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Thermodynamics of the sine-Gordon field
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We comment on a recently published paper of Gupta and Sutherland on the thermodynamics of the sine-
Gordon chain. We present a short alternative derivation of the various thermodynamic functions in the high-
and low-temperature limits. While our mathematical results essentially agree with theirs, we propose a
different physical interpretation.

I. INTRODUCTION

In this Comment, we examine the recent calcu-
lation of the classical statistical mechanics of the
sine-Gordon field by Gupta and Sutherland' (here-
after GS). Using the functional integral approach,
GS have calculated a partition function for a field
with nonperiodic boundary conditions, or net wind-
ing number N. This they do by treating N as a
thermodynamic variable in a grand canonical en-
semble. GS base their interpretation of the re-
sults on the behavior of the intensive thermody-
namic functions, or densities, such as the internal
free energy per unit length, u, or on other fields
such as the winding-number chemical potential p, .
For example, at zero temperature, p. is essential-
ly the classical energy of formation of a single soli-
ton whose value is 8 in these units, and they con-
clude, therefore, that solitons are stable. How-
ever, since at any finite temperature and vanishing
density N/L, p = 0, their localization and stability
criteria lead them to conclude that the few-soliton
solutions are unstable with respect to thermal
fluxtuations.

We calculate the classical statistical mechanics
of the sine-Gordon field in the limits of very high
and low temperature. Our results do not have as
large a range of validity as that of GS, but they
suffice for interpretation, and they allow us to
express various thermodynamic functions in a
transparent form. Our physical interpretation,
which is distinct from that of GS, is familiar in
the theory of the equilibrium properties of chemi-.
cal reactions. We distinguish three "reactants":
solitons s, antisolitons s, and continuum excita-
tions C. We show that in first approximation, the
thermodynamics of the sine-Gordon field is equiv-
alent to the thermodynamics of the "chemical re-
action"

the thermodynamics of a large class of nonlinear
field models. In the case of the sine-Gordon equa-
tion, it will be shown elsewhere that there are
other reasons, stemming from the known exact
solutions of the equations of motion, to support
our interpretation.

In the following we adopt the same notation as
GS to facilitate comparison of the results.

II. CLASSICAL CANONICAL PARTITION-FUNCTION
CALCULATION

Gupta and Sutherland set out to calculate, using
the transfer integral techniques, the classical
canonical partition function Z of the one-dimen-
sional sine-Gordon field P which satisfies the fol-
lowing equation and boundary conditions':

p« —p„„+sing = 0,

g(0}= 0, P(L) = 2vN,

y(L) =@(0)=0.
(2a)

(2b)

It is straightforward to show that Z can be ex-
pressed [see Eq. (96) in GS] in the thermodynamic
limit as

2v " '~' a,(4P' k}z= lim lim — ll dk exp pL, ' — +i)iv~ co p 8p'

le~(0) I',
(3)

where M is the number of divisions of the length
L required by the transfer integral technique, 4~(P)
is the transfer operator eigenfunction labeled by
the Floguet wave vector k, a,(q, k) is the eigenval-
ue of Mathieu equation in the standard notation, '
P=-T ' where T is the temperature (ke-=1). We
make the following definitions:

N -T 1 Sin(Z}
n = , f in(Z), u—=——

s+s= C.

That is, apart from the pair creation mechanism,
solitons behave as a classical gas of free parti-
cles. This is an important conceptual remark for
it suggests how to treat, at least approximately, .

p. -=—sgn(N) ',
&n

where n is the winding number density, f the free
energy per unit length, u the internal energy per
unit length, and p the chemical potential.
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Rather than changing to a grand canonical parti-
tion function, we shall calculate Z directly. Since
4,(0) is a slowly varying function of k, we shall
make no error in replacing C„(0) with C ~,(0) and
factoring it from the integrand of Eq. (3). When
T is very large, we can approximate a,(q, k) as'

a,(q, k) =-~q'+4(1 aq')k'+O(q ), (4)

a,'(k, q) = -8P'+ 4P —8oP cos2vk,

and calculate the thermodynamic functions f, u,
and p, . In this temperature regime, our results
agree with those obtained by GS; for example,
the internal energy density u is dominated by the
energy of I harmonic oscillators each having two
degrees of freedom.

At low temperatures, only the lowest 0 band will
contribute to Eq. (3), and for this band a tight-
binding WEB. calculation' gives

u- n(8+ 2 T)+ (M/L —n) T T «1, (16a)

Equations (13) and (15) are approximations to (12)
and (14), respectively, that allow us to recover
the n= 0 results.

We emphasize that in Eqs. (12) and (14), n may
not be taken to zero because we have made the ap-
proximation o/n «1. If a first correction to the
tight-binding band approximation, a term propor-
tional to cos4vk, is included in Eq. (5}, then the
resulting corrections to f are proportional to n'.
Thus Eqs. (11) to (15) are valid for a«n«1. In
this range our results agree with those of GS; how-
ever, written in this form, the equations suggest
a rather different interpretation.

Consider first the internal energy density u. At
low temperature where cr' is essentially zero, Eq.
(12) gives

where a-=8(Pe)' 'e '8/v. The partition function Z
is then easily found to be

-8n, T= 0. (16b)

f= -T[M In(2vT)/L —2+ a],
u= (M/L —o)T+ o(8+ ~T),

(7)

(8)

(8)

The chemical potential vanishes since, as can be
seen from GS, p. must be an odd function of n.

If the winding number density n is finite, we can
rewrite Eq. (6) as

\

Z= (2v T)"
~ e, ,(O) )'e-'/'r„Pro/n). (10)

To take the thermodynamic limit, w'e use the uni-
form asymptotic expansion' for IN and find for
o«n « j

f = -T$M In(2mT)/Q+ n ln(o'/n)

-nln[1+(1+o'/n )'/'], +n(1+a /n')' '-2),

which implies

u = (M/L —n —2o'/n) T+ (n+ 2/on)(8 2+T)' (12)

[M/L -(n'+ e')' ']T—+ (n'+ o')' '(8+ 2T), (13)

p, = (8 —T[ln(P/v)'~'+ 2 ln2 —inn]+ O(T'. . .))

Z=(2vT)" 4„,( )0'e &I2I~(Lo)

We shall consider two important cases. First,
suppose N = 0 identically. The therm'odynamic func-
tions that we calculate should then reflect the be-
havior of systems for which the winding number N
is finit'e in the thermodynamic limit. We find'

Expanding the zero-temperature;result. for u of GS
[their Eqs. (40) and (41)] in the small-n limit gives

u-8n[1+ e '/'"(4+ 2/n)+ ]. (17)

Our perturbation theory generates a pow'er series
in the small quantity n and cannot reproduce the
nonanalytic corrections of Eq. (17); however, to
leading order, they agree.

In the form (16a), u is the sum of two contribu-
tions. The first term is just the number density of
solitons times an energy per soliton that would arise
at low T if the solitons were free relativistic particles
of mass 8 in the units of GS. The second term is the en-
ergy density of harmonic or continuum excitations
MT/L less an energy nT which means that for
euery soliton, one continuum mode (with two de-
grees of freedom) is lost. '

Now consider the role of 0. Dimensionally, it
is a number density just as n. It is proportional to
the Arrhenius factor, e ~~, with energy of acti-
vation E equal to the rest energy of a soliton. Fur-
thermore, a comparison of Eq. (16a) and Eq. (8)
shows that in the internal energy u, a plays the
same role as n. Hence we are led to interpret 0
as the thermally activated soliton density. Thus in
Eq. (13), (n'+ a')'~' plays the role of the effective
density of solitons.

We examine now the chemical potential p.. Equa-
tion (14} is a form appropriate for a small, but
finite n in the limit T-O, while Eq. (15) is for
small but finite T in the limit n- 0. Thus

x sgn(X) (14) lim lim p, =8sgn(N), lim lim p =0.n~O T~O +~0 fI~O
(18)

1=~Tin / . / 2/ 2 y/2 sgnN 0 ~

n/o+ (1+n'/o')'" (15)
The T= 0 result [Eq. (14)] is just the rest mass,
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8, of the solitons plus corrections proportional to
T inn and T lnT as one would expect for a nonin-
teracting gas of particles of mass 8 and density n.
The solitons. do, of course, interact via a short-
range force, and the first virial corrections come
from an inclusion of cos4mk in the approximation
Eq. (5).

At any finite T, p, vanishes with n. In order to
understand this, we propose the following model.
Imagine solitons s, antisolitons s, and continuum
excitations C, to be in thermal equilibrium. We
treat each of these three excitations as reactants
in a chemical equilibrium problem. Moreover, we
postulate that the s and s reactants are free ex-
cept for a pair creation and destruction mechanism
through w'hich they are in equilibrium with the C
reactant

p,,= p, -, =0.
Itis now easy to see why the limits n 0, and

T 0 cannot be interchanged in the calculation of
Taking n to zero enforces an additional chemi-

cal constraint on p,, and p,;, which when taken to-
gether with the condition p.,= -p,-„causes p to van-
ish. That is n= 0 is an intrinsically different ther-
modynamic (chemical) equilibrium than n & 0.
Hence, since the chemical potential is precisely the
measure of this difference, we should not expect

lim lim p, = lim lim p, .
n~O T~O T-+0 n ~0

Finally, w'e note that these interpretations are
consistent with those of Krumhansl and Schrieffer'
in the "y"' problem; there, however, the winding
number N is not physically relevant.

I"s+ ~s= &e- (20)

Since the chemical potential p, ~ for the harmonic
continuum excitations vanishes, we have

p,,+ p.-=0. (21)

Now if we take n- 0, there will be no net winding
number, and so the number of s and s are equal,
or p = p,;. Combining this with Eq. (21), we see

s+s-C.
(This is, of course, analogous to the electron-
positron gas in thermal equilibrium with a photon
gas. ') The condition for equilibrium is

III. CONCLUSION

We have presented an alternative derivation and
interpretation of the thermodynamics of the sine-
Gordon chain of GS. In our picture, the solitons
appear as important excitations of the system at
low temperature and behave much like a gas of
noninteracting particles. To a first approximation,
the thermodynamics of the sine-Gordon equation
is that of a chemical reaction in which the nonlin-
ear excitations (solitons and antisolitons) a.re in
equilibrium, via a pair creation mechanism, with
the linear or continuum excitations.
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