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The frame-transformation theory has been employed to extend first-principles studies of electron-molecule
collisions to heteronuclear diatomic systems. The Wigner-Eisenbud R matrix has been introduced at the
boundary point of the molecular-core radius —which defines the inner region —in a molecule-fixed frame of
reference in the fixed-nuclei approximation. The solutions of the scattering equations in the outer region,
where rotational motion of the nuclei is taken into account, are continued by transforming the R matrix to
the space frame of reference. This procedure has been applied to a model calculation of thermal-energy
electron scattering from CO. The dependence of the rotational transition cross sections on the core radius has
been studied. A general methodology has been developed for adapting the single-center pseudopotential
method to the proposed amalgamation of the R-matrix and frame-transformation theories in order to perform
a fundamental calculation of the interior problem. A comprehensive study of e -CO scattering is carried out
on the basis of this methodology. In the present application the dipole term in the multipole expansion of the
static potential, computed from the ground-electronic state wave functions of the CO molecule, has been
renormalized so that it reproduces, asymptotically, the experimentally measured magnitude of the dipole
moment of carbon monoxide. The calculated momentum-transfer cross section is in good agreement with the
experimental measurements for thermal-energy e scattering from CO. The rotational excitation and
deexcitation, and total scattering and momentum-transfer cross sections computed from this method also
reproduce the 1.75 eV 'II resonance; while those obtained from an extension of the model calculation
mentioned above fail to do so. In particular, it is found that for rotationally inelastic scattering, in the
resonance region the cross sections for 0—)4 and 1~3 transitions are the largest among those which start
from the ground and first rotational states of CO molecule, respectively. The angular distributions for various
electron impact transitions in CO have also been computed.

I. INTRODUCTION

The absence of a center of symmetry vari hetero-
nuclear diatomic molecules, which also gives
rise to a nonvanishing permanent dipole moment,
makes it more difficult, physically as well as
numerically, to study electron scattering from
polar-molecular targets compared to that fram
homonuclear systems. It has been shown in a
recent communication' (hereafter referred to as
I) that for electron scattering in a frame of ref-
erence attached to the molecule (i.e. , the molec-
ular-frame or the body-frame of reference) the
single-center expansions of the bound and con-
tinuum molecular orbitals converge very well
even for complex targets, albeit at a slow rate
for low-symmetry systems.

For heteronuclear molecules this problem of
slow convergence is compounded by the fact that
because of the presence of a long-range r ' elec-
tron-dipole interaction potential the phase shift
for higher angular momenta behaves' as I, '~'

for electron scattering from a fixed polar mole-
cule in body frame of reference. As a result,
the total scattering cross section, averaged over
all molecular orientations, diverges logarithmical-
ly' in the fixed-nuclei approximation. ' (However,
as proved in I, the momentum transfer cross

Lection is finite even in this approximation. ) The
fact that the time-averaged field of -a rotating
dipole is zero makes it necessary that in order
to obtain finite total cross section the rotational
motion of the nuclei should be included in the
equations for scattering of an electron from a
polar molecule.

Amongst the existing theoretical formulations
of electron-molecule collisions, the use of the
fundamental theory of Arthurs and Dalgarno' for
scattering of a structureless particle from a
rigid rotor makes a natural choice to study the
electron-polar molecule scattering. This space
(lab)-frame formulation of the collision problem
retains the rotational kinetic energy terms in the
total Hamiltonian of the (electron+molecule) sys-
tem.

There have been several attempts to apply this
theory to electron scattering from various polar-
molecular targets. ~ Almost all of these studies
are, however, phenomenological in nature based
upon some ad hoc semiempirical potentials where
no account has been taken to represent the highly
anisotropic short-range terms and the exchange
effects of the electron-molecule interaction in
the scattering equations. However, it has been
found that even for such simple system' as H„
where the short-range terms are not so noncentral
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@nd strong, it is extremely difficult to carry out
the expansion in (v)jl basis channels to complete
convergence limit." Therefore, the application
of this theory to electron scattering from more
complex systems with an emphasis to represent
the nuclear singularities and the exchange effects
in the scattering equations as. accurately as pos-
sible and in a nonphenomenological way will be-
come almost impossible numerically.

Although the expansion of the total wave func-
tion in l, which forms the only basis channel for
electron scattering in a body frame of reference
in fixed-nuclei approximation, does converge
very well, but the fact that the total cross section
for scattering from polar molecules in this ap-
proximation is not finite' also excludes the pos.-
sibility of using the adiabatic-nuclei theory' to
calculate vibration-rotation excitation cross sec-
bons for electron-heteronuclear-molecule col-
lisions.

The natural question which one should ask now
is: Is it physically valid to perform the Born-
Oppenheimer separation of the electronic and
nuclear motions at some stage in the electron-
molecule collision yrocess7 The well-known
answer to this question lies in the fact that,
whether in any part of the whole scattering region,
the duration of collision is smaller than the time
period for vibration and/ or rotation of the nuclei.
When the electron is far away from the molec-
ular core, where the nuclear singularities are
not so effective and the short-range and exchange
terms have almost vanished, the slow motion of
the electron compared to the vibration rotation
will certainly cause the Born-Qppenheimer ap-
proximation to break down. In this outer region,
therefore, one will have to include the nuclear
kinetic energy terms in the scattering equations.

The validity of the Born-Oppenheimer approxi-
mation in the inner-molecule core region is, how-
ever, a much more involved question. A naive
reasoning based upon the observation that an in-
crease in the incident electron's velocity due to
strong attractive short-range forces will cause
the electron to move faster in this region than
the vibrating-rotating nuclei will lead to the con-
clusion-that the separation of the electronic and
nuclear motions will always be valid in the inner
region. However, as recently discovered by
Chandra and Temkin' in their study of vibrational
excitation in e -N, scattering and previously dis-
cussed by Herzenberg' for other molecular sys-
tems, g, trapping of the incident electron in the
noncentral molecular field —which is a combination
of the centrifugal barrier, permanent moments,
and the induced dipole polarizability —may always
enhance the transition time, such that before the

incident electron becomes free again the molec-
ular nuclei are able to change their configuration.
Under these circumstances one can certainly not
neglect the effects of the nuclear motion relative
to that of the, incident electron. Therefore, the
validity of the Born-Oppenheimer approximation
in the molecular-core region is not always a pre-
determined fact.

When the separation of the motions of the in-
cident electron and the nuclei in the molecular-
core region is a viable approximation one can
always neglect the nuclear vibration rotation in
the inner part of the configuration space. These
two different physical situations —where one uses
a fixed-nuclei approximation in the inner region
and consider the nuclear rotation in the outer
region in a space-fixed frame of reference —have
been combined by an orthogonal transformation
operator at the common boundary point by Chang
and Fano' in their frame-transformation (FT)
theory of electron-molecule scattering.

If the Born-Qppenheimer approximation is valid
for electron collision with certain polar molecules
in the core region then the FT theory will pro-
vide a natural framework for studying electron
scattering from such target systems. A fixed-
nuclei treatment in the inner region will make
very convenient the inclusion of nuclear singu-
iarities and the exchange effects in the scattering
equations. At the same time the introduction of
the nuclear rotation in the scattering equations
in the outer region will cause all the scattering
cross sections to be finite which are otherwise
undefined in fixed- and adiabatic-nuclei approxi-
mations. The convergence problem in the basis
set (j L) in a lab frame in the outer region is not
expected to be so severe now as the strong non-
central short-range interaction potential terms
are almost negligible and it is only the long-range
terms which will have to be considered.

Among tQe diatomic heteronuclear molecules,
carbon monoxide is a case of particular interest.
Apart from being important from a space and
environmental point of view, high-energy CO
lasers play a significant role in scientific ap-
plications. The electron-swarm data for CO mole-
cule have yielded scattering cross sections over
a considerable range of energy. ' Moreover, the
time period for the rotational motion of carbon
monoxide is larger than the duration of collision
of an electron with this molecule. Being iso-
electronic to N„ it has a closed-shell ground-
electronic-state configuration. We have reported
in I that the single-center pseudopotential method,
originally introduced by Burke and Chandra' in
their fixed-nuclei study of e -N, scattering and
recently proved to be extremely successful' in
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electron-impact vibrational excitation of nitrogen
molecule, works very well even for electron scat-
tering from CQ.

In view of these considerations and in continua-
tion of our efforts to study the electron-molecule
collisio'ns from first principles using ab initio
methods ""o'xwe have therefore employed
the FT theory to study rotationally elastic and
inelastic e -CQ scattering. Earlier, Chandra
and Gianturco" gave a brief description of the
methodology of applying the FT theory to study
electron-molecule scattering in general and e -CO
scattering in particular. (Note that the results
of this letter with regard to CQ are no longer
valid be'cause of an error discovered later and
discussed in detail in I.) Short reports on the
progress of the present work have been given
elsewhere. "

Section II is a review of the essential elements
of the FT theory and the relevant formulas. Chang
and Fano' have suggested that the wave functions
and their derivatives, obtained by solving the
fixed-nuclei scattering equations in the inner
region, should be transformed separately to a
space-fixed frame of reference to continue the
solution of the scattering equations in the outer
region. In our methodology of implementing the
FT theory we calculate. the %igner'4 g matrix
at the boundary point by using the solutions and
the derivatives of the fixed-nuclei equations in
the inner region. This g matrix is then trans-
formed to the lab frame by applying the orthogonal
transformation given by Chang and Fano. ' The
computation of a body-frame p matrix, its trans-
formation to a space-fixed frame of reference,
and then the subsequent matching to the solutions
of the outer-region equations for calculating the
$ matrix is discussed in Sec. III.

To our knowledge the present work shall con-
stitute the very first applicatiop of the FT theory
for studying the e'lectron-molecule collisions.
(Henry and Chang" and Chang" had tried to apply
this theory to t.o -H, scattering. In their studies
they have made an approximation by neglecting
the solutions of the scattering equations in the
outer region in the lab frame. In a recent com-
munication, Chandra" has shown that under this
approximation the FT and the adiabatic-nuclei
theories are equivalent. Therefore, the e -H,
calculations of Refs. 15 and 16 essentially re-
duce to an application of the adiabatic-nuclei the-
ory. ) In ordey to carry out a complete FT treat-
ment the numerical implementation of the pro-
cedure, briefly pointed out in the preceding para-
graph, becomes a complex and arduous task. We,
therefore, thought it to be extremely important
to test this theory and develop a feeling about its

physics and the confidence in our numerical pro-
cedure by applying it first to a previously under--
taken semiempirical calculation based upon some
simple potential

The first part of Sec. IV describes in detail
our test study of the application of the FT theory
to a model calculation of thermal energy electron
scattering from CQ done by Crawford and Dal-
garno" and compares our new results with those
of their rotational close-coupling calculations;
The second part of Sec. IV discusses how the
single-center pseudopotential method can be
adapted to our methodology, the effect of different
choices of the boundary point —defining the inner-
molecular core region —where a transformation
is performed from a molecule-fixed to a space-
fixed frame of reference, and the convergence
of the (jl) basis set in the outer region. The
final differential and integrated cross sections
for electron-impact rotational transitions in a
CQ molecule together with the total scattering
and momentum transfer cross sections are also
presented in Sec. IV. The concluding Sec. V brief-
ly discusses, on the basis of our present experi-
ence, the usefulness of the FT theory in studying
the electron-molecule collision in general and
the electron-polar molecule scattering in par-
ticular.

II. THEORY

A. Electron scattering in a space-fixed'frame of reference

The total Hamiltonian of the (electron+molecule}
system can be written as (in a.u. )

1p+ r +Be(ri» rgi R}

(2.1)

The Schrodinger equation,

If, (r„.. . , r„;R)4„(r„.. . , r„;R)

=c„(R)C„(r„.. . , r„;R),

(2.2)

describes the nth state of the motion of X electrons
of the target molecule,

(2.3)

is the eigenvalue equation for the rotation of the
nuclei when the molecule is in its 'Z electronic
state, and in Eq. (2.1) we do not consider the.
vibrational motion of the nuclei. In Eq. (2.3) the
rotational constant B =(2I) ', where I is the mo-
ment of inertia of the molecule. The electron-
molecule interaction energy is given by
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N

V(r21' ' '1»jr )R) ~ I. / ~jl I~j I + ~j I 1 (2.4)

where Z„and Z» are the atomic charges of the two nuclei A and B separated by distances ) R„~ and [ Rs(
from the center of mass of the molecule.

The total wave function

(21'+ ()(21'+)))'I'r» r'R =4'o(r2 . . . , r„;R)r ' ~ (-)'
ytgt 471

(i'
&&~

~ u~. , (r) 1', , (r")D~,(R) (2.5)

for scattering in a space-fixed frame of reference with the Hamiltonian (2.1) will yield the following set
of equations'

+2})uI,(r}=2 P P (-I) ~ "[(2j+1)(21+1)(2j+2)(2'I'+ 2)]' 'I(
d' l l+1)

y Pgt

where

k' =2[E —e, -Bj (j +1)]

(0 0 0)(0 0 0) l j p,

(2 6)

(2.V)

with Er as the total energy of the colliding particles. [The rotation matrices D, used in Eq. (2.5), have
been defined by Bose" and for the definition of the 3 —j,6-j, etc. symbols see, for example, Rotenberg
et al.oo] On the right-hand side of Eq. (2.6), we have also used the multipole expansion of the molecular
charge distribution about the center of mass of the molecule, "i.e.,

V(r; R) =(eo(r„. . . , r„;R)) V(r„. . . , r„,r; R) ) C o(r„. . . , r„;R))

=+V„(r)P„(r Il). (2.8)

The summation index p, will have both even and odd integral values for heteronuclear diatomic molecules
like CQ, but only even integral values for homonuclear systems.

The coupled Eqs. (2.6), which will split up into two different sets according to the parity (-1)j"for the
same value of J, are solved subject to the following boundary conditions

o0

~ok,. 'j'[sin(kj. r —-', l'w) 6jj, 6» +cos(k, r ——', l's)KI .. »] for k j,&0

|k,. [ 'j'exp(-[k, , [r) for k', , &0, (2 9)

in order to calculate the scattering matrix

S' =(1+iZ')(I —jlC')

and the transition matrix

Z' =S' -1=2fZ'(1- i~')-'.

(2.10)

(2.11)

have been derived by Arthurs and Dalgarno in
the original paper. ' However, these expressions
can be further simplified" by using the concept
of angular momentum transfer, 1, = j' —j =1 —1'(where
Z = j+1=j'+1'), introduced by Pano and Dill." In
this simplified form, the differential cross sec-
tion for (j —j ') transition becomes"

The first set of (j ', l') subscript on M~ in Eq.
(2.9) refers to the outgoing channel while the sec-
ond set (j, l ) is for the incident channel.

The formulas for various cross sections for a
transition from molecular rotational state j to j'

cfog && kg ~ (~yr~=
4(2

.
1) ~A~ P~(cos8)j

where

(2.12)
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=(-1) (2L+I) Q i'& '& '2+'2[(2l,'+1)(2l, +1)(2l2'+1)(2l2+ I)]'~'

ff; I; L)) (I, I2 L&
X~

'
~l lg(- )( 2+ )

&0 0 0)&0 0 O)~,
(2.13)

The new V" ' matrix is obtained from the tran-
sition matrix p~ by the following relation"

and the momentum-transfer cross section for
j-j ' transition becomes

F,2„„=Q(-1)~(2Z+I), Tf.,
o'~

~
i = 1 —.cose dQ

(2.14)

and the values of /, are defined by the inequality

larger of O l - I'[, [ j —j '[)- I,
&smaller of (I+ l', j+j').

The scattering cross section for the transition
j j' is given by

n ()s')
2j+1

(A(J'i ') & ~ Oi ', ))2j+1 (2.16)

The coupled radial scattering Eqs. (2.6) are
exact and their solution should, in principle, give
the correct results for electron-impact rotational
transitions in a diatomic molecule. However,
slow convergence in the basis channel (j I ) in the
presence of the strong noncentral forces makes
the solutiori of these equations numerically an
arduous task.

(2l, +1))v'If, , ~,)'2 j+ 1
g

(2c7+ 1)i Ty ) y)[j+ zr&'
(2.15)

B. Electron scattering in a molecule-fixed frame of reference

The total wave function for scattering from the
Hamiltonian (2.1) in a molecule-fixed frame of
reference is expanded as'

J'AI 7) I ~ -1(r,', . . . , r„', r '; H) = C 0(r,', . . . , rz, R)r
1/2

x g — [Y,, ), (r')D„„* (R)+gY~ q (t')D~* „(R))f, (r),87( 1+ 62) (2.1V)

whose parity is ))(-1)~ with q=(-1)~"=(-1)~"'. The radial equations, equivalent to Eqs. (2.6), now
becomes

(I l' p. (I I'
=2(-1) (2l+I)' ' g(2I'+I)'~'~

I ~ V„(r)f,",(r) +28 g 0('~") j(j +1)Q('~~ f, '(r).
l'p i00 0 )) -~0)

(2.18)

In deriving the coupled Eqs. (2.18) we have used
the multipole exPansion (2.8) and the unitary trans-
formation operator Q, given by' and

u~,"(r)=Q f,""(r)Q&'~') (2.20)

g(lJ' '2)
( I)-j+ 2+ x(2 .

+ 1 )I/2jx
f""(2 ) =+u~" (2.)Q('~")

j
(2.21)

is such that

(2.19)

(In these two equations we have introduced a super-
script )) on functions u and f to denote their par
ities explicitly. ) A transformation from a body
to the space frame, 'or vice verse, is merely a
geometrical transformation and does not change
the dynamics of the collision problem.
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C. Fixed-nuclei approximation and the frame-transformation.theory

The body-frame scattering Eq. (2.18) can be
further simplified by making an approximation.
Qn comparing the two terms on the right-hand
side of this equation, ~one will notice that owing
to the smallness of the rotational constant
B(=7.80x10 ' eV for the lighter most molecule
H, ) there will be a region of the configuration
space close to the nuclei where. first of these two
terms will dominate +e whole scattering process.
The multipole terms V „are usually very strong
in the neighborhood of the nuclei for higher val-

ues of p, (see Fig. 1 of I and Ref. 24). The neglect
of those terms which contain the rotational con-
stant B should have very little effect on the so-
lutions of the body-frame equations in.this inner
part of the configuration space.

After dropping II„, in the molecular-core region,
the Hamiltonian (2.1) then describes merely the
electronic motion of the colliding systems. This
essentially means invoking the zeroth-order
(fixed-nuclei} approximation in the Born-Oppen-'
heimer separation" of the electronic and nuclear
motions. The body-frame radial scattering Eq.
(2.18) takes up the following simple form:

(
I(I+I) . . . &' ' &l (&+k' f~(r) =2(-1)"(2)+I}'~'g (2l'+I)'~'I ~l

~
V„(r)f", (r),dr' r' ', ,„&00 DJ &X & Dj

(2.22)

where k' =2(E„—e,}, in the fixed-nuclei approxi-
mation. ' """

These equations are based upon the single-center
expansion

4~(r') =r 'Q y, (r)Y, (i') (2.23)

of the bound and

E~(r') =r 'Q f~(r)Y', „(r') (2.24)

of the continuum molecular orbitals about the
center of mass of the molecule.

A molecule-fixed frame of reference, however,
does not necessarily mean a fixed-nuclei approxi-
mation unless one neglects the splitting of the
rotational levels of the molecule, i.e., the nuclei
become infinitely massive. The neglect of the
nuclear rotation in the inner region in a body
frame have changed the physics of the problem in
this region. The inner and outer regions describe
the electron-molecule scattering in body- and
space-fixed frames of reference, , respectively,
where two entirely different physical situations
prevail. Although a transformation from one frame
to the other is still carried out by the energy-in-
dependent operator (2.19), it is no longer merely
a geometrical transformation as the words frame
transformation may imply. Instead, in going
from inner (body'frame) to the outer region (lab
frame} the dynamical approximations describing
the collision problem also change.

The essential approximation which one makes
in deriving the fixed-nuclei Eq. (2.22) from the
bod'y frame Eq. (2.18) is that the effect of the
rotational energy terms of the molecule [second
term on the right-hand side of Eq. (2.18)] can be
neglected from the energy k' (in Ry) of the in-

cident electron. Although the correct energy fac-
tor in a given channel should be k'(J, /) [in the
lab frame k'(J, /) = k', from Eq. (2.V)] but in the
fixed-nuclei approximation this quantity simply
becomes A, '. The effect of this difference on the
electron scattering in any region will be a minimal
if the potential energy on the right-hand side of
the fixed nuclei Eq. (2..22) is large compared to
k' —,k'(J, I). If the value of the inner molecular-
core radius r, becomes so big that this condition
is not satisfied, then the fixed-nuclei approxima-
ation in that region will certainly break down. One
shall have to.terminate the inner region at smaller
values of r, and introduce the space-frame treat-
ment in the outer region for r&r&.

However, under certain circumstances [e.g. ,
when the impact energy of the incident electron
is so high that owing to the smallness of B the
,difference in between k' and k'(J, I) itself be-
comes negligible and/or the long-range terms
of the interaction potential fall off rapidly] it is
possible that the integration of the lab frame Eq.
(2.6) in the outer region may not make a significant
contribution to the scattering. (A situation similar
to this was discovered by Henry and Chang" and
Chang" in their study of the simultaneous vibra-
tion-rotation excitation in e -H, scattering. ) The
phase shift obtained by considering the scattering
only in the inner region in a body frame in fixed-
nuclei approximation will be accurate enough and
a space-frame treatment in the outer region mill
not be required, i.e., most of the phase accumula-
tion will take place from the solution of the fixed-
nuclei equations in the region 0 & r & r, . The
adiabatic-nuclei approximation can nom be used
to calculate the cross sections for electron-im-
pact vibration-rotation transitions in a diatomic
molecule.
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The frame-transformation theory of electron-
molecule scattering is, therefore, particularly
useful when the energy of the incident electron
is low and/or the interaction potential consists
of sufficiently long-range (e.g. , r ', r ', etc. ,
type) terms which do not fall off very rapidly.

III. METHOD OF IMPLEMENTATION OF THE

FRAME-TRANSFORMATION THEORY

A. Definition and calculation of R matrix

In formulating the FT theory of electron-mole-
cule scattering, Chang and Pano' have suggested
the transformation of the solutions and derivatives
of the body-frame fixed-nuclei Eq. (2.22) at point
y, to the lab frame in going from inner to the
outer region. Consequently, one has to perform
two separate transformations. Recently, the P-
matrix theory, developed by Wigner and Eisenbud'
for nuclear reactions, "has been used very ex-
tensively in electron-atom scattering calcula-
tions. " Here, while considering the scattering
only in one (usually laboratory) frame of refer-
ence, the interior part (r & r, } includes goth the
local and nonlocal short-range interactions and
the outer part (r r~, ) consists of only the long-
range terms of the local potential. This nat-
ural division of the whole interaction space
in two parts, supplemented merely by a
similarity transformation of a matrix from
body to lab frame in going from inner to the outer
region, makes it very convenient to use the R-
matrix method for studying electron-molecule
scattering in the context of the FT theor y.

We adopt the same definition of the & matrix
as given by Burke and Robb, "namely,

(3.1)R(r, ) = [ ~(r ){r &u'(r) —b &u(r )) ']„„,
where &u(r) and ~'(r} are a set of linearly inde-
pendent solutions of Eq. (2.22) and their deriva-
tives, respectively, and b is an arbitrary con-
stant matrix. If b is taken to be a null matrix
the expression (3.1) can be looked upon as the

. logarithmic derivative matrix of the solutions at
r =r, . A set of linearly independent solutions of
(2,22) can be related to another set by a trans-
formation

v(r) =Ace(r}, (3 2)

where A. is a nonsingular matrix which is indepen-
dent of r. After substituting (3.2) into (3.1) we find

R(r, }= [ v(r) [rv'(r) - bv(r)f ']„, ,

i.e., the R matrix of Eq. (3.1) is independent of the
choice of the set of li.nearly. independent solutions
of an equation.

In order to form the sets co(r) and &u'(r}, we
integrate the fixed-nuclei Eq. (2.22} in the region

from 0 to r, with the following boundary conditions

~ rt+I 5

f~"r(r~) =f '"bi(~t) 5gr+ni(~&)XA]rs
(3.3)

Here, j, (x) and n, (x) are, respectively, the reg-
ular and irregular spherical Bessel functions such
tha, t

j, (x) ~ (1/x) sin(x --,' lm)

and

q, (x) ~ (1/x) cos(x —,'lv)—.

(Note that in the fixed-nuclei approximation all
channels will be open and degenerate. ) The sec-
ond subscript on f ~ in Eq. (3.3) stands for the in-
cident channel. The X~ matrix calculated from Eq.
(3.3) is not the correct K matrix as no account has
been taken of the long-range terms in the inner
region (0 ~r &r, ) in the solution of the fixed-nuclei
equations. Instead, the calculation of X~ is based
completely upon the inclusion of the short-range
terms of local and nonlocal electron-molecule in-
teraction potential in the scattering Eq. (2.22) in
the molecular-core region. "

The convergence of the eigenphase sum

5,'„=Tr [tan-'(aX'a-')] (3;4)

mill now completely depend upon the inclusion of
the highly anisotropic short-range terms and the
two nuclear singularities in the fixed-nuclei Eq.
(2.22). In Eq. (3.4), & is an orthogonal matrix
which diagonalizes the real symmetric 3'. ~ matrix.
The convergence of 5,~ will, in fact, determine
whether the single-center expansion (2.24) in l of
the continuum molecular orbital and the multipole
expansion (2.8) in g of the molecular charge dis-
tribution have converged.

The solution elements f ~, , and their derivatives
f ~,, are now linearly combined

ne
~x. (r) Qa fk(r)

(3.5)
ne

~,",'(r) =g a;,f,",(r),
u=l

(where i,j = I, . . . , n„ the number of coupled equa-
tions), to form a set of linearly independent solu-
tions &o~(r) and their derivatives &o" (r). The gen-
eric program" written by us describes in detail
the method of solving and matching a set of cou-
pled homogeneous (or inhomogeneous) scattering
equations to the asymptotic scattering boundary
conditions. This program could be readily adapted
to the choice of the boundary conditions given in
Eq. (3.3). The matching procedure, needed to cal-
culate X~ matrix, also yields" the coefficients of
linear combination a's used in Eqs. (3.5). These



16 LO%-ENERGY KLKCTRON SCATTERING FROM CO. II. . .

sets of &u ~(r) and ar ~ (r) can now be employed for
calculating the R~ matrix at points =st in a mole-
cule-fixed frame of reference in fixed-nuclei ap-
proximation:

I

R~(r ) =f(u~(r) [r(o"'(r) -b(o~(r)] ']„„. (3.6)

the following combinations,
nt+ np

VA' ~ CPa ~ar

nt+ np
J~t J~/

l pr ~ Cpa +ar
a=1

(3.7)

This matrix will obviously be diagonal in A, and
have the dimensions equal to the number of l val-
ues of the single-center expansion (2.24) that are
coupled in Eq. (2.22).

I

B. Transformation of R matrix and calculation of.S matrix

In the outer region (r, &r & ~) the space-fixed
frame treatment of the scattering process is de-
scribed by Eq. (2.6). The terms V& of the elec-
tron-molecule interaction potential now consist of
only a first few long-range multipole moments,
permanent or induced, of the molecular charge
distribution. The coupled radial Eqs. (2.6) are
integrated inward from ~ =~ to ~ =et. The asymp-
totic forms given in Eqs. (2.9) determine the
boundary conditions to be used to start an inward
integration from ~ =~ in order to generate a fami-
ly of solutions. If np is the number of open chan-
nel basis sets (jl —=p) out of the total number n,
coupled in Eq. (2.6), a set of n, linearly indepen-
dent solutions and derivatives is obtained from

of the elements of solutions of Eq. (2.6) and their
derivatives, respectively. Here, we have intro-
duced the superscript q =(-1)'"=(-1)' " speci-
fying the parity [= (-1)~rj] of the basis set coupled
in Eq. (2.6). In order to determine the coeffici-
ents c's in Eq. (3.7) we form the R~" matrix at

l.e. y

(3.9)v'&(r, ) =61'o(r, ) [rv'"'(r) bv'o(r)]-.

The elements of $~'1(r, ) matrix are given by a
similarity transformation of the R ~(r, ) matrix
carried out by the orthogonal transformation op-
erator 0 of Eq. (2.19). Therefore,

R'"(r ) =Lv'"[rv'o'(r) -bv'"(r)] '}„„, (3.8)

where constant matrix b is the same as used in
Eq. (3.6).

This matrix should be equal to the 8~o(r, ) matrix
-obtained by transforming to the space frame the
R~(r, ) matrix of Eq. (3.6) which has been calcu-
lated in the body frame of reference in fixed-
nuclei approximation. Theref ore

lm T

@JAN

. g(l JI)) R 1 g(l JI))

guilt

kj
X.~ o

=2[(2j+1)(2j'+1)]'"g
x —o 0 A. -X) o (0 X -X) (3.10)

where 1 is the smaller of (l, l', J). Because for
linear molecules R "=R~ [see Eq. (2.22)], »s
transformation can also be written as"

61,'. ,o, „=[(2j+1)(2p+1)]'"

(0 x -. Xj

(3.11)

The matrix of Eq. (3.11) is now substituted on the
right-hand side of Eq. (3.9). Burke et al. o4 have
discussed in detail the solution of the matching
Eq. (3.9) in their formulation of the R-matrix the-
ory of electron-atom scattering. They have also
derived the appropriate expressions relating the
Z matrix to the coefficients of linear expansion
used in Eqs. (3.7). Once K~o matrix is known one
can always compute the SJ') matrices from Eqs.
(2.10) and (2.11), respectively, in order to calcu-

late the differential and integrated cross sections"
for electron-impact rotational transitions in a
diatomic molecule.

The whole procedure of employing the. FT the-
ory to study electron-molecule scattering can,
therefore, be divided into five following steps;
(i) study the convergence of the fixed-nuclei Eq.
(2.22) in the inner region (0 &r &r,) in 1 and p,
(ii) compute body frameR~ m-atrix atr =r, for
all values of A, & 1, (iii) transform the R" matrix
to 6t " matrix, (iv) solve the space-frame Eqs.
(2.6) in the outer region (r ~ r, ) by integrating in-
ward from x =~ to ~ =et and match the solutions
and derivatives with (RJ') matrix for calculating
the X~o-matrix, and (v) calculate the S o matrix
from Eq. (2.10) and then the cross sections for
different rotational transitions.

In addition to this, one will also have to study
the dependence of the final cross sections on the
choice of the boundary point ~t where the inner
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and the outer region are separated from. each oth-
er. This will involve trying a number of different
values for x, and then deciding upon that particular
value where the results are fairly "stabilized. "
This point has been further discussed at length in
Sec. IVB3.

The last three steps, out of the above five re-
quired for the successful implementation of the FT
theory, have to be carried out both for even and
odd parities, i.e, , for q =+1 and -1 values, for
the same value of J. However, it may also be
necessary to study the convergence of the lab-
frame Eqs. (2.6) in the number of coupled chan-
nels (jt) in the outer region (r ~ r, ). In that case,
steps (iii) to (v) will have to be repeated each
time by increasing the number of coupled rota-
tional states in the outer region for each J and g
values.

lV. NUMERICAL CALCULATIONS

. A. Test study: application to a model calculation

The practical application of the FT theory is a
multistep process which becomes an arduous task.
We therefore thought it to be extremely useful to
apply this theory first to some model calculation
of e -CO scattering before using it in more funda-
mental and complex situations. This test study
will also make the physics of the problem more
transparent and at the same time provide a good
check on our whole numerical procedure.

Crawford and Dalgarno" have studied the scat-
tering of thermal-energy electrons from carbon
monoxide using the close-coupling (c.c.) formu-
lation of Arthurs and Dalgarno. ' (The method has
accordingly been called rotational close coupling. )
Their mhole calculation has been done in the space-
fixed frame by solving the Eq. (2.6). They em-
ploy a semiempirical potential which is a combin-
ation of the dipole, quadrupole, and polarization
potentia1s of carbon monoxide. This potential, in
the notation of Eq. (2.8), can be written as

at 0
o( ) -- 2( .„.)2

(4.1)

V,(r) = V(') (r) + Vo' (r

where

D =0.044, Q=-1.869, n, =13.342, o.2=2.396

(4.2)

are, respectively, the dipole moment, quadrupole
moment, spherical, and the nonspherical compo-
nents of the polarizability of COinolecule. r„r~,
b„, x„b„x~, and b~ are seven disposable param-
eters. Crawford and Dalgarno" arbitrarily fixed
the last six parameters at the outset, but they
varied r, so that the potential (4.1) while used in
Eq. (2.6) would give the experimental value' of
the momentum transfer cross section at 0.03 eV.
This potential could then reproduce the momentum
transfer cross section measured by Hake and
Phelps' in the energy range 0.005-0.10 eV. The
asymptotic form of potential (4.1) is

(4.3)

V,(r) Q/r' n-, /2r~. -
Before using the FT theory, me first used this

potential to study the electron scattering in the
fixed-nuclei approximation in the whole region of
configuration space. We employed the program of
Ref. 32 to solve Eq. (2.22) in the region 0 &r ~ ~.
The solution of these equations mill now give us the
exact K~ matrix of the body frame in fixed-nuclei
approximation. This matrix was then used to com-
pute the eigenphase'sum defined in Eq. (3.4) for
studying the convergence of the single-center ex-
pansion (2.24) in l for Z(X =0), 211(A. =1), and
2a(A. =2) states of the (e +CO) system. We found
that 8 or 9 values of l were sufficient to achieve
satisfactory convergence of the single-center ex-
pansion when the model potential of Eq. (4.1) was
used. The converged eigenphase sums for these
three cases are shown in Fig. 1. There is knomn
to be a shape resonance~ at about 1.75 eV for elec-
tron scattering from CO in 'II state. We notice
from Fig. 1 that the eigenphase sums calculated
using thg Crawford and Dalgarno potential, given
in Eq. (4.1), does not reproduce this resonance.
However, there is a resonance behavior shown by
the '-Z state eigemphase sum at about 1.40 eV. Sim-
ilarly the 2II eigenphase sum too shows a very
broad resonance at a higher energy.

In order to employ the FT theory the potential

0
V2~ (r) = n, (r -r~)'

2(r2 +r2)2 $2+ (r r )2

In this expansion (all quantities are in atomic units,
unless specified otherwise)
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FIG. 1. Eigenphase sum calculated in the fixed-nuclei
approximation from the model potential (4.1) of Craw-
ford and Dalgarno (Ref. 18). .

(4.1) should be used in the inner region (0 ~r ~r, )
in the fixed-nuclei approximation. If point x, is far
enough from the center of Mass of the molecule,
then one is always justified in using the asymptotic
form (4.3) of this potential in the lab-frame treat-
ment in the outer region. However, as the poten-
tial (4.1) is in a very simple form, we have used
the exact potential even in the region for x ~ x, .
In order to calculate the cross sections for differ-
ent rotational transitions from FT theory we have
carried out the five-step process mentioned at the
end of Sec. III.

A sampling of our partial cross sections 0~, ,
for transitions (0-0), (0-1), (1-1), and (2-2) is
shown in Table I for the incident electron energy of
0.05 eV. In the fourth column of this table the ex-
act rotational c.c. results, which we have calcu-
lated and agree very well with those of Ref. 18,
are also given. In the last five columns, the cross
sections'calculated from the FT theory for five
different values of r, are tabulated. [The value
0 = 1 was used in Eqs. (3,6) and (3.9) in the definition
of R matrix. The partial cross sections calculated
for other incident energies had a behavior as a
function of x, similar to those of Table I.]

The very first thing which one should expect
from these results is that smaller the value of ~„
the better should be the agreement between the
rotational c.c. and FT results. This is due to the
fact that the potential used in two regions of the.
FT theory is exactly the same and it is only the
rotational level spacing which has been neglected
in the inner region in fixed-nuclei. approximation.
A decrease in the size of this region will, there-
fore, mean that the lab-frame rotational c.c.
treatment is being introduced closer to the origin.
Our results of Table I confirm this general con-

I

TABLE I. Comparison of o
& &. (A ) calculated from the frame-transformation theory with

the close-coupling results obtained using Crawford and Dalgarno (Ref. 18) potential.

Energy
(eV) Exact

Frame transformation (b = 1.0), y&"'

4.466 6.090 7.714 9.338 - 10.150

0.05 0 0

0

2~ 2

0
1
2
0

2
0
1
2
0
1
2

2.251
0.328
0.009
0.532
0.874
0.519
0.052
2.466
0.111
0.003
0.004
2.482

2.243
0.328
0.009
0.532
0.874
0.519
0.051
2.430
0.114
0.003
0.004
2.445

2.243
0.328
0.009
0.532
O. 874
0.519
0.051
2.388
0.115
0.003
0.003
2.397

2.243
0.328
0.009
0.532
0.874
0.519
0.051
2.349
0.116
0.003
0.003
0.338

2.242
0.328
O.QQ9

0.533
0.874
0,519
0.051
2.311
0.117
0.003
0.003
2.265

2,242
0.328
O.Q09
0.533
0.874
0.519
0.051
2.292
0.117
0.003
0.003
2.223

~H,otational close coupling. "See Eq. (3.6). In atomic units.
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elusion.
We also notice from the entries of this table that

the partial cross sections which vary most with
the values of r, are those in,which (l =0, l' = 0) par-
tial wave coupling is present, namely o~(j =J' j'
=g). On the other hand, the o'(0-0) cross section
is almost invariant with the va1ues of x, considered
in this table and at the same time is in good agree-
ment with the exact rotational c.c. results. The
major contribution to the (0-0) transition with
J=0 will basically come from V, term of potential
(4.1). The form of this term used by Crawford
and Dalgarno" is such that it has already assumed
its asymptotic form much before the space-frame
treatment is introduced ate, =4.466 a;u. [see Eqs.
(4.1) and (4.2), r, =1.310 a.u. from Ref. 18] and
therefore falls off as ~ '. As a result the V, term
has become so small in the outer region that most
of the phase accumulation occurs from the solutiori
of the fized-nuclei equations in the inner region and
a lab-frame treatment in the outer region does not
make any significant contribution to the scattering.
The cross sections for other values of j, j', and J
are almost constant for all values of x, and they
agree very well with those calculated from rota-
tional c.c. method. This kind of behavior of the
res~its calculated from FT theory will, however,
very much depend upon the nature of the short-
range terms, which are not very strong in the
present case.

It should be mentioned at this stage that such
I I

good agreement between the rotational c.c. and FT
results is subject to the accuracy to which the
fixed-nuclei Eqs. (2.22) are solved in the inner
region in order to calculate the R~ matrix at~ =~, .
The accuracy of the solutions in the present case
simply means that the sufficient values of l are
coupled in Eq. (2.22) for the single-center expan-
sion (2.24) of the continuum orbital to converge
for each value of A, . However, such a satisfactory
solution of the inner-region equation in a body
frame of reference in fixed-nuclei approximation
is a prerequisite for a successful application of
the FT theory for studying the electron-molecule
scattering.

B. Application to the single-center pseudopotential method

l. Adaptation of the pseudopotential method to the
frame-transformation theory

The pseudopotential method, originally intro-
duced in our e -N, study, "has been found to work
very well even for electron scattering from CO in
the fixed-nuclei approximation. In this method,
the exchange effects between the incident and the
molecular electrons are si:mulated by orthogonaliz-
ing the continuum scattering orbital to the bound
molecular orbitals of the same symmetry. The
body-frame fixed-nuclei Eq. (2.22) are now re-
placed by the following coupled inhomogeneous
equations:

Here, y", (r) are the radial coefficients in the sin-
gle-center expansion (2.23) of the molecular core
orbitals Q (r') which have the same symmetry as
the continuum orbital E~(r') in Eq. (2.24). $„are
the Lagrange multipliers determined by the re-
quirement that

for n = 1, . . . ,n» the number of such bound orbitals
of a particular symmetry.

As discussed in I, the program of Faisal and
Teach" was employed to convert the two-center
ground-electronic-state wave-function of CO,
given by McLean and Yoshimine, " into a one-
center expansion about the center of mass of the
molecule. These single-center expansions of the
molecular orbitals were then used to calculate the
multipole expansion (2.8) of the molecular charge
distribution.

]We will like to point out to the reader that there

(4.4)
I

is an error in Eq. (17) of Ref. 21 where the elec-
tron-nuclei contribution [terms enclosed in the
parenthesis on the right-hand side of Eq. (2.4)] to
the static potential has been expanded into the
Legendre polynomials about the center of mass of
the molecule. As the program of Faisal and
Tench" has used this expression to compute the
multipole expansion of the molecular charge dis-
tribution, the corresponding correction should,
therefore, also be made in this program. This
error and the correct form of the expression are
given in 1.)

The highly anisotropic short-range terms,
nuclear singularities, and the exchange effects
are properly represented in Eq. (4.4) by achieving
satisfactory convergences in the expansions (2.8),
(2.23), and (2.24) simultaneously. We have shown
in I that these three expansions converge very well
ev,en for low-symmetry molecules le CO.

In order to have a resonance in the ~II eigenphase
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where

(20 13 342~ Q2 2 396 (4.6)

The adjustable parameter r, =1.605 a.u. was found
to give a resonance in 'll state at E„=1.753 eV.
The calculated values of the width (I'„) and back-
ground phase shift(5„) for this resonance are, re-
spectively, 0.%78 eV and -0.082 rad.

In the context of FT theory, we solve Eqs. (4.4),
together with the polarization potential (4.5), in
the molecular-core region (0 &'x &r,). The method
of solving the inhomogeneous equations together
with the requirements of orthogonality has been
discussed in detail in our previous paper of Ref.
32. This program could be easily adapted to cal-
culate the fixed-nuclei R ~ matrix defined in Eq.
(3.6). Jn the outer region (r ~ x, ), on the other
hand, we assume that p", (r) =0 and both the static
and the polarization potentials, Eqs. (2.8) and
(4.5), respectively, have taken up their asymptotic
forms. Therefore, for the space frame Eq. (2.6)
in the outer region the potential will be given by

(XD Dv(r) =-, , v, =, ,
, r

(4 7)

v, (r) =,—,, v,(r) =, ,r4'

where 0 is that octopole moment of the CO mole-
cule. The values of n, and n, are given in Eq. (4.6).
But

D = -0.105, q = -1.547,

0 =4.380

(4.8)

were obtained from the multipole expansion (2.8)
of the CO static potential whose calculation has
been described elsewhere. '

2. Selection of the inner-molecular-core radius r~

The partial cross sections o~~ ~, obtained by using
the single-center pseudopotential in context of the
FT theory are given in Table II for six different
values of r, . According to the test study of Sec.
IVA, we find that the oz~, for (j,j' =J') cross
section varies most with r, . This is associated
with the fact that in this case the s wave is coupled

sum calculated from (4.4) at about 1.75 eV, the
static potential in I was augmented by a polariza-
tion potential of the form

y, (r)= — [a, n, P (r R)] —exp—1 rh

2r4 r p

(4.5)

with both initial and final rotational states.
We have said above, while discussing the adapta-

tion of the pseudopotential to FT theory, that in
going from inner to the outer region we completely
neglect the short-range parts of the local and non-
local electron-molecule interactions. A selection
of a smaller value of r, wi11, therefore, mean that
more of these potentia1 terms are being neglected
in performing a frame transformation even though
they have not become small enough. Qn the other
hand, performing the transformation at a large
distance from the center of mass of the molecule
corresponds to the fact that although the potential,
which is still non-negligible due to the long-range
terms, has become comparable to the rotational
level spacings but the latter has not been intro-
duced yet into the scattering equations. The size
of the inner-molecular-core region, where the
fixed-nuclei approximation is being used, has now
become so big that the difference in between [k'
-k'(J, l)] is no longer smaller than the potential
energy terms and therefore the nuclear rotation
can no longer be neglected from the scattering
equations. In Table II, there corresponds a region
between r, =10.150 a.u. to r, =13.398 a.u. where
the partial cross sections for all transitions seem
to have "stabilized. "

Chang and Fano' do not give any rigorous cri-
terion for the selection of the boundary point r,
which divides the interaction region into bvo parts
where two physically different treatments of the
scattering process are to be carried out. All their
statements concerning the choice of this point are
qualitative. We do not see any quantitative way
for defining the range of the inner-molecular-core
region other than carrying out the FT treatment
at a number of different values of r, and then se-
lecting that value where the various cross sections
have become fairly "stationary. " From our test
study, discussed in the preceding subsection, one
wiQ conclude that if the scattering equations in the
inner region in fixed-nuclei approximation are
solved accurately enough then the final cross sec-
tions for electron-impact rotational transitions in
a molecule wiQ be very close to the exact values
provided a transformation from molecule to the
space frame is performed at a point where the
results are "stabilized. "

In the following calculations we have therefore
used r, = 11.774 a.u. for the inner-molecular-core
radius. Note that this value of the core radius is
almost six times of the equilibrium internuclear
separation (=2.132 a.u.) in the ground electronic
state of carbon monoxide.

The existence of the boundary point r, is the
central aspect of the FT theory. Selection of two
different limiting values for r, will reduce the FT
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'2TABLE II. 0 &~ &, (A ) calculated from the frame-transformation using the pseudopotential.

Energy
(eV) 6.902

Frame transformation (b= T,.O),
'

&1,

8.526 10.150 11.774 13.398 15.022

0.005

0. 05

0.10

0 0

0

2 2

0 0

0

0 0

0 1

2 2

0
1

2

0

2

0

2

0
1

2

0

2

0
1
2

0
1

2

0
1

2

0
1

2

0
1

2

0
1

2

0
1
2

0.990
0.142
0.024

23.319
54.900
32.352
0.189
0.987
0.172
0.008
0.122
1.816
5.614
0.211
0.011
2.397
4.340
3.008
0.054
5.551
0.074
0.003
0.011
5.656
7.588
0.327
0.022
0.919
1.843
1.502
0.033
7.507
0.120
0.002
0.002
7.386

1.341
0.138
0.023

22.867
53.848
31.787
0.188
1.343
0.166
0.008
0.121
2.345
6.305
0.208
0.011
2.307
4.206
2.955
0.054
6.284
0.073
0.003
0.011
6.491
8.324
0.320
0.022
0.862
1.764
1.475
0.034
8.292
0.118
0.002
0.002
8.278

1.452
0.137
0.023

22.820
53.744
31.745
0.187
1.448
0.166
0.008
0.120
2.489
6.519
0.207
0.011
2.286
4.179
2.951
0.054
6.487
0.073
0.003
0.011
6.719
8.550
0.318
0.022
0.846
1.744
1.473
0.034
8.508
0.119
0.002
0.002
8.526

1.485
0.137
0.023

22.812
53.727
31.742
0.187
1.457
0.165
0.008
0.120
2.463
6.582
0.207
0.011
2.280
4.171
2.951
0.054
6.513
0.074
0.003
0.011
6.692
8.615
0.317
0.022
0.840
1.738
1.473
0.034
8.537
0.121
0.002
0.002
8.511

1.495
0.137
0.023

22.810
53.723
31.742
0.187
1.435
0.165
0.008
0.120
2.352
6.600
0.207
0.011
2.278
4.167
2.951
0.054
6.474
0.075
0.003
0.011
6.540
8.634
0.317
0.022
0.839
1.735
1.474

. 0.034
8.500
0.124
0.002
0.002
8.374

1.497
0.137
0.023

22.810
53.721
31.742
0.187
1.397
0.165

. 0.008
0.120
2.185
6.605
0.207
0.011
2.278
4.166
2.951
0.054
6.406
0.076
0.003
0.010
6.311
8.638
0.317
0.022
0.839
1.734
1.474
0.033
8.438
0.129
0.002
0.002
8.167

See Eq. (3.6). In atomic units.

theory to two well known formulations of the elec-
tron-molecule scattering. —for r, = 0 it will reduce
to the rotational c.c. theory of Arthurs and Dal-
garno' and for x, =~ become equivalent" to the
adiabatic-nuclei theory. 2 The existence of a value
of x, in between these two limits, therefore, be-
comes a vital point for the applicability of the FT
theory. But at the same time the absence of a rig-
orous criterion for deciding upon the inner mole-
cular radius x, makes this theory less fundamental
than, say, the rotational c.c. formulation of Aith-
urs and Dalgarno. ' The stabilization requirement
used by us in choosing a value for ~, when per-
forming a transformation from molecule- to a
space-fixed frame of reference constitutes prob-
ably the best criterion under the existing circum-
stances. Although this condition too lacks an ele-

ment of rigorousness, it is nevertheless significant
that one can obtain more accurate and reliable re-
sults with it.

An alternative way for finding a value for the core
radius will be to try to fit the cross sections com-
puted from the FT theory to the experimental mea-
surements. Although this fitting procedure will be
free from all sorts of uncertainties which may be
embedded in the stabilization criterion but at the
same time it will make the whole theory more
phenomenological.

However, under certain circumstances —e.g. ,
when the information about the molecular-core
region can be extracted from the experimental
data —it is possible to bypass the difficulties asso-
ciated with the selection of a proper value for r, .
Fano, ' while analyzing the high-resolution photo-
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FIG. 2. Comparison of
the momentum-transfer
cross secefon jPP) vs in-

- cident electron energy ob-
tained from different
methods. A are the re-
sults of Hake and Phelps
(Ref. 9) Inferred from the
swarm experiments with
the dotted curve A' ob-
tained so that it extrapol-
ates smoothlyto the derived
results of A below ls00eV.
B 'is calculated by solving
the rotational close-
coupling Eqs. {2.6) with the
potential (4.1) of Crawford
and Dalgarno Qef. 18). C
and D represent the re-
sults obtained by using the
single-center pseudopoten-
tial. method with the frame-
transformation theory:
the broken curve Q cor-
responds to the original
dipole term in the static
potential; the continuous
curve D shows the Snal,
results of the renormal-

10 ized dipole term in the
static potential.

absorption spectrum of H» and Atabek et al. ,4
calculating the syectrum of II„Rydberg levels of
H2, using the FT theory, have obtained the infor-
mation about the core region of hydrogen mole-
cule from the multichannel quantum defect methods
developed by Seaton. 4'

We have now specified all the necessary quan-
tities for the inner and outer region required to
apply the FT theory to study the e -CQ scattering
using the yseudopotential method. The thermal-
energy momentum-transfer cross section, o (0)
[Eq. (2.16)], calculated from this method is shown

by (dash-dot) curve C in Fig. 2. The ratio of the
theoretical results to that experimentally measured
(curve A) drops from a factor of five at 0.005 eV
to about a factor of two at 0.1 eV. We have given
in l an analytic proof to show that, unlike the total
scattering cross section, the momentum-transfer
cross section, averaged over all molecular orien-
tations, is finite even for electron scattering from
a polar molecule in a body-fixed frame of reference
in the fixed-nuclei approximation. Therefore at
higher energies the momentum-transfer cross sec-
tion calculated from the pseudopotential using the
FT theory should be the same as given in Fig. 8
of I where it was computed in the fixed-nuclei ap-
proximation. One will also notice that our cal-

culated results in I does reproduce the 1.75-eV 'Il
resonance.

3. Renormalization of the dipole term in the static potential of
&0 molecule

The electron-polar-molecule scattering at suf-
ficiently low energies is very much dominated by
the long-range electron-dipole interaction. ~' The
values of the dipole, quadrupole, and octopole
moments which we have used in our pseudopoten-
tial method are given in Eg. (4.8). (These values
are in good agreement with those computed in Ref.
38; D = -0.1007, Q = -1.634.) Mc Lean and Yoshi-
mine" have employed an extended-basis set in the
expansion of their two-center wave function with
17 STAG centered on each of the carbon and oxy-
gen nuclei. This sophisticated wave function re-
produces the correct ground-electronic-state en-
ergy for the equilibrium internuclear separation
of CO, the theoretical quadrupole moment (-1.547
a.u.) is about 83% of the experiinental value
(-1.859 a.u. ) but the magnitude of the dipole mo-
ment (0.105 a.u.) obtained from this wave function
is about 2.4 times higher than the experimentally
measured value (0.044 a.u.) [cf. Eqs. (4.2) and
(4.8)]. (Also, the theoretically calculated dipole
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moment has a sign opposite to that of the experi-
mental1y measured. This discrepancy in sign is
related to the polarity of CO molecule and the di-
rection of the internuclear axis which have been
discussed in Ref. 38.) It will make a difference in
the thermal energy electron-scattering cross sec-
tions for j j+1 transitions approximately by a fac-
tor of (2.4)' [see Eqs. (A12) and (A13) in the Ap-
pendix. ]

We therefore thought that the easiest way to rec-
tify the shortcoming of the present wave function,
without affecting its other properties, which are in

conformity with the experiments, would be to scale
down the dipole term in the multipole expansion
(2.8) by a factor of

6.0

K

5.0D

N

X
d.
Z

4.0

3.0
0.0

I I I I I I

1.0 2.0 3.0

INCIDENT ELECTRON ENERGY (eV)

4.0 5.0

g„= I D„...„I /D, , =2 386 (4.9)

This renormalization of-only the dipole term will
ensure its continuity over the whole range of the
interaction space while other multipole terms will
remain unchanged. The multipole expansion (2.8)
of the static potential will now be replaced by

V„(&)
V(r R)=Q

[ (" )5 ]
P„(«) (4.10)

in the fixed-nuclei Eq. (4.4). This rescaling of the
V, term should not alter significantly the short-
range nature of the charge distribution of carbon
monoxide computed from the wave function of
Me Lean and Yoshimine. "

To consider the constant f„as a parameter in
the usual sense of the word perhaps will not con-
stitute a correct description of the present situa-
tion. The value $„=2.386 has not been arrived at
by fitting our results to any of the quantities which
we intend to calculate finally. The circumstances,
on the other hand, have forced us to rescale the
dipole term of the static potential by („ in order to
correct, rather in a phenomenological way, the
deficiency of the ground-electronic-state wave
function of CO molecule whose calculation in itself
is a major field of research in the domain of quan-
tum chemistry and not the aim of the present study.

Although renormalization of only the dipole term
will not affect the convergence properties of the
single-center expansions (2.23) and (2.24) and also
of the multipole expansion (4.10}in the fixed-nuclei
Eq. (4.4), which we have discussed in detail in I;
but it will certainly require a new value for the
parameter +p used in the polarization potential
(4.5) in order to have a resonance in the 'll state
eigenphase sum at about 1.75 eV. The procedure
described in I was repeated again but this time only
for the 'll state. The new value of this parameter
obtained was rp =1.541 a.u. which is not very much

. different than the old one (1.605). The new eigen-
phase sum have been plotted in Fig. 3 and the val-

FIG. 3. Eigenphase sum calculated in the fixed-
nuclei approximation using the single-center pseudo-
potential method. The dipole term in the static poten-
tial has been renormalized by P& [Eq. (4.10)] and 'vp

= 1,541 a.u. in the polarization potential (4.5).

D =-0.044, Q =-1.547, 0 =4.380,

Ap I3 342~ Q2 2 396
(4.11)

which differ from the old constants, given in Eq.
(4.8}, in the magnitude of the dipole moment only.

4. Convergencein the outer region

The last thing to be considered is the convergence
of the space-frame Eq. (2.6) in the outer region in
the basis set (jI) for each value of & and parity.
The calculation of the cross section for transitions
involving higher rotational states will require the
solutions of equations for large values of J. At the
same time the number of coupled channels (j, I)
will increase [by min(&, j)+I for even parity,
(-1) '~ ' =1, and by min(&, j) for odd parity,
(-1)~'"'=-1] with the introduction of each new ro-
tational state j. The consideration of higher values
of t will also mean that one has to calculate the
fixed-nuclei 8 matrix [Eq. (3,6)] at the boundary
point &, for higher values of &, since I&I~ min(I, J)
from Eq. (3.11). In addition to this, because of

ues of the resonance parameters in the present
case are E„=1.740 eV, ~„=0.242 eV, and &p

=-0.067 rad. One will notice that the effect of re-
normalization of the dipole term on the values of
~

p and ~„ is very ins ignif icant indeed. Also this
rescaling will not affect the value of the molecular-
core radius r, =11 774 a..u. defining the inner region
of the FT theory. Moreover, the new values of the
multipole moments required to specify the potential
(4.7) in the outer region in a lab frame are now
given by



LO%-ENERG Y 'ELECTRON SCATTERING FROM CO. II. . . 95

TABLE III. Convergence of o 0 ~. (A ), calculated from the frame-transformation theory
using the pseudopotential, with the number of rotational states coupled in Eq. (2.6) in the
outer region: incident electron energy = 1.75 eV, r& ——11.774 a.u. , even parity.

0 0 0 2 0—3 0~ 4 0 5 0 6 0~ 7

2
3

5
2

3
4
5
2

3

5
6
7
2
3

5
6
2
3
4
5
6
7

3 10.860
4 10.861
5 ~ 10.861
6 10.861

0.647
0.959

9 0 959
11 0.959

6 26.872
9 24.914

12 17 551
15 17.547
18 17.548
21 17.548

6 0.059
10 0.059
14 0.059
18 0.059
22 0.059

6 0.015
10 0.015
15 0.015
20 0.015
25 0.015
30 0.015

0.691
0.699
0.699
0.699
5.103
4.547
4.546
4.547
4.209
4.107
3.852
3.850
3.850
3.850
0.018
0.016
0.015
0.011
0.011
0.008
0.008
0.008
0.008
0.008
0.008

0.339
0.338
0.338
0.338
1.416
0.678
0.679
0.679
7.471
6.868
6.445
6.441
6.442
6.442
0.029
0.030
0.030
0.033
0.033
0.010
0.010
0.010
0.010
0.011
0.011

0.001
O. OQ1

0.001

2.142
2.141
2.141

3.142
2.122
2.138
2.138
2.138

0.003
0.003
0.003
0.003

0.000
0.000
O. 000
0.001
0.001

0.000
0.000

0.000
0.000

18.651
18.636
18.634
18.634

0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000

0.000

0.001
0.001
0.001

0.001
0.001

0.000
0.000
0.000

0.000

0.001
0.001 0.000

0.001
0.001 0.000

~See text for the description of these quantities.
b Cross sections for values of J higher than 4 were negligibly small.

Highest rotational state (starting from j' =0) coupled in Eq. (2.6).
Total number of coupled channels (jl) in Eq. (2.6).

& '-type behavior of the electron-dipole interaction
potential, the solutions of the lab-frame Eq. (2.6)
assume their free-wave asymptotic forms at a
large distance (say & =&„)from the center of mass
of the molecule. In the outer region, therefore,
one would have to integrate a large set of coupled
equations over a wide range of &(&,««„). All
these factors combined together require large
machine size and computational time. Hence the
solution of Eq. (2.6) in the outer region in a space
frame becomes economically quite prohibitive.

We, therefore, restricted ourselves to the calcu-
lation of the cross sections for transitions (0-j')
and (1-j'). In the present case, unlike for the
homonuclear diatomic molecules, final-rotational-
state quantum number p' can take both even and odd
values. Thus in Eq. (2.6) for each & we coupled only
those rotational states which were necessary for
the convergence of the partial cross sections o, ,
and o',

&
in even and odd parities separately. In

Table III, we have tabulated a'0; with the coupling
of each new rotational states in even parity. (The
ground rotational state will not be coupled with the
odd-parity channels. ) These cross sections corre-

spond to 1.75 eV.. of the incident electron energy.
We have also looked at the convergence of the

partial cross sections o~
~ both for even and odd

parities. In all the cases studied we found that
maximum number of rotational states are needed
to be coupled in even parity with J=2, 3, and 4. It
is probably due to the fact that 'lI is a resonating
state therefore maximum contribution to the cross
section will come from the coupling of the ~ =1, 2,
and 3 partial wages. For values of ~=2, 3, and 4
the first six or seven rotational states of the mole-
cule can be coupled to these values of the orbital
angular momenta.

One will also notice from, Table III that the slow-
est rate of convergence in J is for g-& +1 and j +2
transitions. [Actually for electron-impact ener-
gies «0.10 eV as mahy as 100 values of J were re-
quired for &j = a1 transitions. ] The cross sections
for these transitions are directly dominated by,
contribution(s) coming from the long-range elec-
tron dipole (and electron octopole if j+j'~ 2) and
the electron-quadrupole interactions, respectively.
We also found that, for all incident electron ener-
gies, the 1'~-matrix elements for 4j = +1 and 2
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transitions for values of ~ higher than 10, obtained
from the FT theory were in good agreement with
those calculated from the Born approximation con-
sidering merely the V„V, (only the quadrupole
part}, and V, terms of the interaction potential
(4.7). In order to calculate the differential scatter-
ing cross section for j j +1 and j+2 transitions,
we, therefore, replace the exact T~-matrix ele-
ments in Eq. (2.14) for J&10 by the corresponding
elements calculated from the Born approximation.
This will also mean that one has to calculate the
fixed nuclei ~ matrix at & =&& only for eleven
(& =0, ... , 10) values of &.

The differential scattering cross section for a
j-j' transition can be calculated by recasting
Eq. (2.12}in the following form

A&o
[A

(D') BA(ii') ]dQ dQ 4(2j +1} I,

x PI, (cos0). (4.12)

In this relation, 4 a'z &r dQ is the differential cross
section calculated from Born approximation and Se
coefficients Az, are defined by Eq..(2.13)where
maximum value of J in (2.14) is & beyond which
the exact &~ matrix can be replaced by those cal-
culated from the Born approximation. A~ is also
calculated from Eq. (2.13) by using the Born T~

matrix in Eq. (2.14) up to & . (The relevant for-
mulas of Born approximation are given in the Ap-
pendix. ) Consequently, the scattering and the mo-
mentum-transfer cross sections for transitionsj-j +1 and j+2 are calculated from

(4.13)

j +

())A(/)') ~ ))A(J)'))]
p 3 I

(4.14)

respectively. 0; &
is the scattering and Bu~

the momentum-transfer cross section for (j-j')
transition calculated from the Born approximation
[see Eqs. (A12) and (A13}].

C. Final results

The momentum transfer cross-section inferred
from swarm experiments by Hake and Phelps'
in the energy range between 10 ' to 1.0 eV is shown
by curve A in Fig. 2. The dotted curve A' above
1.0 eP, w'hich peaks at about 1.50 eV, was chosen
by these experimentalists to extrapolate smoothly
to their derived curve A at lower energies.

Ne have extended the rotational c.c. calculation

of Crawford and Dalgarno" in a space-fixed frame
of reference to higher energies. The total momen-
tum-transfer cross section o (0) obtained from
this calculation is marked 8 in Fig. 2. One finds
that the model potential (4.1) of these authors re-
produces the momentum-transfer cross Section
measured by Hake and Phelpso very iveQ up to
0.10 eV. However, %hen e'e use this potential for
higher incident energies the theox etical results
(curve 8) begin to deviate from the inferred values
(curve A). These comyuted results also show a
very broad peak near i,50 eV ranging from about
0.60 to 5.0 eV. On the basis of the eigenphase
sums obtained by using the potential (4.1) in the
fixed-nuclei Eq. (2.22) and shown in Fig. 1, one
will conclude that it is yrobaMy the combinatioa
of 'E and '8 resonances which is responsible for
this broad peak in curve 8 (Fig. 2).

The momentum-transfer cx'oss section calculated
by an application of Our Methodology, develoyed
in the preceding Sections to 8"-CO scattering is
shown by curve 8 Of Fig. 2. These results are ob-
tained with the Ienormalised value of the dipole
term Ln the static potential [Eq. (4.10)]. On com-
paring these new results with those computed from
the oi'iginal V, term in the multipole expansion,
which are marked C in Pig. 2, we find that rescal-
ing of this term has maximum effect on thermal-
energy electron scattering momentum-transfer
cross section. The electron-polar-molecule scat-
tering in this energy range is very much dominated
by the long-range electron-dipole interaction. 4'

Therefore, a decrease in the magnitude of the
dipole moment by P„[Eq. (4.9)] has suppressed the
contribution of &, , to o'"(0) approximately by a
factor of $2„[see Eq. (A13)]. For higher incident
electron energies the dipole potential becomes less
important and the short-range forces take up the
scattering process. Ne therefore find that the mo-
mentum-transfer cross section calculated with the
original dipole-term static potential. (curve C) de-
creases very rapidly with the increasing incident
electron velocity and by the time the impact energy
becomes 0.10 eV the results of curve C are only
18% higher than those of curve D.

The rescaling of the dipole term has therefore
mainly affected the. extremely low-energy e1ectron
scattering from CO molecule. The small differ-
ences in the values of the momentum-transfer
cross sections at higher incident electron energies
calculated with two different magnitudes of the
V, term support our argument of Sec. Dt 83 that
a rather phenomenological renormalization of
only the dipole term in the multipole expansion
of the static potential does not have a serious effect
on the short-range terms of the electron-CQ inter-
action potential.
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F,IG. 4. Elastic scatter-
ing cross section for
(0 0) rotational transi-
tion. The broken curve
was computed by solving
the rotational close-
coupling Eqs. (2.6) with
the model potential (4.1)
of Crawford and'Dalgarno
(Ref. 18). The final re-
sults, shown by the con-
tinuous curve, were ob-
tained by combining the
single-center pseudo-
potentia1. method with the
frame-transformation
theory and renormalized
dipole term in the static
potential.

The nem momentum-transfer cross section
(curve D), on the other hand, is in good agreement
with the inferred values' (curve A). (Hake and
Phelps do not give any error limits for their re-
sults in Ref. 9.) Also, the results of curve D re-
produce the 1.75-eV 'll resonance very well. In
addition to this, our calculated momentum-trans-
fer cross section beyond 2 eV is indistinguishable
from that of dotted curve A' which Hake and
Phelps' has obtained by an extrapolation of their
inferred results below 1 eV (curve A}. These ex-
trapolated results have their maximum value
around 1.50 eV which is about 0.25 eV lower than
the position of the maxima in the calculated curve
D. Although one can always adjust the resonance
position in our pseudopotential method by finding
an appropriate value for the parameter yp in the
polarization potential (4.5}but the magnitude of the
cross section, which is about 44% higher than the
extrapolated values of curve A. ' in the resonance
energy region, is not controlled by any disposable
parameter in our calculation. Hake and Phelps
do not discuss the accuracy or reliability of their
extrapolated results of the momentum-transfer
cross section in this sensitive resonance region.
A better comparison in betmeen the theory and ex-
periment will, therefore, require further measure-
ments of the momentum-transfer cross section in
this energy domain. However, our computed mo-
mentum-transfer cross section, which is obtained
by using a single parameter in the polarization po-
tential, is in satisfactory good agreement with the
experimental measurements over the whole range
of energy. [In addition to the present study of
e -CO scattering, we have also found in our e -N,
work' "that the pseudopotential method tends to
over estimate the low-energy (&1.00 eV) cross sec-
tions; while the agreement between theory and ex-
periment improves significantly in going towards

higher incident energies. A plausible explanation
for this behavior of the cross section may be that
the present method of treating the exchange and
polarization potentials overemphasizes the latter
effect for low-energy electron scattering. ]

Figure 4 contains the elastic scattering cross
section for (0-0) rotational transition. The con-
tinuous curve shows the results which mere obtain-
ed from an application of the FT theory to the sin-
gle-center pseudopotential method with renormal-
ized dipole term while the broken curve corre-
sponds to our extension of the rotational c.c calcu-
lation of Crawford and Dalgarno. " The pseudopo-
tential results of the continuous curve reproduce
the 1.75-eV resonance very well.

The excitation cross section ap ] calculated from
two different potentials have been plotted in Fig. 5.
The cross section for ~j =+1 transitions in a polar
molecule will always be large at very low incident
electron energies for reasonably large values of
dipole moment. A very good agreement between
the two curves of Fig. 5 at low energies is in ac-
cordance with our contention that the renormaliza-
tion of the dipole term has improved the asymptot-
ic behavior of the potential without making any sig-
nificant change in its short-range nature.

The rotational excitation cross sections for
(0-2) and (0-3) transitions are shown in Fig. 6.
[We found that the cross sections obtained from
Crawford and Dalgarno potential for transitions
higher than (0-2) were negligibly small. ] The
op, results calculated from two diff erent poten-
tia1.s are again in good agreement up to 1.0 eV.
The cross section for this transition in the lorn-en-
ergy domain will, however, depend upon the quad-
rupole moment and the nonspherical component
(n, } of the induced dipole polarizability of the tar-
get molecule. For CO molecule the value of n,
is very small [ EcI. (4.11)] and it gives rise to an
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interaction potential which goes off as r ' [Eq.
herefore, it is primarily the electron-

quadrupole interaction which will determine the
o, , cross section for low-energy electrons. As
we see from Fig. 6, this interaction gives rise to
a most an energy-independent cross section. " Aaim
difference in the magnitude of the quadrupole mo-
ment used in the model potential (Eq. (4.2)) and
the pseudopotential f(Eq. 4.11)) is probably giving
rise to a slight difference in the cross sections for

,' transition of the broken and continuous&0-2~
curves at these very low energies. ] At higher
impact energies, however, other short-range
terms become important and therefore while the
pseudopotential results both for (0- 2) and (0- 3)
transitions go through the resonance but the cross
section calculated from the model potential (4.1)
does not show this behavior.

The total scattering cross section v(0) is shown
in Fig. 7. The good agreement between the broken
and the continuous curves at extremely low ener-

gies begins to disappear as the short-range inter-
action becomes important at higher energies. Al-
though the pseudopotential results have a large
spike at 1.75 eV, but those calculated from Craw-
ford and Dalgarno" potential (4.1) show a wide
resonance-type behavior around 3.00 eV. Also

th
there is a big difference in the maximum value f
he cross section obtained from these two different

calculations.
A comparison of Figs. 2 and 7 will also reveal

that o (0) and v(0) calculated from the model poten-
tial of Crawford and Dalgarno have their maxima
at t|vo different energies, 1.50 and 3.00 eV, re-
spectively. While in the case of the pseudopoten-
tial method both of these quantities peak at 1.75 eV,
which is the position of the resonance in 'll state
of the (e +CO) system"

Such a detailed comparison of the various cross
sections computed using these two different poten-
tials in the scattering equations makes two very
important points about the nature of these interac-
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I
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FIG. 6. Same as Fig. 4,
but for (0 2) and (0 3)
rotational transitions.
[The broken curve results
for (0 3) transition were
negligibly small. )
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FIG. 7. Total scattering cross section g (0). The
broken curve was computed by solving the rotational
close-coupling Eq. (2.6) with the model potential (4.1)
of Crawford 'and Dalgarno (Ref. 18}. The final results,
shown by the continuous curve, were obtained by com-
bining the single-center pseudopotential, method with the
frame-transformation theory and renormalized dipole
term in the static potential.

tions. While the momentum-transfer cross section
computed from the pseudopotential is in good
agreement with the measurements over the whole
energy range, but for thermal electrons, where
the scattering is primarily determined by the long-
range terms of the interaction potential, the model
potential (4.1) gives a better fit to the experiment-
al data. However, as probably anticipated by
Crawford and Dalgarno, "because this model fails
to represent the short-range forces, it should,
therefore, not be used to calculate either the low-
energy elastic scattering cross sections or to
study the e -Co scattering at higher energies.
Secondly, the renormalization of the dipole term
in the multipole expansion of the charge distribution
of carbon monoxide used in our pseudopotential
method has improved its asymptotic behavior with-
out altering the short-range nature of this poten-
tial.

The individual contributions to v(0) and v (0) are
given in Tables IV and V, respectively. Tables VI
and VII contain, on the other hand, rotationally
elastic and inelastic scattering cross sections
o. . . and the momentum-transfer cross sections
o, &,, for j ' =0-5. In all these tables, both the
scattering and the momentum-transfer cross sec-

TABLE IV. Elastic and excitation cross sections, for (0 j') transitions.

Incident electron
energy Eo (eV)

0.005
0.01
0.03
0.05
0.10
0.60
1.10
1.30
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.40
3.00
4.00
5.00
8.00

10.00

3.17
3.97
5.77
6.88
8.64

12.66
12.82
13.21
15.37
16.88
19.37
23,28
27.93
29.45
25.69
20.82
1.7.35
15.18
13.82
10.67
9.57
8.59
8.02
7.59
7.86

44.38
26.15
10.47
6,67
3.58
1.52
1.80
2.06
3.00
3.62
4.65
6.31
8.41
9.38
8.12
6.22
4.80
3.90
3.33
2.07
1.78
1.54
1.36
0.97
0.80

0'o

0.68
0.73
0.75
0.76
0.79
1.07
1.33
1.49
2.02
2.41
3.11
4.35
6.18
7.52
7.15
5.98
4.96
4.25
3.78
2.78
2.79
3.14
3.50
4.27
4.43

0'o

0.00
0.00
0.00
0.00
0.00
0.03
0.i.6
0.34
0.94
1 ~ 33
1.94
2.87
3.96
4.28
3.38
2.24
1.45
0.96
0.67

,0.11
0.05
0.08
0.11
0.18
0.21

ao-4

0.00
0.00
0 ~ 00
0.00
0.00
0.00
0.13
0.46
2.19
3.50
5.80
9.76

15.24
18.64
16.59
12.40
9.01
6.74
5.25
1.79
1.08
0.90
0.90
1.07
1.17

cr(0)

48.23
30.85
16.99
14.31
13.01
15.28
16.24
17.56
23.52
27.74
34.87
46.57
61.72
69.27
60.93
47.66
37.57
31.03
26.85
17.42
15.27
14.25
13.89
14.08
14.47
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TABLE V. Momentum-transfer cross sections for (0—j') transitions.

Incident electron
energy Eo (eV) 0 o-o &o-2

m0'
o

0. (0)

0.005
0.01
0.03
0.05
0.10
0.60
1.10
1.30
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.40
3.00
4.00
5.00
8.00

10.00

3.50
4.48
6.73
8.13

10.37
14.17
12.93
12.80
14.12
15.17
16.88
19.44
22.12
22.14
18.67
14.96
12.51
11.04
10.13
7 ~ 85
6.68
5.56
4.94
4.22
3.97

11.04
5.06
1.18
0.50
0.16
1.19
1.99
2.40
3.41
3,97
4.83
6,07
7.35
7.44
5.95
4.36
3.33
2.74
2.40
1.81
1.70
1.52
1 i33
0.92
0.77

0.68
0.72
0.75
0.77
0.81
1.23
1.70
2.02-

2.87
3.39
4.22
5.55
7.21
7.99
7.03
5.58
4.51
3.84
3.43
2.74
2.94
3.45
3.92
5.00
5.38

0.00
0.00
0.00
0.00
0.00
0.05
0.22
0.47
1.31
1.84
2.69
3.99
5.50
5.94
4.69
3.11
2.01
1.34
0.93
0.16
0.08
0.12
0.17
0.28
0.32

0.00
0.00
0.00
O. 00
0.00
0.01
0.13
0.47
2.22
3.53
5.84
9.80

15.27
18.63
16.55
12.35
8.96
6.70
5.21
1.77
1.07
0.90
0.93
1.18
1.33

15.22
10.26
8.66
9.40

11.34
16.65
16.97
18.16
23.93
27.90
34.46
44.85
57.45
62.14
52.89
40.36
31.32
25.66
22.10
14.33
12.47
11.55
11.29
11.60
11.77

I

tions for 4j =+1 transitions are largest in the ther-
mal-energy region. These tables also show that
all our results for individual transitions reproduce
the 1.75-eV 'H resonance. very well. In addition to
this, one would also notice that in the resonance
energy region —unlike the 0-j transitions where
o, 4 and v, 4 have the largest values for excitation
cross sections —o, , and o, „although smaller.
than the elastic 0, , and v, „respectively, a,re
maximum among the cross sections for inelastic
transitions which start from the first excited ro-
tational state of carbon monoxide. This feature is
the same which was found both in the pure rotation-
al excitation" "and the simultaneous vibration-
rotation excitation" in e -N, ; scattering.

The differential scattering cross section for
(0-j') transitions at 0.01 and 1.50 eV are shown in
Fig. 8. The continuous curves represent the
pseudopotential (combined with FT theory and the
renormalized dipole term) results while the broken
curves were computed from the semiempirical po-
tential (4.1) of Ref. 18. [The (0-1) angular dis-
tributions at 0.01 eV obtained from these two po-
tentials were indistinguishable on the scale of Fig.
8.] At 1.50 eV the continuous curve for (0-2)
transition is no longer isotropic because the short-
range interactions in the pseudopotential dominate

the pure quadrupole scattering; while the broken
curve is still isotropic.

The definition of the momentum-transfer cross
section [Eq. (2.16)] involves a weighting factor of
(1 —cosg) which removes the forward-scattering
contributions. A broad peak in the momentum-
transfer cross section at 1.50 eV (curve B in Fig.
2) calculated from the semiempirical potential
(4.1) is, therefore, exclusively due to the rotation-
ally elastic scattering from CQ.

The angular distributions for (0-j') transitions
at the resonance energy 1.75 eV, and also at 3.00
eV, are given in Fig. 9. %e have computed also
the (1-j') differential scattering cross sections
from our pseudopotential which are shown in Fig.
10 (at 0.01 and 1.50 eV) and Fig. 11 (at 1.75 and
3.00 eV).

V. CONCLUSION

The work presented here probably constitutes the
very first study of electron scattering from such a
complex system as carbon monoxide using &b initio
methods. Although, to check the accuracy of the
various cross sections given here more experi-
mental measurements will be required in future
but the basic fact that the computed momentum-
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TABLE ~. Elastic and inelastic cross sections (in A ) for (i —j') transitions

Incident electron
energy E0 (eV) o& 3

0.005
0.01
0.03
O.D5

0.10
0.60
1.10
1.30
1.50
1.56
1.60
1.65
i.VO

i.75
i.8D

i.85
i.90
i.95
2.00
2.40
8.00
4.00
S.DD

8.90
i0.00

.16.35
9.15
3.55
2.24
1.20
0.51
0.60
0.69
1.00
1.21
1.55
2.10
2.80
3.i3
R.Vi
2.0V

i.60
i.30
i.if
0.69
0.59
0.5$
0.45
0.32
0.27

3.33
4.14
5.94
7.06,
8.84

13.05
13.34
13.80
16.19
17.86
20.63
25.05
30.43
38.46
28.54
2Q.i8
t9.80
i6.84
i5.32
.ii.VV

i0.67
9.84
9.'42

9.30
9.64

24.94
15.01
6.10
3.90
2.11
0.98
1.24
1.50
2.38
2.96
3.91
5.42
7.29
8.07
6.85
5.09
3.8i
3.00
2.49
1.42
1.2D

1.06
0.95
0.72
0.62

0.32
0.41
0.44
0.45
0.47
0.64
0.85
1.10
2.18
3.00
4.44
6.95

10.48
12.80
11.67
9.10
6.98
5.55
4.59
2.47
2.16
2.29
2.61
3.05
3.17

0.00
0.DO

O.00
0.00
O.00
0.02
0.09
0.19
0.54
0.76
1.11
1.64
2.26
2.45
1.92
1.2V

0.82
' 0.53
0.42
0.06
O.D3

0.05
0.06
0.11
0.12

0.00
O. 00
D.00
0.00
0.00
0.00
0.07
0.26
1.22
1.95
3 23
5.43
8.48

10.36
9.23
6.90
5.01
3.75
2.91
1.00
0.60
0.50
0.60
0.59
0.64

44.94
28.71
16.03
ie.65
12.62
15.20
16.19
17.54
23.51
27.74
34.87
46.59
61.7,4
69.27
60.92
4V.61
37.52
30.9V

26.84
17.41
15.25
14.25
13.89
14.09
14.46

~This value (go) corresyan4s to the energy of the electron incident on the ground rotational
state Qf Co. The sppgopx'fgte epergne gf incidence for the first rotational state of the molecule
can be obtained from the energy conservation law: 8& =&0-2B. B= 2.38 x10+ ev for CO
molecule

tr@nsfex' cross Section over the whole enog gy g ange
is in good agreement with the values ibex ae4 from
swarm experiments is assuring enough that the
ether results too shouM be in satisfactorily good
agreement with the future measurements.

As regard to the $'T theory, which has formed
the basis of the present study, egg opinion is that
1't provlttes a good forllla118m fo1' stuclJI'lng the elec-
tron molecule scattering from first princiyles.
The convenience ith ~rhtch the ehoi t-range forces
c@g b9 i'ncluded by working io g fjxyd-nuclei ay-
proximation in the inner region and Rt the same
time allowing the introduction of nuclear degrees
of freedom in the outer region makes this theory
quite attractive. %e have shown here how our
single-center pseudopotential method —combined
with the g matrix —can be adaptedtothe FTtheory.

Our experience, however, is that the practical
implementation of the FT theory is an extremely
arduous task. As we have pointed out elsewhere
in this article, it is a multistep process. The
absence of a rigorous criterion for the selection
of a value for the inner-molecular-core radius,
where a transformation from a molecule- to a

space-fixed frame of reference should be perform-
ed, introduces an element of uncertainty in its ap-
plication. In addition to this, considerable effort
has to be made in solving the scattering problem in
the outer region in a space-fixed frame of reference.

This complexity will increase further when one
wants to include both the nuclear vibration and ro-
tation in the outer region. A great disparity in the
time period of these motions will now require two
Nfferent points in the configuration space in order
Co introduce in the scattering equations the Ham-
iltonians associated with these two modes of nu-
clear motion. This in turn will also mean that
one has to perform two separate transformations-
one each for the vibration and rotation. In spite of
the availability of high-speed and large-memory
computing machines, it seems to us that one should
make a very careful judicious study of the problem
at hand before deciding to use the FT theory.
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APPENDIX

The Born-approximation theory of electron-
molecule scattering is very well formulated. '~'
In this Appendix, we give the relevant formulas
and put them in a form directly applicable to the
present study.

The T~& g,.g
matrix element for a transition from

the initial rotational state j to'the final state j'
calculated in Born approximation from a set of
coupled scattering Eqs. (2.6) is given by '

T&q &,
=-2s'w gf„(j 'l', j l Z) I J, „&(k, , v)V~(r)Z, „&(k&r)rdr,

p=1 0

where coefficient

f„(j ' l',j l;~) =('g;'", II' p(~.&)l'9', ", )

, , (i j'V)(l l' ul j=(-1) ~ "[(2j'+1)(2l'+1)(2j+1)(21+1)]'~'
~(0 0 0)(0 0 0j l' j' p,

(A1)

(A2)

TABLE VII. Momentum-transfer cross sections~ for (1—j') transitions.

Incident electron
energy go (eV) m0 i-0 m m0) m

0.005
0.01
0.03
0.05
0.10
0.60
1.10
1.30
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.40
3.00
4.00
5.00
8.00

10.00

4.07
1.77
0.40
0.17
0.05
0.40
0.66
0.80
1.14
1e32
1.61
2.02
2.45
2.48
1.99
1.46
1.11
0.91
0.80
0.60
0.57
0.51
0.44
0.31
0.26

3.64
4.63
6.89
8.31

10.58
14.65
13~ 62
13.61
15.28
16 ~ 54
18.59
21.68
25'. 02
25.34
21.48
17.19
14.31
12.57
11.51
8.95
7.86
6.94
6.51
6.21
6.12

8.10
3.56
0.81
0.34
0.11
0.82
1.42
1.80
2.83
3.44
4.38
5.76
7.27
7.52
5.97
4.22
3.07
2.40
2.00
1.27
1.17
1.06
0.96
0.73
0.65

.0.32
0.40
0.44
0.45
0.48
0.74
1.08
1..42
2.71
3.60
5.13
7;69

11.12
13.08
11.58
8.84
6.69
5.29
4.36
2.43
2.24

2.76
3.53
3.80

0.00
0.00
0.00
0 ~ 00
0.00
0.03
0.13
0.27
0.75
1.05
1.54
2.28
3.14
3.40
2.67
1.77
1.14
0.74
0.58
0.09
0.05
0.07
0.10
0.17
0.18

0.00
0.00
0.00
0.00
0.00
0.00
0.07
0.26
1.23
1.96
3.24
5.44
8.49

10.36
9.22
6.88
5.00
3.74
2.90
0.99
0.59
0.50
0.51
0.62
0.69

16.13
10.36
8.54
9.27
11.22
16.64
16.98
18.16
23.94
27.91
34.4'9

44.87
57.49
62.18
52.91
40.36
31.32
25.65
22.15
14.33
12.48
11.54
11.28
11.57
11.70

In A "See footnote to Table VI.
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FIG. 8. Differential
scattering cross section
for (0 j') rotational tran-
sitions at 0.01 and 1.50
eV. The broken curves
were computed by solving
the rotational close-coup- .

ling Eqs. (2.6) with the
model potential (4.1) of
Crawford and Dalgarno
(Ref. 18). The final results,
shown by the continuous
curves, were obtained by
combining the single-cen-
ter pseudopotential method
with the frame-transforma-
tion theory and the renor-
malized dipole term in the
static potential. r The
broken curve results for
transitions higher than
(0 2) were negligibly
small. ]

o.o
j'= 0 1.0

7P/4 &/2 3 1P/4

ANGLE (RADIANS)

%/4
I

7F/2

I

3 %'/4

ANGLE (RADIANS)

has already been introduced on the right-hand
side of Eg. (2.6). J„,/, (~) is a Bessel function
related to the regular spherical Bessel function of
Eg, (3.3) by the following relation

8„,/, (x) = (2x/m)'/' j,(x).

If the multipole expansion (2.8) of the electron-
molecule electrostatic interaction (2.4) is replaced
by its asymptotic form, namely

T~~... „= 2iw Q —f„(j ' I', j I;J)v„
p=l

~lp

I

dr
Z, ,„/, (k, , r) J„,/, (k~ r)

(A4)

The radial integral (A4) can be evaluated analyt-
ically. There are two different cases to be con-
si.dered:

k,. = k, , = k, (say) & 0,

V(r; R) =Q v „r " 'P „(r R ),
p&p

(A3) J,„„,(k,r)Z„„,(k,r) —„r
where v» v» v». . . , etc. are, respectively, the
dipole, quadrupole, octopole, . . . , etc. moments of
the molecular charge distribution, the relation
(Al) will then become and

kg-'r(i)r(s —v)
2~r(s)r(s —I--,')r(s —l'--,')

(A5)
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dr
~l + 1/2(~/ +)~8+1/2(~/+)

0 r

where we have defined

8= —,'(l+ l'+ p)+1 (A7)

&ES —p., l'-$+-, I'+ -'; 2', p. &-1, A6
2

and E(a, b, c; s) is a hypergeometric function. "
For expressions (A5) and (A6) to be finite the

arguments of the I' functions present in the numer-
ator of these relations should be greater than zero,
x.e.,

INClDENT ELECTRON ENERGY=1.75 eV

i'=4

2.0

0.0
lNClOENT ELECTRON ENERGY= 3.00eV

0.12

0.0

I 2

I

OAQ
ops

0+4—

0.20-

FIG. 9. Same as Fig. 8 for
1.75 and 3.00 eV.

bo '0

0.0

,0.16—

1.0

0.0

O.S0

0,16-

0.12—

0.0—

10.0

0.0
6.0 Q

4.0—

2,0—

1t/4 W/2 3 V/4

ANGLE IRAOIANSj)

I

1f/4
l

1F/2
I

31'/4

ANGLE (RADIANS)
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INCIDENT ELECTRON ENERGY =1.59 IV

0.16—
5

0.40

INCIDENT ELECTRON ENERGY =0.01 eV

I=3

0.0

0.0

., 5.0—

4.0—

3.0—

2.0—

1.0—

0.0—

0.0

0.0
0.60—

0,0

2.0

FIG. 10. Differential
scattering cross sections
for (1 j') rotational
transitions at 0.01 and 1.50
eV. These results were
obtained by combining the
single-center pseudopoten-
tial method with the frame-
transformation theory and
renormalized dipole term
in the static potential. Con-
cerning the incident elec-
tron energy, see the foot-
note to Table Vl.

0.0
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1.0

2.0— 0.0
'I
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S —p, & 0.

Or, from (AV),

l+l'+2 & p, . (A8)

4;2 '
( j+ )—

dQ k», 2p, + 1l~

The second 3 —j symbol on the right-hand side of
Eq. (A2) will be zero unless l

l- l'l ~ p, «l+1'.
The Born radial integral present in Eq. (A4) will,
therefore, always converge as long as the values
of l, l', and p, satisfy the triangular relation
A(l, l ', p). The Born T~ -matrix elements can now
be computed by substituting the expression (A5) or
(A6), as the case may be, in Eq. (A4). For those
values of /, l', and p, which do not satisfy the in-
equality (A8), the sT~- atmri elxement will auto-
matically vanish because of the 3-j symbol pres-
ent in Eq. (A2).

Crawford et a/. ,
"have derived an expression for

the differential scattering cross section for a (j
j ') transition. For an electron-molecule inter-

action of the form (A3), one can write

drx jp Ky'
P

(A 9)

where k,. and k&, , specify the directions of the in-
itial and final momentum, respectively, and K
=k,. -k&, defines the momentum transfer during the
collision such that

(Al0)

Because

the differential scattering cross section is, there-
fore, given by
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The integrated cross section for an inelastic transition (j-j'), defined by

~B
C4

g~ jl& .

dg dkg)

will now become

INCIDENT ELECTRON ENERGY =1.75eV

1.0

0.0

0.0

1.0

INCtOENT Et.ECTRON ENERGY =3.00eV

I

og

I 0,50—
~~

b

0.0

0.05

I

j' 4

FIG. 11. Same as Fig. 10
for 1.75 and 3.00 eV. Con-
cerning the incident electron
energy, see the footnote to
Table VI.
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Sw(2j '+1), (j j' 1) ' K,„
(p p 'pj Kmin

4+(2j'+1) g ~. (i j' u) '
2&q(~+ —', ) I&p p pj

@2' 2 g2P 2
max min

(p, -l)(2g+1) '

(A12)

where we have replaced v, by D for the permanent
dipole moment of the target molecule. The first
term on the right-hand side of Eq. (A12) will ob-
viously be absent for electron scattering from
homonuclear diatomic systems.

The momentum-transfer cross section

o.
~ ), = 1 —k~ ~ k~, dk~,

is given by

8w(2j'+l), (j j ' 1)'3'
(p () p j - ki ks' Kmin-

2+(2j'+1) g ~. &j ~' u)
' K.'",„-K.',"„+4(kf,kf, ,K.2&„.

kg kg p 2 2 ~(9+2) (p () p) (iL —1)p(2p, +1) (A13)

The K . and K,„are defined in Ecl. (A1p) and again the first term on the right-hand side will be present
only for electron scattering from polar molecules.

*Work supported in part by a National Academy of
Sciences-National Research Council Resident Be-
search Assoc iateship.

)Present address: Physical Research Laboratory,
Navrangpura, Ahmedabad-380009, India.

~N. Chandra, Phys. Bev. A 12, 2342 (1975).
For detailed discussions of fixed- and adiabatic-
nuclei approximations see, for example, D. E. GoMen,
N. F. Lane, A. Temkin, and E. Gerjury, Bev. Mod.
Phys. 43, 642 (1971).

3A. M. Arthurs and A. Dalgarno, Proc. B. Soc. A 256,
540 (1960)

4A good compilation of references on this work is given
by K. Takayanagi, in The Physics of Electronic and
Atomic Collisions, edited by J. S. Bisley and R. Ge-
balle (University of Washington, Seattle, 1976),
pp. 219 ff.

5B. J. W. Henry, Phys. Bev. A 2, 1349 (1970).
6N. Chandra and A. Temkin, Phys. Bev. A 13, 188

(1976).
7A. Herzenberg, in Eundamental Interaction in Physics,

edited by B. Kursunognu and A. Perlmutter (Plenum,
New York, 1973), pp. 261 ff.

8E. S. Chang and U. Pano, Phys. Bev. A 6, 173 (1972).
~B. D. Hake hand A. V. Phelps, Phys. Rev. 158, 70 (1967).

P. G. Burke and N. Chandra, J. Phys. B 5, 1696 (1972).
'P. G. Burke, N. Chandra, and F. A. Gianturco, J.
Phys. B 5, 2212 (1972).

'
¹ Chandra and F. A. Gianturco, Chem. Phys. Lett.

, 24, 326 (1974).
~3N. Chandra, Bull. Am. Phys. Soc. 20, 1470 (1975);

ibid. 21, 575 (1976).
E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29
(1947).
R. J. W. Henry and E. S. Chang, Phys. Rev. A 5, 276
(1972).

'6E. S. Chang, Phys. Rev. Lett. 33, 1644 (1974).
~ N. .Chandra, J. Phys. B 8, 1953 (1975).
~ O. H. Crawford and A, Dalgarno, J. Phys. B 4, 494

(1971).
~ M. E. Rose, Elementary Theory of Angular Momen-

turn (Wiley, New York, 1957), pp. 49ff.
M. Hotenberg, R. Bivins, N. Metropolis, and J. K.
Wooten, Jr., The 3-j and 6-j Symbols (MIT, Cam-
bridge, 1959).
'F. H. M. Faisal, J. Phys. B 3, 636 (1971).
N. Chandra, J. Phys. B 8, 1338 (1975).

23U. Fano and D. Dill, Phys. Rev. A 6, 185 (1972).
P. G. Burke, ¹ Chandra, and F. A. Giaturco, Mol.
Phys. 27, 1121 (1974).

2~M. Born and K. Huang, Dynamical Theory of Crystal
Lattices (Clarendon, Oxford, 1954), pp. 165 ff.

6A. Temkin and K. V. Vasavada, Phys. Bev. 160, 109
(1967).

~A. Temkin, K. V. Vasvada, E. Chang, and A. Silver,
Phys. Rev. 186, 57 (1969).
P. G. Burke and A.-L. Sinfailam, J. Phys. B 3, 641
(1970).
A comprehensive review on the p-matrLx theory and
its application in nuclear physics has been written by
A. M. Lane and R. G. Thomas, Bev. Mod. Phys. 30,
257 (1958).

30For a recent review on the'application of the 8-matrix
method to various electron-atom collision problems,
see P. G. Burke and W. D. Robb, Adv. At. Mol. Phys.
11, 143 (1975).
An approach similar to, this for the atomic case has
been discussed by P. G. Burke, in Lectures in Theore-
tical Physics (Gordon and Beach, New York), Vol. II
C, pp. 34 ff.
N. Chandra, Comput. Phys. Commun. 5, 417 (1973).
Here we would like to refer the reader to the footnote
given on p. 1342 on Ref. 22 in order to explain the re-
lationship between the transformation (3.11) and the
one given earli. er by the authors of Bef. 28.

34P. Q. Burke, A. Hibbert, and W. D. Robb, J. Phys.
B 4, 153 (1972).

3~The T~ matrix of Eqs. (2.14) and (2.15) will include



N. CHANDRA S6

both even- and odd-parity elements.
36J.

¹ Bardsley, F. Mandl, and A. R. Woods, Chem.
Phys. Lett. 1, 359 (1967).

37F. H. M. Faisal and A. L. V. Tench, Comput. Phys.
Commun. 2, 261 (1971).

38A. D. McLean and M. Yoshimine, IBM J. Res. Dev.
Suppl. 12, 206 (1967); J. Chem. Phys. 46, 3862 (1967).

3 U. Fano, Phys. Rev. A 2, 353 (1970).
O. Atabek, D. Dill, and Ch. Jungen, Phys. Rev. Lett.
33, 123 (1974).

4 M. J. Seaton, Mon. Not. R. Astron. Soc. 118, 504
(1958); Proc. Phys. Soc. Lond. 88, 801 (1966).

4 K. Takayanagi, Comments At. Mol. Phys. 3, 95 (1972).

4~K. Takayanagi and Y. Itikawa, Adv. At. Mol. Phys. 6,
105 (1970).
N. Chandra and A. Temkin, Phys. Rev. A 14, 507
(1976).

50. H. Crawford, A. Dalgarno, and P. B. Hays, Mol.
Phys. 13, 181 (1967).

GM. J. Seaton, Proc. Phys. Soc. 77, 174 (1961). Equa-
tion (Al) has an additional minus sign because we
have T=S—1 [see Eq. (2.11)]which is opposite to the
definition used by Seaton.

47M. Abramowitz and I. A. Stegun, Handbook of Mathe-
matica/ Eunctions (Dover, New York, 1972), pp. 556.


