above, i.e., (bonding case),

W*(1,2) =[2(1+ A% 20, (v 4 )0, (75,)
+ M5 (75 IMis(7 5)] (15)

and this ¥* is to be used to determine the electron-
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ic density p*(#,) by
p*(r,) = f By |9y, 1) B . (16)

There are two comments relevant to this. First,
as stressed in I, one should not use an approxi-
mate wave function without bearing in mind (and
stating when necessary) both the dynamical pro-
cedure from which the approximation has been
derived and also those dynamical properties it
predicts well and those it predicts poorly. This
is as true for the variational method as it is for
the present approach. Second, use of the same
approximate wave function with two different dy-
namical procedures yielding at least one different
dynamical property means that there are actually
two (rather than one) approximate wave functions.
That is (again), one really must couple together
the wave function and the dynamical method which
employs it. For example, Eq. (15) is a relatively
accurate wave function in an arrangement-channel
sense, since to produce the same R,, and D, (as-
suming this to be possible) from the variational
method would require a much more complicated
trial function'® than (15). As suggested by John-
son,'® one might construct such a trial function, say
\fl,, by solving

[€,+M(R) - H}¥,=0 %))

in some fashion, perhaps by expansion in a suitable
set of functions or even self-consistently.

(ii) Given that channels are defined by partition-
ings among labeled particles, and that electrons
are identical particles, how are the proper sym-
metry conditions on the overall space-spin wave
function to be introduced? In the present case of
a spin-independent Hamiltonian and identical fer-
mions, this is done by using spin-wave functions
whose symmetry under particle interchange is op-
posite to that of the space wave function. Notice
that this implies ¥, =+ P,;3,, where P,, is the two-
particle transposition operator. In the general
case, initially more complicated procedures must
be followed, but they ultimately lead to a reduction
in the number of equations to be solved, as noted
in II. This reduction is one of the advantages in-
herent in using the present theory. In particular,
the pair (6) can be reduced to a single equation
which will give the same numerical results as (8),
i.e., Eq. (10). This reduction in the two-channel
case is discussed in II for the H,* problem. In all
cases, however, one has a priori knowledge of the
symmetry properties, and these are to be imposed
as part of the solution of the problem. This is
trivial to do in a two-channel approximation as in
the present case, where +(~) uniquely corresponds

to spin singlet [triplet, but see iv(a) below].

(iii) Given that in the Heitler-London variational
procedure E; corresponds to the lowest antibonding
(spin triplet) state, what is the meaning of the non-
bonding value E- in the arrangement-channel case ?
The answer is that in terms of the present approx-
imation, E~ is without meaning, i.e., it is a spur-
ious® solution and should be disregarded. That is,
€,—M(R) =E"(R) has the wrong behavior as R -0
(it implies infinitely strong binding) and thus is an
unacceptable energy “surface” on physical grounds.
This mimics the similar behavior of the nonbonding
solution for H,* (see II), and is a shortcoming, so
far, of arrangement-channel calculations that use
one channel state in the basis expansions of the
$;. In the case of H,* we know®! that use of excited
basis states in the expansion of the §; eliminates
this problem, and we may expect a similar result
in the case of H,. This leads us immediately to the
next question, viz. the role of excited H-atom

" states and the rate of convergence of an H-atom

basis expansion.

(iv) Since the four conclusions reached above are
based on a calculation involving only the ground
states in the two channels, the obvious, and per-
haps the most important, questions raised by our
work are: how fast does an expansion using excited
hydrogenic states converge, and what role is played
by the four channels neglected in the present work ?
These questions are obviously linked, since it may
turn out that convergence could be achieved only by
inclusion of other channels. Although the first of
these two questions is the subject of current in-
vestigation, some work has been done which bears
on the second, and it is also possible to comment
on convergence rates in other calculations.

(a) Two sets of calculations involving channels
(3) and (4) have been caried out. These have in-
volved two different approximations to the H™ wave
function, the first being a symmetrized product of
H-atom ground states, as in conventional proce-
dures involving “ionic” contributions® to H,, and the
other being the Chandrasekhar variational function?®?
¥$=Ne e ?2+1-2], where 7, and 7, are elec-
tron coordinates relative to a fixed center, a
=1.039, and b=0.283. Use of these two approxi-
mations leads to very different results. The first
one yields R, ,=1.10a,, and E*(R,,) =-28.88 eV,
thus inadequately approximating both MO® and the
preceding results. The more realistic ¥¢ yields
an excited state with R, =2.15qa,, and E*(R,,)
=-16.69 eV, where it has been assumed that ¥¢
is exact, giving the H- affinity rather than approxi-
mately 50% of its value as found by Chandrasek-
har.?* This of course will make only a small
change in the value —-16.69 eV, and we believe that
this value is a reasonable approximation to an ex-
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cited H, singlet state embedded in the H+H conti-
nuum. For precisely the same reason as in ques-
tion (iii) preceding, no meaningful triplet states
occur. We have also carried out four-channel cal-
culations, based on channels (1)-(4), using the sets
of wave functions just described. Without imposing
the requirement of antisymmetry, but simply
solving the 4 X4 secular equation, we find no solu-
tions corresponding to singlet or triplet spins:

the spatial wave functions in all cases are of mixed
symmetry and are also spurious.?® Further cal-
culations in which the symmetry condition is im-
posed from the beginning are currently being in-
vestigated and will be discussed subsequently as
part of a larger analysis of convergence and ex-
cited H, states.

(b) While no results on inclusion of excited H-
atom states in the expansion of the }; are yet avail-
able for H,, some information is available from
the H,* calculations® and the He-atom calcula-
tions.® In the former case, it is found® that in-
clusion of the 2s or 2p, state yields an antibonding
(o, state) without substantially altering the singlet
ground-state result. Addition of 2p, and 2p, again
leaves the ground state essentially unchanged, but
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introduces a conjugate pair of complex energy
eigenvalues whose possible existence has been
noted in I and II (see also Ref. 20). Inclusion of

n =3 states for this system will be undertaken in
the future. Calculations for the ground state E(gs)
of He have included hydrogenic 1s, 2s, and 3s
states for Z =2. Retaining only 1s gives E(gs) ac-
curate to 5%, while addition of the 2s and 3s states
improves the accuracy by an order of magnitude.
While no conclusions regarding the H, system can
be drawn from these results, they are encourag-
ing. The reason is as follows. Use of 1s through
3s states in the He calculations give approxima-
tions for E(gs) which lie above the exact value
and which converge rapidly towards it. The crud-
est H,* calculation leads to an approximate E( gs)
lying below the exact value, and all improvements
so far have led to values of E(gs) that remain be-
low the exact value. However, the H, calculation,
unlike that for H,*, gives an approximation to
E(gs) which also lies above the exact value.
Hence, a calculation for H, using both 1s and 2s
states which would lead to improved accuracy and
a value lying above the exact one would not be
unexpected.

*Work supported in part by the U. S. Energy Research
and Development Administration.

tWork supported in part by the Deutsche Forschungs-
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