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An analysis of extended random-phase approximations is made with emphasis on the justification of the

simplifying assumptions used in applications. It is demonstrated that in a complete operator space, the

equations of motion in expectation value form, supplemented by the ground-state annihilation condition, yield

the exact result for excitation operators and are equivalent to the operator equation of motion. Certain

operators that are normally neglected have to be included to obtain the exact solution; some of these

additional operators are shown to be important while others are expected to have small effects. The random-

phase approximation and its self-consistent variants are analyzed, and a number of improvements that-can be

introduced without increasing the difficulty of the calculations are suggested.

I. INTRODUCTION

Equation-of-motion methods, often referred to
as the random-phase approximation (RPA) or
the time-dependent Hartree-Fock theory, have
been applied to a variety of atomic and molecular
systems in recent years. ' " An essential element
in these applications has been the use of equations
of motion that involve excitation-operator expec-
tation values, rather than the operators them-
selves. The results obtained are thus dependent
on the form of the wave function used for obtaining
the expectation values. In the normal random-
phase approximation (NRPA), Hartree-Pock wave
functions are employed. Stimulated by Rowe's
very clear description of these methods, a num-
ber of workers have developed formulations that
go beyond the normal HPA. Shibuya and co-work-
ers,""in particular, have been instrumental in
introducing new approximations and determining
their effects on the excitation energies and other
properties of molecules. The extension developed
by them, called the self-consistent RPA (SC-RPA),
corresponds to replacement of the Hartree-Pock
ground-state wave function by one that takes ex-
plicit account of correlation corrections. The
calculations of Shibuya et al. using only one-par-
ticle-hole terms in the excitation operator suggest
that introduction of a self-consistent ground-state
leads to satisfactory values of excitation energies
and oscillator strengths. A difficulty in evaluating
their conclusions is that it'is not always clear
whether the apparent improvements over the nor-
mal RPA are due to the fact that the method is
better or to an accidental cancellation of errors
(e.g. , resulting from limitations in the basis set).
This question is made particularly cogent by an
analysis of the two-electron case, "in which it has
been demonstrated that the explicit inclusion of
ground-state correlation by the self-consistency
requirement yields excitation energies (&o„=E„

-Eo) that satisfy the inequalities e'„
~ &„""", where TDA stands for the Tamm-Dancoff
approximation. Since TDA singlet excitations
have been found to be too large in most applica-
tions, the SC-RPA does not lead to improved re-
sults; for triplets, the NRPA values are generally
too low, so the SC-RPA can be better. Further,
it was suggested that for reliable excitation energy
calculations with the SC-RPA a better representa-
tion of the excited states had to be introduced to
achieve a balance between the ground- and excited-
state correlation corrections. Shibuya, Hose, and
McKoy" have recently taken an important step in
this direction by introducing two-particle-hole
terms into the excitation operator. Because of the
complications of the resulting equation of motion,
they iritroduced certain simplifying approxima-
tions, as well. From their applications and those
made by others, it appears that this augmented
RPA leads to considerably improved results.

In this paper, we attempt to clarify the basis
of the equation-of-motion method by considering the
structure of the exact excitation operator (Sec. II).
To illustrate the analysis, we determine the form
of the excitation operator for the two-electron
case. In Sec. III, we review and evaluate certain
extensions of the RPA, following the hierarchy of
Howe'x and of McKoy and Shibuya xs, i9 The analy
sis suggests alternative approximations which
lead to slightly more complicated formulas,
but give more consistent results. In paper II,
we will illustrate the methodology by discus-
sing the r-electron spectrum of ethylene and test
the various approximations by calculations on the
m-electron spectrum of polyenes represented by
a Hamiltonian of the Pariser-Parr-Pople (PPP)
type.

II. THEORY OF THE EXCITATION OPERATOR:
APPLICATION TO THE TKO-ELEC'IRON PROBLEM

The equation of motion for a system with Ham-
iltonian H and a harmonic spectrum of frequency
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u can be written

[H, O~] = (oO~,

where O~ is the appropriate excitation operator.
Rowe has suggested that Eq. (1) can be replaced,
for the restricted excitation space of interest in
atomic and molecular problems, by equations of
motion involving expectation values of the form

(ol[R, H, o~]lo&= ~.«l[R, o~]lo&, (o = E), ——E (2)

where O~~ is the excitation operator to the specific
state

l
x& with energy E„,

l
0) is the ground-state

wave function with energy Eo, R is an arbitrary
operator in the operator space (which includes
O~} and [R,H, O~] is the symmetrized double com-
mutator

[R,H, O~~] = g ([R y [H p O~)J] + [[R y H], O~~]) .

The operators O~ which are the solutions to Eq.
(2) should have the properties

ohio&= l~&, o„lo&=o, (4)

that is, O~~creates the excited state
l

X& when it
operates on

l
0) and its adjoint O~ gives zero when

it operates on lo).
The usual procedure of determining O~~ begins

with an assumed form for both O~~ and
l
0) that

involves unknown coefficients. In the initial cal-
culation lo& is approximated by the Hartree-Fock
solution. An attempt is then made to solve Eq. (2)
subject to the condition that the second of Eqs. (4)
is satisfied; that is, the annihilation condition is
introduced as a means of finding the ground-state
wave function in a self-consistent fashion. An
apparent advantage of this approach, versus that
of direct solution of Eq. (1), is that the elementary
excitations that have to be included in O~~ are lim-
ited to those that yield nonzero contributions when
acting on lo). Thus, for a given "size" of calcula-
tion a better approximation to the specific form of
O~~ required for excitation to the state A, can be
obtained. Also, as stressed by Rowe and others,
the double commutator appearing in Eq. (2) should
be relatively insensitive to errors in the approxi-
mate ground state; in a later paper, we give a
simple example that illustrates this conjecture.

There are two basic questions that have to be
considered in employing Howe's formulation of
the equations of motion. The first concerns the
nature of the operators thathavetobe included in
O~~ so that, given the exact ground-state function,
the solution of Eq. (2) yields the exact excitation
operator O~~. Secondly, since Eqs. (2) and (4}
make use of the ground-state wave function

l 0),
as well as of the excitation operator O~, and
neither is known initially, it is necessary to de-

termine whether the iterative procedure that
starts with an approximate expression for

l
0)

converges to the exact excitation operator and to
the exact ground state.

The approximation to the exact O~ is expected
to improve as the number of elementary excitations
(one particle-hole, two particle-hole, etc.) in-
cluded in O~~ is increased. However, as already
pointed out by Howe, the exact solution to Eqs.
(2) and (4) is not unique. For each O~~, there are
an infinite number of solutions of the form

o', = l~&(ol+ g c„lz,&(z, l

i~140

for any coefficients C;;, where $l E,.&j is the set
of exact excited states of the Hamiltonian H. If
we require that O~ satisfy the operator eigenvalue
equation of motion [Eq. (1)], we have the solution
O~= lX&(ol. For a given &u„ this solution is unique
if there does not exist a pair of states,

l
E,& and

lE,&, such that

(uq Eq Eo Ez E2 (6)

For the later case, O~~ could be any linear com-
bination of l&&(ol and l&,&(&,l. Barring accidental
degeneracies (as in a really harmonic spectrum)
and the trivial case &o, =o (for which all lX&(Xl are
solutions), there will be no states satisfying Eq.
(6). If such a degeneracy does exist (and we
give a simple example in the PPP model for ethyl-
ene in paper II), the domain of O~~ can be restricted
so as to select the desired solution,

l
X&(0 l.

We have written the unique solution to Eq. (1) in
Dirae notation as lA&(ol. In the usual procedure,
one constructs O~ employing an operator space that
is made up of second-quantized products of crea-
tion and annihilation operators. The first ques-
tion raised above concerns the nature of the prod-
ucts that have to be included to obtain an exact
solution for O~~. Since the molecular Hamiltonian,

H= ~ E&a&a&+
2 ~ V&&I„agama, aI,

i j jul

-P(v„„., -v„,. )a~@, (7)
jAr

[in standard notation, where i,j,k, I ean be holes
or particles; Greek letters refer to holes only;
and V;z» ——(i(1)j(2)ll/r»

l
k(I)l(2)&] conserves the

particle number, the operator space can be cor-
respondingly restricted. For an N-electron sys-
tem this implies that any operator product which
annihilates or creates more than N electrons in a
row is equivalent to the null operator. Thus, if
we assume "normal ordering" of the operators
in the basis of the operator space, we need only
consider a finite number of different types of
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particle and hole operators. For an N-electron
system, the complete operator space can be con-
structed from the basis

O~= P C„ in&(mi
n&m I

and the trial ground-state wave function
i
0) as

(8a)

I
o&= ZA, lj&, (8b

where in&, im&, and ij& are exact eigenstates of
H. Substitution from Eq. (8) into Eq. (2) yields
the relation

Cg C] ~C] C) C) Cg, . ~ ~ )C) Cg . ~ ~, Cg ~, ~C]
2 1 4 3 2 2Ã 2Ã-1 N 1

where i can be a particle or a hole. This set
guarantees that if an operator R is in the complete
space, the commutator [H, R) also belongs to the
space. Thus, the space is closed with respect to
commutation with H, and we can expand 0~ in
terms of this set of elements. Consequently, Eq.
(1) can be treated as an eigenvalue equation (not
necessarily Hermitian) with the unique solution
i&&(Oi that is guaranteed by the above discussion.

Although the set of operator types is finite, it
is important to realize that, in contrast to previ-
ous applications, the operator space cannot be
restricted to those of the particle-hole form (one
p-h, two P-k, etc.). Operators of the particle-
particle or hole-hole type, which conserve particle
number (such operators will be called "density-
shift" operators) are essential for an exact solu-
tion to the operator equation,

Given the exact operator equation, Eq. (1), and
the nature of its solutions, we are in a position to
analyze the properties of Howe's equation of mo-
tion. In particular, we wish to examine the opera-
tor O~~ which satisfies Eq. (2) subject to O„i 0& = 0

[Eq. (4)], and to determine if it is guaranteed that
O~i0&= iX& with both i0& and iX& exact eigenstates
when the complete operator space is used. We
expand the excitation operator 0', (dropping the
subscript A. for simplicity) as

operators of the form R= it&(ni for all exact i&&

and in& in the operator space. If R is a sum of all
such operators, we have (I iR in& & 0 for every n
and I, so that each of the coefficients in Eq. (9)
must vanish individually. Thus,

Q [(2E„—EJ —E, —2(u)C„yA~A, *

—E~C~, A/A„] = 0, (all n, l). (11)

If it were established that
i

0& is the exact ground-
state wave function (i.e. , only A, nonzero), Eq.
(11) would reduce to

and

C„, arbitrary (n, l&0), C«=0 (all l)

(2E„—2go —2&@)C„O=0 (all n).

(12a)

(12b)

PP[(2E„-H, E, »)C„A,A,*

For each n there exists the nontrivial solution

C„,=1, &u=E„—8,. Thus, Eq. (11) shows that the
exact spectrum is obtained from Eq. (2) if the
exact ground state

i 0& is used and O~ is expanded
in the complete operator space.

The above result leaves unresolved the question
of the existence of mixed-state solutions, i0&,
as in Eq. (8b), which exactly satisfy Eqs. (2) and

(4) even in the limit of the complete operator
space. To examine this possibility, we first show
that there is at most one mixed state, iO&, with
N nonzero coefficients A.„which satisfies Eq.
(11)with nonzero coefficients C (A„and A non-
zero). If

i 0& is a mixture of N exact states, the
independent variables to be determined from Eqs.
(2) and (4) are the N' different coefficients C

(A„and A nonzero), N different nonzero A„and
one (d. These variables must satisfy N' equations
for the C coefficients given by Eq. (11), N equa-
tions from Eq. (10), and two normalization condi-
tions (one for i0& and one for 0[i 0&). There is one
dependent equation in the N set, since it is pos-
sible to derive the relation

QCP A~=0. (10)

If the operator space is complete, as described
above, we can construct operators R that are the
exact solutions of the operator equation [H, R]
= u'R for all possible &', that is, we can find

Q [(2E„—E~ —E, —2u))C„,A~A,*
n~ g

—E~C~, A/A„](liR in) =0

while the consistency condition [Eq. (4)] requires
that for each rn,

from the n consistency equations [Eq. (10)]. Thus,
the number of independent equations is N'+N+ 2
—j.=N'+ N+ 1, which is exactly equal to the num-
ber of independent variables. This demonstrates
that there is at most one co and one

i
0) that can

satisfy Eq. (2) if
i

QO is a mixed state with N non-
zero A,.'s. It should be noted that if for some rea-
son all the C are zero (A„,A„&0), the above
considerations no longer hold (e.g. , in the case

¹ I, C„=0); we consider this special case be-
low in deriving Eq. (15). To show that

i
0) cannot

correspond to a real nonzero value of &, we pro-
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ceed as follows. The lowest N value of interest is
N=2, so we write

[go=a,. )i&+w, [j&, (14)

where
j i) and

~
j) stand for any two exact states

with E,.WEJ and id, ,=E& E,—00.; if E;=Ei, ~i& and

~
j& are degenerate so that the linear combination in

Eq. (14) is an eigenfunction of H and N= 1. Apply-
ing Eqs. (10) and (11) to N= 2, we find that a solu-
tion for &u exists if and only if (see Appendix)

~,~=0 and ~=0.
Since ~,&

is nonzero by assumption, we have a
contradiction and the theorem is true for N= 2. If
we have an exact solution that is a linear combina-
tion of three exact states (e.g. , Io& =&,

~
i&+&i

~
j)

+A„~k&), we can derive a solution for N= 2by p-ro-
jecting out ~i) from the domain of the operators
R, II, O~; e.g. , for

H = PZ, ~f&&f ~,

the state

~o& =~, ~j&+~, ~k&

is an exact solution of Eq. (2) expressed in terms
of the projected operators. Since the proof for
N= 2 is general and does not depend on the speci-
fic nature of R, H, and Oi (i.e., R', H', and Ot'

can be used instead of R, H, and Ot), it is clear
that

~

0)' cannot be an exact solution. Thus, we
are led to a contradiction, which makes the theo-
rem applicable to N = 3. This iteration procedure
can be generalized to a mixed solution for N
states; that is, the impossibility of a mixed state
for N= 2 eliminates all others.

The above argument demonstrates that for a

Two-electron problem

To illustrate the general ideas developed above
and make clear the need to consider the complete
operator space, we consider the two-electron
problem. In this case, the excitation operator O~

reduces to the expression

m~ n r&m
s&n

(16)

where the sums go over all particles and holes.
Thus, in addition to one- and two-particle-hole
operators, there are the terms involving hole-
hole and particle-particle operators (density-shift
operators). To obtain the exact formula for this
case and to avoid the need to resort to an iterative
procedure, we use the operator equation [Eq. (1)]
instead of the expectation-value equation [Eq. (2)
with Eq. (4)]. When the Hamiltonian equation (7)
and Eq. (16) are introduced into Eq. (1), we obtain
for the two-electron problem the following system
of equations for the coefficients C. n and D „„,
and the eigenvalue ~:

complete operator space, the equations of motion of
of Howe [Eq. (2)] combined with the consistency
criterion [Eq. (4)] yield the exact eigenstates of
the molecular Hamiltonian II. The completeness
of the space is essential since it was necessary to
require that it contain all operators, R =

~
l&(n ~,

where
~

f) and ~n& are exact eigenstates of H. The
operator space shown to be required for the con-
struction of the exact 0„ is such an operator space,
though it is expected that satisfactory approxi-
mations can be obtained within amore limited sub-
space.

urC „=(e —e„)c„„-p(V„„,—V„„)C,„+P (V„,„„-V„, )C„, (17)

idD „ „,= (e„+c —c, —q„)D„„„,i. g [(V,„„,—V,„,„)C ,.+ (V,. —V,.„.„,)C„,]

+ p [(V„„„,. —V.„„,)C„+(V„„„ V„„„)C,.„]—p [(V„„„,—V„„ )D,.„,+ (V„,s —V„~)D.....]
1~

+ ~rgrn ~yynr Dmg, rs+ ~rgrs ~r/sr Dmnorj +
2 M imil ln&rs iril mn& ls

il

( ~pi sDms, ry+ is's i, rs) 2 ( imss sn, ri irss mn, si ~ 2
—~ i Ãimhis, rs irss mi, ss)

ik

1 1 ~ 1~
(VimirD»rs+ V;„;s ~ i,)+ 2 ~ (V~siD»»+ VmrsDss»)+ 2~ (VimssDs„«+ Vrsgm„ai)

jmf i

1~
+ (V. D, +V,P )+2Z(VJP ~+Via i ) 2~(V.JP s .+V.JP, /) (18)

ij
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+ (Vea~y —V~sy~)C, ~] (19)

In a many-particle system, we wouM have addi-
tional terms in O~, but Eqs. (17}and (18) would
remain the same; however, there would be C and
D terms in the higher-order equations.

In all past applications of the equation-of-motion
method for two-electron or more complicated sys-
tems, the expressions for O~ corresponding to
Eq. (16) and the equations corresponding to Eqs.
(17) and (18) [but obtained from Eqs. (2) and (4)]
have been drastically simplified. Most calculations
have used only the first term of Eq. (16) and re-
stricted it to particle-hole contributions. Recent-
ly, a few calculations have been done including
both terms of Eq. (16), but again limiting the oper-
ators to those of the particle-hole type (Ip-h, 2p-
h). Particle-particle or hole-hole type contribu-
tions have never been considered, nor have the
higher operator products (e.g. , 3p-k) that contribute
for systems composed of more than two electrons.

Other than for model systems of the two-elec-
tron type (e.g. , PPP ethylene, which is treated
in a later paper), the most detailed analysis for
the two-electron case has been given by Ostlund
and Earp)us. " They considered 1 P-k contributions
to O~ and showed that these are sufficient to obtain
the exact ground-state wave function in the ap-
proximation-that the correlation correction arises
only from double excitations. Also, they found
that in this approximation all the excitation ener-
gies are equal to those from the Tamm-Dankoff
approximation shifted by a constant term equal to
the ground-state correlation energy. They fur-
ther suggested that to obtain improved excitation
energies, an extended form of RPA including
additional terms in the excitation operator would
have to be introduced. All possible terms appear
in the complete excitation operator given in Eq.
(16}. In what follows, we estimate the ma, gnitude
of the most important of these, other than the
2p-2h operator which has already been included in
some recent studies. "

Even though Eqs. (17) and (18) form an eigen-
value equation, we treat it in a perturbation sense
and use our knowledge of the approximate (d to
estimate the coefficients. To make explicit the
notation for the two-electron case, we label the
two hole states as n and p. We assume, as is
known for other calculations, that the 1p-1h co-
efficients C,.„(y--n, P) are large and that the C„,.
(y = a, P) are small. The size of the "density shift"
1p-1P terms, C, z, which are assumed to be small
relative to the C,„, can then be estimated from
Eq. (17) as

Since e,- —E,. is usually smaller than &,- —&„, the
denominator in Eq. (19) is larger than that for the
1p-lh C&„coefficients. Furthermore, Eq. (19) is
seen to depend on the size of the 3k-lp matrix
elements of the type Vz z,-. For ethylene in the
PPP model, these matrix elements are zero. In
the general case, they are expected &o be fairly
small. We show in what follows, that these coef-
ficients are linked to the size of the single-excita-
tion coefficients in the exact ground state

~
0);

their contribution is thus zero if
~

0) is approxi-
mated by the Hartree-Pock ground state. A cor-
responding analysis is applicable to the 1A, -1h co-
efficients, C ~.

Another operator of interest corresponds to the
terms D,.J,. It involves a product of a density-
shift operator a~a& with a 1p-1h operator a~ a„
where i, j, and s are particles and n is a hole.
The value of the D,.z, can be estimated from Eq.
(18); it is

x [(V ~, —Vo,y)C(~

+ (v,.„-v,.„)c„]. (20)

where D~„=a~ a„and y, 6 take on the hole state
values n and P, N, is the ground-state normaliza-
tion coefficient, and the O' ', C"' are the coeffi-
cients of the various contributions to the ground
and excited state, respectively. Writing the exact
excitation operators as O~= ~E)(0 ~, we have

It is seen that the D,~, is proportional to the
2p-2h matrixelementsof the type pz ., This
means that they are related to the ground-state
correlation correction and, particularly, to the
double-excitation coefficients in

~

0). Consequent-
ly, this type of term is expected to be more im-
portant than the 1P-1P density-shift terms in Eq.
(19). In a higher-order theory, operators of the
type D,&, should be included, therefore, while
the operators of the type C, &

can probably be ne-
glected.

We can obtain further insight into the nature of
the corrections to the standard theory by analyzing
the form of the exact operator O~ in the two-elec-
tron case. The exact wave functions for the ground
and excited state can be written
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Hp mr mr mf, n ter n6
mr mn

& &+ &m'r'*Dmr+ Cmr', n6 m n6 ~

mr mn
( 22)

where the product is over all holes y and
~

& is the
vacuum state. For the present purpose we can
restrict the Hilbert space to include only two-
electron functions. This makes it possible to omit
the vacuum projector and write

To proceed further we need to write
~

HF)(HF
~

m
second-quantized form. The general expression
can be obtained from

~

HF&(HF~= IIctII c,=ctcfc~c ~

r 6
( 24)

If we insert this operator into Eq. (22) and commute
all the hole operators to the right, we obtain after
some algebra

O~=N, C„",&+ C& r&D'„+ C."„&„,D.',D'„,
mr mn

r6

"&&s-Q&"s'"&,&tt —QCz 'D aD', + Q C"'"D,N, + QC","D,M+2+,C",' ;D +. )„, „, (M)
m m m m mn

where + and P are again used as the specific hole indices of the two-electron case and N =D~, N~ =D~~~,
are the number operators. In deriving Eq. (25), we define any operator that yields zero when acting on any
tmo-electron function of the restricted Hilbert space as equal to the zero operator. In general, if an oper-
ator yields zero when acting on all the elements of the restricted Hilbert space, we set it equal to the zero
operator. If the difference of two operators yields zero, the two operators are equivalent. This relation-
ship between operators imposed by the restriction of the Hilbert space is of some importance. We call
this result "restriction equivalence" and will have occasion to use it in a subsequent paper.

For example, to derive Eq. (25) operators of the type D,Dt D~z which were obtained when
~

HF&(HF
~

in
Eq. (22) was commuted through to the front of the expression, were set equal to zero, since they yield zero
when operating on any two-electron wave function (i.e., Dt „DJB yield nonzero functions only when acting on
~HF&, but then „D

~
FH&= )0. The other operator types set equal to zero are D D~Dt8, D D„D~~„,

To simplify Eq. (25), we let C"„'=0; that is, we omit the single excitations in ~0&. Under this assump-
tion, O~ becomes

mr mn mn mn
r6

(26)

where y, 5 equal n, P in the summations.
To obtain Eq. (26) the operators Dt D~~Dt D~~~

and D~„D+~ were set equal, since they act identi-
cally in the restricted space of two-electron func-
tions (i.e., they both give nonzero only when acting
on

~
HF& and then they both yield

~

"~&. Another use
of restriction equivalence was made in simplifying
D~ D~ D~~~ to Dt . Although these two operators
are not identical when the full two-electron space
is considered (e.g. , Dt D~~~D8~8~~&=0 but Dt„~s&
=

~ ~& & 0), they are equivalent if we further omit
singly excited configurations from the space, as
we have done in ~0). Finally, operators like
D~. +~.zD„D z or D~ ~ D„D~ can be simplified
to D~. Dt.„and D~. D~, respectively, by use of

restriction equiva, lence.
The absence of the density-shift oyerator Dt „

by itself in Eq. (26) shows its dependence on C~'„'.
If single excitations had been included, a set of
terms of the form

or

would result. The first of these two terms is
basically a D~ density-shift term, with the added
constraint that there be an electron in state n and
none in state P. Of course, this constraint would
yield zero if only double excitations were included
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in
~
0). Terms like O'„,„D„~, that do contribute

when C'„' is zero, are proportional to C",' C'~'„
and are thus non-negligible, since both C"' and
C'z'„are expected to be significant. In fact, the
magnitude of these density-shift terms is pro-
portional to the product of the doubly excited co-
efficients, C„'" „~, of the exact ground state [e.g. ,
the Vz &,/&e in Eq. (20)] and the single-excitation
coefficients, C„",' of the excited state [e.g. , the
C,. in Eq. (20)], verifying the conclusion obtained
earlier. Moreover, Eq. (26) suggests that if the
particular excited state has a strong double-exci-
tation character (e.g. , the 'A, state in linear poly-
enes; see paper II), density-shift terms of thetype
D~, Dt, „should also be included. If we compare
the coefficient of D~. D„~ with that of D in Eq.
(26), we see that the usual inclusion of terms like

D„~ in O~ require a fuller treatment of the D~. D„~
terms. Correspondingly, inclusion of D D+
type terms in O~ requires consideration of terms
like Dt, D„,„. Otherwise, good numerical results
may reflect either the minor role of the D„or
D D„& terms or, in cases with a large correla-
tion corrections, a fortuitous cancellation of the
effect of the density-shift terms.

III. GENERAL RPA EQUATIONS

Having demonstrated that Bowe's formulation of
the equation of motion [Eq. (2)) yields the correct
result if a sufficiently general excitation operator
is used, we consider certain approximations that
have been introduced in applying Eq. (2) to mole-
cular systems. The formulation and development
given here follows the work of Rowe, "of Shibuya
and McKoy, "and of Shibuya, Bose, and McKoy."

The simplest physical basis for the excitation
operator consists of the particle-hole operators
(ctc, ct c,), where we use the standard labeling
of particle creation and annihilation operators,
c~ and c,-, by Roman subscripts and of hole crea-
tion and annihilation operators, c and c~, by
Greek subscripts. Particles and holes are defined
as the unoccupied and occupied Hartree-Pock or-
bitals, respective'ly. Since ctc ~HF) is not an
eigenstate of S', it is often convenient to use a
spin-adapted basis. We denote the spin-adapted
particle-hole operators with total spin S and S,
quantum number M by (Ct (SM), C,. (SM)]"'2

where, for example,

Ct (00)—= (I/v 2)(ctic t+ct~c &)

(0 or f refer to the two spin states and the letters
stand for the spatial orbitals only; the notation is
that of Shibuya and McKoy. ")

If we expand the excitation operator, Ot~(SM), in
this bh, sis set, we have

O~~(SM) = Q [Y„„(XS)c~„(SM)-Z „(XS)c„„(SM)],

where X labels the excited state, and

C „(SM)—= (—1)~'~C„„(s,—M).

Inserting Eq. (27) into Eq. (2) and letting R
= C „(SM) and C„„(SM), we obtain the general RPA
equation for Y, Z and ~; that is,

AS BS YXS D 0 YXS

B(S ~ A S ~] (Z ~s) Io D) (Z(&s)

(28)

where

A „„,(S)= (0
i
[C „(SM),H, C„,(SM)]

i
0),

B.„„,(s)= (0~[c (SM), a, c„,(sM)]~0),

D „,=(o
~

[c „(sM),c„',(SM)]
~
o).

Since Eqs. (28) and (29) are based on matrix
elements of the exact, but unknown, ground state

~
0), it is necessary to approximate

~

0). This
raises the problem of doing so consistently in the
RPA theoretical framework. In most applications
to closed-shell systems, the ground state

~

0) has
been assumed to be the Hartree-Fock grourid state
or an approximation of the pair-correlation type
has been used. In the latter,

o& =-N (3o)

~ Kmp& n6Cm t Cn ~ C6 ~
C

mn
y6

+ ~L„& 5(c ic„~c5~c„~+c„~c„~chic„~), (31)

where the coefficients K and L are defined by
Shibuya and McKoy" and N, is a normalization con-
stant. Usually the exponential is expanded and only
the first-order term in U is included. It is as-
sumed that the higher-order terms, as well as
single and triple excitations, are negligible for
the ground state of closed-shell systems.

A. NRPA equations

If we set U--. 0 in Eq. (30),
~
0) =

~

HF). When this
approximation to

~
0) is inserted into Eq. (28) and

(29), we obtain the normal RPA equation (NRPA)
which has the same form as Eq. (29) except that
the D matrix reduces to the unit matrix.

Previous investigators have analyzed some of
the properties of the NRPA. "' Thouless" has
shown that the

~

HF) state is stable to variations
in the wave function if and only if the Hermitian
matrix
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(32)

is positive definite, where A and B are the NHPA
matrices. It can also be shown" that the stability
of the

I
HF) state is sufficient to guarantee that

the eigenvalues of the NBPA are real. Since this
is not a necessary condition, it is possible to
have only real NBPA eigenvalues even when the
stability condition is not satisfied.

One of the symmetry properties of the BPA
equations is that if (Y,Z) is an eigenvector with
frequency &u, (Z, Y) is the eigenvector with fre-
quency -&. Thus, the frequency eigenvalues come
in+ pairs, except for a possible zero eigenvalue. "
The eigenvector orthogonality condition" is such
that if (Y~,Z„) and (Y~, ,Z~, ) are two eigenvectors,

Y',Y,, -ZtZ, , =5, ; (33)

in particular, this implies

eigenvectors with eigenvalues —~ are included
in the second set of terms. Multiplying Eq. (37)
by ('Y t, -Z~) and (Z t, Yt) and using Eqs. (33) and
(34), we obtain

n )n= Yn ), Pn)= -Z„X, i= 1, 2. (38)

We define! the vector X = (aX, + bX„O), such that
a'+ b'= 1 and an, ,+ bn„= 0; i.e., & is normalized
and orthogonal to the first (lowest) NRPA eigen-
vector with positive eigenvalue. We have

—I X=Z=(~+bX,PA(~, +bX,)=E,",
(39)

since A is the single CI matrix and&„X2 are its
eigenvectors. Expanding the left-hand side of Eq.
(39}, using Eqs. (32)-(34) and (37), we obtain

N

& = Q (I «., + b~..l'+
I
~&. +»:I')

I
&.""

I

N

=g I«..+ b&:I'I&"'"I
~~~~ -~~~~=0 ~ (34) n~2

whichholdsfor any vector (Y,Z); the proof of Eq.
(35) is based on the completeness of the set of
eigenvectors of the NRPA, expanding (Y,Z) in
terms of this complete set and using Eq. (32) and
the orthogonality condition [Eq. (34)]. Since the
matrix A in the NRPA is the single CI matrix, we
can let (Y,Z) = (X„O) where X, is the lowest eigen-
vector of the single CI matrix with eigenvalue E, '.
Thus, the left-hand side is exactly E, ', and we
have

@cz~ IER&AI (36)

It can be shown that a corresponding relation is
true for all the frequencies of the single CI and
NHPA equations. For the second eigenvalue, for
example, we expand the first two eigenvectors of
the single CI matrix, ~X and X„ in terms of the
complete basis of NHPA eigenvectors:

(37

where i= 1 or 2 and N is the number of NHPA
eigenvectors with positive eigenvalues; the N

The NHPA excitation frequencies are always
lower than the single configuration-interaction
(CI) excitation frequencies. For the lowest NRPA
eigenvalue, E, ", this can be shown from a theo-
rem by Thouless. " He derived the relation (valid
if there are no zero eigenvalues},

(Y z ) ~— —~ —
I

(Yt zt)~ ! IERPAIB* A*] ~Sf (-Z~

(35)

N

IBRPAI Q I«+b~ I2 (40)

Since X is normalized, we have

gx= 1= g (1«.i+b~.21'- l~e. +»:I')
n

Thus,

n=2
0&„+b&„—1, (41)

where the n= 1 term drops out due to the ortho-
gonality relation on X. Equations (39), (40), and
(41) together yield

Bc~~E~ IER&&l (42)

A corresponding development for the higher eigen-
values shows that

B"~ IERP" I. (43)

A useful relationship between the CI and RPA
eigenvalues can be obtained by expanding the NRPA
eigenvectors in a perturbation series. We take as
the zeroth-order states, (X„,O) and (O,X„), which
are the exact eigenvectors of the matrix

o)
(0 Aj- (44)

(,) ~ (X~~BlX„)
n ~ ECI+Ec I m

m n m

(45)

with zeroth-order energies equal to +E„'. From
first-order perturbation theory, the eigenveetors
of the NRPA matrix, (Y„,Z„), are given by

y(l)
n n
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and the energy to second-order is
(Xt IB I X„)'

@ED'A(2) gCI ~ m ' n

n n ~' gCI+ gcI
m n '»n

(46)

since there is no f irst-order contribution. Equa-
tion (46) shows that Ec'~ E„"~"to second order, in
agreement with the more general result [Eq. (43)].
An immediate consequence is that

(Xt„ I B lX„)'g (BcI ERPA) g —~ ——" (47)
n flan n m

In Sec. GIB, we shall see that the right-hand side
of Eq. (47) is an approximation to the correlation
correction arising from including double excita-
tions in the ground state.

(Y —z)-' = (Y+z)'. (52)

Since in most molecular problems the Z coeffi-
cients represent a small correction due to the
ground state correlation

I
Iz

I I
I'I

I
Y —z

I I
1 and

we can use Eqs. (50) and (52) to rewrite C as-

citly. Since C is obtained by iteration with Eqs.
(2) and (49), it is necessary to demonstrate that
the required symmetry follows from these equa-
tions. The main results we need are the ortho-
gonality relations given in Eqs. (48}. Writing Eqs.
(33) and (34) in terms of the matrices Y and Z con-
sisting of the vectors 1'„Z,. arranged in columns
and subtracting the two resulting equations, we
obtain

B. SC-RPA equations
c= g (-1)""[z(Y+z)']" (53)

Q Y~~(XS)C„~„(S)=Z „(LS)
ny

or, in matrix form for each X,

C Y~ =Zq.

(49)

(5o)

For a given (Y„Z~) vector determined by solving
Eq. (28), Eq. (50) can be used to find new coeffi-
cients C. These new C's yield new matrices in
Eq. (28), which in turn serve to determine new

(Y~,Z„) eigenvectors until self -consistency is
achieved.

As pointed out by Shibuya and McKoy, "the co-
efficients C have a necessary symmetry, due to
the symmetry of the K and L in Eq. (48), namely

c„„„,(s)= c„,,„„(s). (»)
(We will now consider real C's for simplicity. )
Equation (50) does not show this symmetry expli-

As demonstrated in Sec. II, it is possible to
obtain the exact ground state

I
0) and the exact

excitation energies e, if Eqs. (2) and (4) are solved
self -consistently. If one approximates the ground
state by the expression

I
0) = No(I HF)+ U

I
HF)), the

problem is reduced to solving iteratively for U, as
given by Eq. (31). This is the basis for the SC-
HPA method or higher RPA." The matrix ele-
ments of Eq. (28), which are given below [see
Eq. (64)], depend on the K and L coefficients in
Eq. (31) or equivalently on the coefficients
C„„„,(S) which are defined by

C „„,(S) —=K „,+ (—I)'~'(L „„L„„).(—48)

In the formulation of Ref. 18 and in this subsection,
only terms linear in the coefficients C are included
in evaluating the matrix elements; the initials
LSC-RPA will be used for this approximation. Sub-
stituting with Eqs. (27), (30)', and (48) into Eq. (4),
we obtain the self-consistency condition

The symmetry of C can, therefore, be determined
from the symmetry of Z(Y+Z)t. Since ZZt is al-
ways symmetric, we must show only that ZY~ is
symmetric. We know that Y~Z is symmetric from
Eq. (34). The difference between Eq. (52) and its
transpose yields

2(Y'Z -ZY )=0; (54)

i.e. , ZY is symmetric.
A similar development can be used to show the

symmetry of C for the case when

zll& IIY z
It is clear from the above that the proof of the

symmetry of C depends on the orthogonality of the
RPA eigenvectors. This will be relevant in the
consideration of improvements to the SC -RPA
(see Sec. IIIC).

Since the leading term in Eq. (53}for C is Zl',
Y is by comparison with Eq. (49) an approximately
orthogonal matrix. If we insert the approximate
values of Y and Z obtained from the NRPA by per-
turbation theory [Eq. (45)], we obtain

(X~ IB IX~)
«»=(z Y'}»»= -Z

En +E
where X,. refers to the ith element in the mth
eigenvector of the single CI calculation. Equation
(55) is the first term of an expansion for C, » found
by Sanderson" in his development of the quasi-
boson approximation. In Eq. (55) the X,. refers
to either the singlet or triplet single CI eigenvec-
tor and B the appropriate NHPA matrix B(S)."
Thus, C, &

may be obtained from either spin cal-
culation; however, in what follows we will use
the singlet results in order to compare with E

Equation (55) can also be obtained by a first-
order perturbation calculation for the ground-state
correlation coefficients C,&

defined by
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~o&=iv, (~««&+ zoic, p'«p««&) (56)

z„„-=&o lff
I

o& (57)

where we treat the single CI (singlet) eigenvectors
as the zeroth-order states. " (Note, here, D~~ and
D&~ stand for the creation operators of the ith and
jth particle-hole pairs. ) If we now calculate the
correlation energy E „to second order from Eq.
(56), we obtain

the correlation energy, Eq. (58)

~ tx' lBix )'E««y (~} Ca««B ~ ( m —' —«
corr kS $ I ~ EC I+ gC Iij m n + m

(62)

Comparing Eqs. (62) and (46), we see that indeed
E„'(0)—E"„"~"(0)equals the fraction of the corre-
lation energy that results from the truncated part
of the C,,- coefficients. We will show in paper II
how we can use this simple relation to interpret
the difference between each single CI and NRPA
frequency.

~ Lx~ IB(0)lg„)'
corr ~ gC I+ gC I

mn n m

(58)

Comparing with Eqs. (46) and (47), we see that

E g [EG1(P) ENBPA(P)]

= Q [&cx(0}—&NapA(0}] = -E"".'"
where the sum is over the singlet eigenvalues,
justifying the statement made earlier. Equation
(59) has been derived in a somewhat different way
from time-dependent Hartree-Fock theory. " In
time-dependent Hartree-Fock theory one obtains

B,&
stands for the matrix elements of the singlet B

matrix in the NHPA, where i and j are the ith and
jth singly excited configurations. Introduction of
Eq. (55) for the C, &

coefficients (singlet case) into
Eq. (57) yields

C. Renormalization

+ —,
'

5„«(2e~ —c„—e, )p„',"],
B,««. »(S)=N«B" «, » (63)

In applying the SC-RPA equation to two-electron
systems, the exact expressi. ons for the matrices
A, B, and D given in Eq. (15) have been used by
several workers. ' ' ' However, for most calcula-
tions of systems with more than two electrons (an
exception is an unpublished study~ of CO}, the
matrices have been approximated by including only
the terms linear in the correlation coefficients
C „„,(S)." It has been shown by Rowe" that the
terms of order C', which give the first correction
to Np can be inc luded without alte ring the simple
NHPA form of the basic equations. This approach,
called the renormalized SC-RPA (RSC-RPA) leads
to matrix elements of the form

A „,„,(S)=N', [A"„,„,(S) ——,5„,(e„+e„—2e„)P„'„'

corr 4 C I NRPA
n

when one sums over both singlet and triply degen-
erate triplet eigenvalues; this is the origin of the
factor of —,'. It is evident that in general, Eqs. (59)
and (60) yield different results.

Recently, Huo" indicated that the NRPA fre-
quency was lower than the single CI frequency by
some fraction of the correlation energy of the
ground state. The present analysis allows a sim-
ple derivation of this result. From Eq. (53),

+im~jm~

where Z, and 1'z are the ith and jth vector com-
ponents of the NRPA eigenvector (Y,Z„). If we
now truncate each summation so that C;.«&'(n)

=Z,„Y~„for a fixed n and use Eq. (45), we have
that

where A"„„,(S) and B"„„,(S) are the "unrenormal-
ized" matrix elements, i.e. , the terms fr'om Eq.
(29} linear in C,

A"„„„,(s) =A".„"'„",(s) 5„,g —.'[v.,„„c„*,,„(o)

+ v„„c.„„„(o)]

6„„g—,'[v„„,c„,„(o)+v,„„c„„(0)],

(64)

B„"„„,(S) =B," a(s) ( 1)~Q [V„,C „„„(0)

~ v„„„,c„.,(o)]

p[v„„„c~„„(s)+v„, c „„(s)]

(61)

When Eq. (61) is inserted into the expression for

+ g v„„„c „(s)+g v„„„,c„„„„(s),
Pa gV
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p"„)=-,' g gc,'„„(s)c,.„„,(s),
pgV

where C' r „,=E„r„~+r.(-I) (K r „~-K,~) and
is thus related to the C in Eq. (48) by

C' „(0)= -'C„„„,(0)+ —'C„,„„(1),
(66)

C„'„„5(1)= —,'C„„„,(1)+—,
' C„„„,(0).

(Note that we assume all quantities are real for
simplicity. ) Generally, one further approximates
D „,~ by its diagonal elements"

It is then possible to recover the form of the NRPA
matrix equations [see Eq. (28) and (28') of Ref.
19]. As in the regular SC-RPA equations, the
eigenvectors, Y~ and Z„, satisfy

~~~ ~ -~x~v = &u

where

Ymr=fmrYmr~ ~mr =fmr mr~

= (1~ p(2) p(2) )) /2

(68)

At this point it is well to consider the differences
between the present approach and that of Shibuya,
Rose, and McKoy." First, they include the nor-
malization factor N'„which is common to all ma-
trix elements, approximately in their equations;
that is, they multiply the matrix elements above
[Eq. (6&)] by ND= 1 -Z„p(2), keeping only terms
up to order C' or VC in the results, where V rep-
resents the potential terms. The unrenormalized
A" diagonal matrix elements contain terms involv-
ing the SCF-orbital energies q, ; hence, we keep
terms of the type eC' when multiplying A. by N', .
On the other hand, all the unrenormalized 8 ma-
trix elements are of the V or VC type, and so
multiplication by ND leaves these matrix elements
unchanged to order VC or C'. Thus, the effect of
multiplying the A matrix elements by N', in this
approximate manner is not the same as that of
multiplying the B matrix elements by ND. Shibuya
et al. include the multiplication of N, in this uneven
fashion in their matrix elements, while in the
present approach, the N,' factor is kept in all
terms and so cancels from both sides of Eq. (28)
to begin with. Calculations comparing the two
approaches will be given in paper II.

A deeper problem with the renormalized equa-
tions is that it is not possible to do an exact self-
consistent cycle. The reason for this is that, as

p,"'=~„gp"' --' gP c' ...(s)c „,(s), (65)
t5 pq g

~2 1 QP(2)

shown in Eq. (68), X and Y, not X and Y, are now
the eigenvectors which are orthonormalized with
respect to the BPA metric. However, the inclu-
sion of C' terms in the matrix elements and tQe
self-consistency criterion [Eq. (4)] still leads to
the result that C=ZY ' (the next order correction
to the consistent C matrix would arise from 3P-3h
terms in Or). As shown in Sec. III B, C is sym-
metric if the matrices Y and & satisfy Eqs. (51)
and (52), which in this case they do not. Hence, if
we obtain F and Z from renormalized equations
and use them to determine Y and Z, the new C
matrix (obtained from C=ZY ') is not necessarily
symmetric, and therefore unphysical. This is
indeed what is found in the applications of paper
II.

The detailed analysis of the general RPA equa-
tions in the earlier section (Sec. II) shows that the
self-consistency condition can be applied correctly
in higher order; i.e. , we approach the exact
ground state,

~
0), as we expand the operator space

and thus must obtain the correct (and therefore
symmetric) matrix elements C, /. For example,
the results for H, obtained by Ostlund and Kar-
plus'0 used renormalized matrix elements [al-
though they never actually used Eq. (49)j to show
that a symmetric C matrix satisfied the BSC-RPA
equations if no single excitations were present in

~

0). What this makes clear is that it is not cor-
rect, in general, to include only the 1p-1h opera-
tors in O~ and carry the matrix elements to order
C' self-consistency. In fact, the consistent treat-
ment of the C' terms may be done only after 2p-
2h, as well as some density-shift terms are added
to Or, as in the two-electron case. (The next sec-
tion, which adds 2P-2h operators approximately,
does not by itself overcome the consistency prob-
lem. ) The applications given in paper II are de-
rived by diagonalizing the renormalized SC-BPA
matrices obtained by using the self-consistent co-
efficients from unrenormalized singlet and triplet
calculations to evaluate the p"„' and p„',"matrices.
This should be reasonable as the matrix elements
are not very sensitive to the exact values of the
C coefficients.

D. 2p-2h operators

As was suggested earlier" and is clear from the
considerations in Sec. II, valid results for excited
states require that operators other than 1p-1h
operators be included in O~. The extension of the
SC-RPA to include 2p-2h operators can be handled
in several ways. '"" One of the methods is to
relate the SC-RPA matrices to the standard per-
turbation treatments of the polarization or parti-
cle-hole propagator. "" In this section we con-
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sider the treatment of the 2p-2h operators given
in the current equation-of-motion papers. "

The excitation operator 0„ including 2p-2h oper-
ators can be written

Olt=g Y „(XS)Ct„(SM)-Z „(Xs)C „(7M)

where the 2P-2h operators, I't„„,(SM), are de-
fined in Shibuya et al." Introduction of this form
for Olt into Eq. (2) yields the extended RPA equa-
tion [Eqs. (33a) and (33b) of Ref. 19]. By a stan-
dard partitioning, the coefficients F'" and Z"'
are related to Y and Z in terms of an (d-dependent
matrix. The resulting expression for F and Z is

+g [Y„"„'~(m)r'„„,(s ) (70)

z."„'„,p.s)r„„„,(rM)], (69) where A, =A —~„@=B —&b and A, =A —4 and

A(ya 2) /(pa 2) A(22 2) /AD(22 2)

II()i a) ~ A(lia) + II(2, 2) 2
b

A(ala) 2 ~D(2, 2) 2)
!

A(1, a&t Il(1,2)t )r
B(1~ 2) A. (lf 2)j

Given the excitation operator [Eq. (69)], these
equations are exact. However, a direct iterative
solution would be very difficult. Shibuya et al ."
have suggested that, since the 2p-2h contributions
and the correlation correction to the ground state
are expected to be small, it is valid to approxi-
mate the 2P-2I) matrix elements by replacing

i
0)

with
i
HP) in the required expectation values. This

makes B"'2), B"2), and therefore &b equal to 0,
so that J3= J3. With this approximation,

A(le 2)(A (212) ~D(2P 2))-1A (1,2) t
a

and

A&lia&-(g&ai»+ ~D&au&)-)A&1 ~ »t.
d

To further simplify A, they assumed that A ""
can be approximated by ignoring the interaction
terms (i,e. , terms in V) so that A&2, '„2) „,,

D""is equal to the identity matrix I if
i
0)

=!HF). Finally, the eigenvalue of Eq. (70) is
obtained from Eq. (28) by means of perturbation
theory, with co in &, and ~, set equal to the 1p-1h
SC-RPA excitation energy, co'~ '".

Although the approximations of Shibuya, Bose,
and McKoy have the important attribute that they
lead to a tractable set of equations, it has not been
demonstrated that they are always justified for
molecular problems. In what follows we consider
certain improvements in the treatment of the 2p-2h
terms that do not lead to more complicated equa-
tions. The first of these is concerned with the
treatment of + in &, and &„. Instead of using the
1p-1h value of ~ in these terms, we can perform
an iteration on w. Starting with the lp-1h excita-
tion energy, we calculate by perturbation theory
the corrected u& ((d= &u'2 '" —6(d) and use the cor-
rected ~ to recalculate the &, and &„matrices.

The results lead to a new correction &~ and the
process is repeated until convergence is achieved.

The requirement of ~ iteration, then, is that we
find a "fixed point" excitation energy; that is, an
excitation energy & which leads to a self-consis-
tent correction», so that ~= &'~'" —&~. Since
it is possible to find more than one fixed point ~
from a given &'~ '", we obtain a multivalued func-
tion in going from ~ ~ "to the e's. This multi-
valuedness reflects the proper behavior of the CI
solutions as we add more configurations; i.e.,
there are clearly more full CI states than single
CI states so the mapping from one to the other is
necessarily multivalued. This property of the
"fixed point" results is a fundamental difference
between the present 2p-2h treatment and that of
Shibuya et al." (see paper II).

The second revision is concerned with the treat-
ment of A(2'2), in which the interaction terms (V
terms) were neglected by McKoy. It is necessary
to introduce these terms approximately while still
preserving the simplicity of the approach; that is,
avoiding the need to diagonalize matrices involving
more than 1p-1h excitations. A scheme to deal
with A"" and still leave &, and &„as simple per-
turbations, is to decompose A" ~as a sum of its
diagonal and off-diagonal parts, i.e., A""
=Ad",,",'+ 44'"". We use the full diagonal elements
of A" ' inAd", '", and thus include V terms in ad-
dition to the e terms (see above). bA&2 " is com-
posed of the smaller off-diagonal elements of the

matr~. U!!~""i(g'.2&-~I)!!(1, we
can also include hA"" in a simple form by using
the truncated series,
(A(2, 2) ~I ) 1 (A(ai2) ~I ) 1

diag

(g(2, 2) ~I ) 1~+(as a)(gaea& &dI ) '
diag diag

(72)
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where I"P is a doubly excited spin-adapted Slater
determinant.

If we let C = 0 (i.e., approximate
I
0) by

I
HF)),

the matrix elements simplify to

w„",.', &,„.„=&~'n' IHI"„),
+(j ~ 2)

O g(2, 2) O

"~-" - ~-&:~ IH &HFl. a»
If we approximate A"" by its diagonal elements,
Eq. (71) yields

g(j., 2) g(x, 2) t
( u~mgy n6 ~ g (2y 2)

r~ sPlrN s0
sB

~ (my IH I ",
&& ) (",

&&
I H I n5)~ (,&&

I H l,~) -E„F- &d
(74)

The first-order perturbation theory expression for
«d, using only &, (since &~=0 and &~ is very
small) becomes &&d = Yt&,Y where I' is the 1p-Ih
coefficient of 0„' [see Eqs. (70) and (71)]. Conse-
quently, we can write

(my IH I,"™&&)(",
&&

IH In5)

or
n6 sS

~(~ IH I "„)("„I Hl ~)
(",~ I H I;~) —8„

sg

where IA)=Z „Y „lmy) is the Xth excited state in
the 1P-1k representation and E,=E„F+~.

Equation (75) shows that in this scheme «d is the
result of a second-order perturbation calculation,

with Eq. (72), we obtain

g&1 ~ &2&+& 22& ~f)-&g&le2&&'
dgag

g&&.2 &&g &2, 2&
diag

&& (/&2~» &df)-&/«~»t

A corresponding expression is obtained for &~,
namely, Eq. (73) where each -&dI is replaced by
+~I while &„=O. Both &, and &„can be evaluated
with little extra work pince they require only ma-
trix multiplications over all the 2p-2hterms. These
approximations are expected to be an improvement
over the previous expressions; quantitative evalua-
tions of the importance of the corrections are given
in the paper II.

To examine the consistency of including the in-
teraction terms in A.„", ,', we use the two-electron
system for which the wave function

I
0) is assumed

to have the simple form"

~0&=x,(~«F&+ —'Y c,„„„,~".'„)),

where we treat IHF), the 1P-Ih excited states
I
&), and the doubly excited states

I
",~) as the unper-

turbed eigenstates. It is clear that this conclu-
sion follows only if we evaluate the diagonals of
A"", (,",~ I

H
I ~), with the interaction terms. As

pointed out earlier, this contrasts with the scheme
of Shibuya et a/. ", where they only include the
&-dependent terms in A"".

Furthermore, since the Sc-BPA uses a corre-
lated ground state to compute (d' '", the expres-
sion E,= Z„F+ ~'~ '" used in Eq. (75) is not quite
correct if we are to obtain && in a consistent
second-order scheme. The reason for this is that
(d'~ '" already includes the ground-state correla-
tion and yet the proper quantity to use from the
perturbation interpretation of Eq. (75) is uP'"" c'.
However, instead of trying to eliminate the
ground-state correlation energy from v'~ '", we
can also include the

I
&)-state correlation energy in

This results in a more balanced w, which is
closer to e""" ', while preserving the electron
correlation in the BPA scheme. The correction
to (d is precisely what the co iteration accomplishes.

IV. CONCLUSIONS

The extended RPA offers a new and promising
way of treating the electron correlation problem
in the excitation spectra of atoms and molecules,
as well as of calculating their dynamic properties
such as the oscillator strengths for the electronic
transitions. Since most "oproximate treatments
have been based on the doable commutators formu-
lation introduced by Howe, we have analyzed this
approach and demonstrated that it converges to
the exact result in the limit of a complete operator
space. We then derived the exact two-electron
excitation operator and used it to determine the
contributions made by the possible operator types.
Particular emphasis was given to the operators
excluded in most applications of the HPA, namely,
the "density- shift" operators. We showed that
certain "density-shift" operators can be as im-
portant as some of the operators normally included
in extended treatments.

The variational principle derived by Thouless for
the NRPA matrix is extended to prove that the nth
NRPA excitation energy is less than the nth single
CI excitation energy. A perturbation treatment is
introduced for a comparison of the NBPA and
single CI excitation energies and to show that their
differences are related to the ground-state cor-
relation energy.

The self-consistent RPA (SC-RPA) is analyzed.
It is shown that the ground-state coefficients
possess an intrinsic symmetry, which should be
maintained by the SC -HPA calculations. The
orthogonality conditions on the eigepvectors of the
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linearized SC-RPA equations and the consistency
requirement on the ground-state coefficients are
found to be sufficient to ensure this symmetry.
However, certain approximate extended treat-
ments, including the renormalized SC-RPA of
Shibuya and McKoy do not lead to symmetric co-
efficients. If carried out exactly to all orders,
however, the SC-BPA leads to the exact ground
state and thus to symmetric coefficients.

We have proposed an extended RPA, which is a
modification of the renormalized RPA and corrects
certain deficiencies in the latter without compli-
cating the required calculations. The inclusion of
interaction terms in the diagonal matrix elements
of the A" "matrix was shown to be consistent
with the level of approximation in the theory. The
introduction of an iteration in ~ is expected to im-
prove the accuracy of the results. Furthermore,
the w iteration alters the theory in an important
way, since it leads to the proper multivalued be-
havior of the excited-state spectrum.

APPENDIX

We prove the following theorem relating to Eqs.
(14) and (15) in the text:

Thecn em. If an exact solution in the complete
operator space to Howe's equations of motions
[Eqs. (2) and (4)j gives the "ground state"

where li) and
l j& are two exact eigenstates of the

molecular Hamiltonian with eigenvalues E,- and
E), then u,.~ = E~ —E, = 0.

Proof. If lo& is given by Eq. (Al), Eq. (10) in
the text becomes (after taking the complex conju-
gate)

(A2)

and Eq. (11) reduces to

'C, , (~,.~+ 2~)A~A~*C~~ E~ IA—
~ I'C, , E,A-, A, C„=O, for n=i, l=i;

-(&u, &+ 2+)A,.APC,.&
—2(&ra+ &u)IAil'C„Ei IA-I'C„E,A,. A, C»=O, for n=i, i=j;

2(~,, —~)lA,. l'c„.+(~., -2~)A, A.*C» E,A,*A,-C, , -E, lA, l'c, . =o, f» n=j, l=i;
c»-E,.A.*A.C.~-E~IA~I'c~. =o, for n=j, l=j.

(A3)

(A4)

(A5)

If we use Eq. (A2) to eliminate C&,. and C» from
Eqs. (A3)-(A6), we obtain

(m,.&
2u&) lA,. l'C, , —(u,.z+ 2&v)A,.*A&c,&=0,

-(&u, + 2(o)A,.A,c„+[ur, lA,. l'(A, /Ap)

(A3')

—(2(d;~+ 2&d)A~jc)~= 0, ( A4 )

[~„A,.*A, 2(, ) lA, l'(A,. /A, )*jC,
—((o,.( —2(u)A,.~(Aq/AP)c, .q= 0, (A5')

-(&a);, —2&@)lA( l2C,.)+ (u), I+ 2(u)A~ A,*C,~=O. (A6')

Note that (A3') and (A6') are the same equation,
in agreement with the counting principle given in
the text. Using Eqs. (A3') and (A4') we obtain the
relationship

l A,./A~
l

'= (3(o,.~ —2(o)/((u, ,+ 2~) (A7)

as long as &u+-2&v,.; and C, &0. From Eqs. (A3')
and (A5'), if ~& =,'u&,.

~ and C, , &0, we can derive

lA,./Aql = ((u, q+ 2ur)/(3(o, , —2(u). (A8)

(If 3u)&& —2u&= 0, then the equations yield &u, , = 0.)
Finally, using Eq. (A8) in (A7) we arrive at

—8'&& = 0.

Thus, the theorem is proved as long as C, , 4 0 and
1 1If C«=0 and co+ =Ice&» C,.&=0 from

Eq. (A3'). Then Eq. (A2) implies that C&, =C»=0
also. If C,.; =0 and ~= =,'(u, &, then Eq. (A5') de-
mands that either C,, = 0 or &,.z= 0 (or both).
Hence, in this case C,&, C&;, and C&& are zero if
&u, &&0. Finally, if C«40 and to==,'(o,.&, Eq. (A3')
implies that w, &= 2& and hence that +,&= 0.

We have shown, so far, that either the theorem
is true (&u,.z= 0) or all C...C, ;, C&, , C» are zero.
To complete the proof, we take up the case that
the latter is true. If the C,.„C,&, C&„and C&~
coefficients are zero, for Otl0&w 0, there must be
at least one nonzero C„, or C„& coefficient, where
n&i, j Equatio. ns (ll) in the text for n&i,j and
I=i become

+ (2E„—E, —E, —2(o)A~A)" C„.~.
= 0,

and for n &i,j and 3 =j,
2(E„—E) —(u) lA~ l

'C„~

(A9)

+ (2E„—E~ —E; —2(o)A,.A~C„; = 0. (A 10)

If both C„,- and C„& are nonzero, then equating the
ratio (A, /A&)(C„, /C„~) from both Eqs. (A9) and
(Alo), we have

2' —2E„+E~+ E,. 2e —2E„+2E~
2E„—2 —2E) 2E„—2(u —E~ —E)
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or (E, +E. &)'=4E,E&., i.e., &o,-&=0. If C„,=O, Eqs.
(A9) and (A10) imply that 2E„-E& 2+=0 and

2(E„-E~—&u)=0; i.e., +,~=0. The same follows
if C„&=0. This concludes all the possibilities and

the theorem is proven. Thus, ~&&=0 is either a
contradiction, if ~i) and

~
j) are nondegenerate

eigenstates, or if they are degenerate, ~0) is al-
ready an exact eigenstate of H.
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