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A direct perturbation method is developed in order to study the interactions of N solitons with imperfections

and with each other in the presence of imperfections. The leading-order effects are obtained directly from the

¹oliton waveform without invoking methods from inverse-scattering theory. The method is based upon a
Green's function and a "two time" procedure from classical perturbation theory. An example of a single

soliton is developed in detail. Finally, this perturbation method is compared with other approaches in the

literature,

I. INTRODUCTION AND OUTLINE OF THE ABSTRACT
PERTURBATION SCHEME

The interaction of solitons, both w'ith imperfec-
tions in the medium and with each other in the
presence of imperfections, is an important aspect
of nonlinear physics. " This importance becomes
particularly apparent when solitons are used to
model real physical situations in areas such as
plasma, '" solid state, "' or high-energy physics. ' "
The main purpose of this paper is to introduce a
direct perturbation method, which is simple, and

yet sufficiently general to apply to "breather" and
"N-soliton" wave forms.

In order to calculate the leading-order effects
with this perturbation scheme, we need only the
general N-soliton wave form; no knowledge of in-
verse scattering is required to obtain the most im-
portant modulations. Our method uses a Green's
function together with a rather standard "two-tim-
ing" procedure. Since it consists of natural exten-
sions of concepts from classical perturbation the-
ory, we believe our scheme is easy to follow and
to use.

The paper is organized in the following manner:
An abstract outline of the perturbation scheme is
summarized in the introduction. In Sec. II the gen-
eral method is applied to a nonlinear Schrodinger
equation. An example of simple dissipation is
presented in Sec. III for purposes of illustration.
Throughout these first three sections no inverse-
scattering is used. However, to represent a
Green's function which is needed for the first-order
correction, we do use calculations from inverse
scattering theory. Both this Green's function and
the first-order correction are described in Sec.
IV. In the conclusion, we summarize the merits
of our perturbation method, and discuss the equiv-
alence of our method with an alternative perturba-
tion scheme"'" whose application relies heavily
upon inverse- scattering techniques.

Our approach can be described in very general,
although somewhat abstract, terms. We study

r=x +Ex + ~ ~ ~
0 1 (1.2)

where x, denotes the pure N-soliton wave form.
If x, exactly satisfies the reduced equation,

e,r. +H(r. ) =0,

then the first-order correction x, is defined by

[L(r,)]r, = &,r, + [5H(r, )]r„=f(r, ) (1.4a)

(1.4b)

Here L(r,}is the linearization of the operator
8, +II about x„and initially x=x, .

To solve the linearized Eq. (1.4), we represent
the operator [L(r,)] ' by means of a "Green's
function. " We define a linear operator G(t, t'),
which maps a Hilbert space X into itself, by the
differential equation

[L'(r,)]G=&,G+[5H(r-, )]G=0, 0&t'&t,

lim G(t, t') =I
(1.5a)

(1.5b)

Here K is the Hilbert space which is natural for
the linear operator 5H(r, ), and I is the identity
operator on K. The inner product for X, denoted
by (, ), includes an integral over all space. In
terms of this Green's operator 0, the first-order
correction x, is represented by

r, (x, t) = '

(G(t, t')f [r,(t') D(x) dt'
0

t
(G(x, t

~
~, t'),f [r,(~, t')]) dt', (1.5c)

0

solutions of a perturbed nonlinear equation

B,r+H(r) =sf(r), 0~@«1,
where r denotes a function of (one-dimensional}
space and time, and where H(r) and f(r} are non-
linear differential (in space) operators on r. We
assume that the reduced equation (c =0) supports
N-soliton wave forms, and we seek a perturbation
expansion of x in the form

S6
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where G(x, t ~x', t') denotes the kernel of the linear
operator G(t, t'). For notational purposes we treat
the kernel G(x, t ~x', t'), as a function of x', as if
it belongs to the Hilbert space X, and denote this
convention by G(x, t

~

~, t').
The function xp+cx, is considered a valid asymp-

totic expansion of r(, t) for times t of order 1/e
if the function r,(, t) has the property

limer, (~, v/c) =0
6~ 0

(1.6)

S,r, +H(r, ) =O(e). (1.7)

Furthermore, because of this slow modulation,
it may no longer be practical to find an exact in-
verse for L(ro), but only an approximate inverse
[L(r,)] ' for which

[L(r,)] 'L(r, ) =I+0(e).

The function r, now satisfies

[L(r,)]r, = B,r, + [H(r,)]r, =F(r,), (1.8)

where an effective source F(r,) arises because of
the modulations. Using Eq. (1.7), we compute this
effective source,

F(r ) =f(r ) —[8 r +H(r, )]/c. (1.9)

The first-order correction x, is then given by

r, (t) = G(t, t')F[r, (t')]dt'+O(c),
0

(1.10)

where we have represented the approximate inverse
through a Green's operator G(t, t'). If the modula-
tion in the parameters of xp can be picked so that
the secularity condition (1.6) is satisfied, then the

for each fixed v'. This requirement demands that
cr, (t) remain small for a long time. It is generally
called a "secularity condition. " If Eq. (1.6) is val-
id, one has an indication that, for fixed finite t,

r( ~, t) =r ( ~ t)+sr,(,t) +O(e'),

and also that

r(, t) =r,( ~, t)+O(e),

is valid uniformly over the long-time interval
O~t r/z.

Frequently the secularity condition Eq. (1.6) can-
not be satisfied for an xp which exactly satisfies
Eq. (1.3), and one must allow additional flexibility
in the function xp. In particular, one allows free
parameters in r, to modulate on the (et) time scale.
When xp is an N-soliton wave form, the free pa-
rameters fix the speeds and the locations of the
solitons in x„and one expects a perturbation to
alter these characteristics of the soliton. With
such modulations r, no longer satisfies Eq. (1.3)
exactly; instead

method has produced an asymptotic expansion of
r(t) valid for times of order O(l/e).

This classical approach to finding the asymptoti. c
behavior of r(t) relies heavily on the ability to find
the inverse operator for a given zeroth-order solu-
tion xp. For most partial differential equations,
this task is not practical. However, for those
evolution equations which can be integrated by in-
verse scattering techniques, the appropriate
Green's function can always be found. " In order
to solve (1.5a) and(1. 5b}forthe Green's operator
G, we study the null space of the linear operator
L(r,) = &, +H(r,-}. Since L(r,) arises in the linear-
ization of S,r+H(r) =0 about r„members of its
null space can be found by differentiating xp with
respect to free parameters. Using scattering me-
thods, sufficient free parameters can be identified
to generate a complete set of functions which spans
this null space. With this complete set, an explicit

A

representation of G can be constructed. "
Fortunately, to obtain the modulations in xp we

do not need the technical details of this construc-
tion. We only need the structure of the null space
of L(r,) from which we obtain the structure of G.
It turns out" that this space consists of two very
distinct parts ~ the "discrete" and "continuous"
subspaces. Physically, the discrete subspace is
associated with the solitons in x„while the con-
tinuous subspace is associated with dispersive
wave trains. Speaking rather generically, the N-
soliton component xp is described by 2N free pa-
rameters. Half of these locate the solitons and the
other half fix their speeds. Any choice of param-
eters (p,.] which carries these 2N pieces of inde-
pendent information yields a family of functions,

j =1, 2). . .2N,
L

�sr,
Bp ~

which spans the discrete subspace. In this manner,
the Green s operator G takes the generic form

G(t, t') =G,(t, t')+G, (t, t'),
A

where the kernel of the discrete component G„
admits a representation of the type'4

2N

G„(x,t~x', t') =go,.(x, t), '(x', t'), (1.11)

A

and the continuous component G, consists of con-
tinuous wave trains. We shall not need the explicit
form of the expansion coefficients A,

Formula (1.11) is central to our perturbation
scheme. Recall that as t' becomes large, an N-
soliton wave r,(x', t') decomposes into a sum of
N solitons, each of which travels at its own speed
c, Thus, for sufficiently large t', r, (x', t') depends
upon x' and t' only through the combinations ((x'
—c&t')]. Formula (1.11) shows that the same space
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and time dependence appears in the discrete
Green's function. Since both the wave ~0 and the
discrete Green's function t „consist of compon-
ents which translate at speeds (c,.f, secularities
can be introduced into z, . In particular, since the
inner product (, ) involves an integral over all
space, the first-order correction (1.10}contains
integrals which behave for large t like

l
OO

F(x' —c,t') dx' dt. '.
~OO

The spatial (x') integral eliminates all t' depen-
dence leaving a constant integrand for the temporal
(t') integral. This integral over t' then introduces
linear growth in t into x, which violates the secular-
ity condition (1.6).

Stated more concisely, formula (1.11) shows
that the Green's function has discrete components
which translate with the solitons in x0. Any part
of the perturbation F(ro) which is "parallel" to
one of these discrete components resonates with
the Green's function and introduces secularities
into the perturbation scheme. In order to eliminate
such leading secularities, we select the modula-
tions of the free parameters (P,.) so that the full
source

F(ro) =f'(r(() —[8,ra +H(ro) ]/e

is orthogonal to the entire discrete subspace. Ex-
plicitly, we demand

for each 0=1, 2, . . . , 2N,

where the slow time 7'=—&t. This orthogonality con-
dition yields a system of 2N differential equations
which govern the modulation of the parameters
Cpg(&)):

k=1, 2, . . . , 2N. (1.12)

The solutions (P~(v)t of Ec[. (1.12) describe
changes in the speeds and locations of the solitons
in x„changes which are induced by the perturba-
tion. We emphasize that in order to find Eqs.
(1.12), we use only the general N-soliton wave
form ro and the appropriate inner product (, ),
both of which can be obtained without inverse-
scattering theory.

Once the proper modulation of the parameters
(P,) has been selected, the first-order correction
x, is given by

where inverse scattering is used to find the con-
tinuous component of the Green's function. In Sec.
II we discuss the physical structure of the first-
order correction r, .

In later sections of this paper, we use formula
(1.13) to identify some lesser secularities which
may still remain. These secondary secularities
arise because the full source E, which has been
made orthogonal to the discrete subspace, may
still contain components in the continuous sub-
space. Although such components can resonate
with G„enough oscillation is present to lessen
the effects of these resonances. The effects do
increase with time, but their growth is slower
than O(t}. Although we can use the integral repre-
sentation (1.13) to identify the strength and the
physical origin of these secularities, a practical
scheme to remove these terms from the perturba-
tion scheme is not currently available.

In summary, our perturbation scheme consists
of seven computational steps: (1) Take a general
N-soliton wave form x0 and allow its parameters
(P, ) to modulate on a slow time scale. (2) Compute
an effective source I', together with the equation
which defines the first order -correction r, . (3)
Consider solving this equation for x, by means of
a Green's function, and use these considerations
to identify the appropriate inner product. (4) Using
this inner product, find the equations which govern
the modulations of the parameters (p,.). These
equations follow from the orthogonality conditions
(8r,/8p, , F) =0. (5) Solve these ordinary differen-
tial equations for the modulations of the parame-
ters {P,.(v) ). (6) Using scattering theory, find a
representation of the continuous Green's function
G„and use this representation to compute the
first-order correction r, through formula (1.13).
(7) Study this representation in order to identify
the structure of the first-order correction. In
particular, identify and interpret any secondary
secularities which remain.

In this paper, we specialize these abstract steps
to the concrete case of a nonlinear Schrodinger
equation with simple dissipation. More substan-
tial examples for the sine-Gordon equation will be
published elsewhere. "'" Of course, these methods
extend to all nonlinear wave equations which sup-
port N-soliton solutions and which can be solved
by the inverse-scattering transform.

II. EXPLICIT PERTURBATION -SCHEME FOR A NONLINEAR

SCHRODINGER EQUATION

I

A. Background information

t
x (x, t( fG, (x, (i(, r(, X[x (=, r) I)

e',
0

(1.13) Consider a nonlinear Schrodinger equation in the
form
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comes large. The sequence of solitons which re-
sults is ordered according to the size (speed) of
the individual solitons.

In addition to soliton components, the general
solution x contains dispersive wave trains. These
waves are quite different from solitons. Although
nonlinear, they resemble periodic solutions of
linear, dispersive wave equations in that they
spread out because of dispersion and also travel
in group packets. There exists a continuum of
such waves labeled by their wave number k. For
each real wave number k, the wave possesses two
additional degrees of freedom, amplitude, and
phase. These nearly linear waves are referred to
as "radiation, " as "phonons, " and as "packets of
phonons. "'4

In the absence of the perturbation (& =0), a gen-
eral wave can consist of a (nonlinear) superposi-
tion of N solitons together with dispersive wave
trains at all wave numbers. All of these degrees
of freedom are available to the wave motion. This
general structure of the wave ~ is apparent in
numerical calculations and it can be established
analytically by the inverse- scattering trans. -
form.""

Returning to the full nonlinear Schrodinger Eq.
(2.1), we ask in what manner the weak perturba-
tion affects a wave. It seems clear that a pertur-
bation alters the speeds and shifts the locations
of any solitons present in the wave. It can also
modulate the phonon packets which are present.
Since the perturbation is weak, these effects take
place on slow time and long space scales. In ad-
dition, the perturbation could open additional de-
grees of freedom which are not excited in the in-
itial wave. In other words, it could create (or
destroy) solitons, as well as generate phonons.

Both numerical experiments and the theory of
inverse scattering indicate that it takes a more
violent perturbation to create or to destroy solitons
than it takes to modulate their speeds. At present,
a practical scheme which describes the creation
or destruction of solitons is not available. All
existing schemes fix the number of soliton com-
ponents in the wave. In the next section, we out-
line the steps for computing modulations for the
speeds and locations of a fixed number of solitons,
give a formula which describes the (first order)
phonons which are created by the perturbation,
and give an indication of the validity of these cal-
culations.

(2 1)

This. equation arises in a wide vari'ety of physical
situations ranging from nonlinear optics,""
through waves in water, "to plasma waves. " In
fact, a nonlinear Schrodinger equation governs the
amplitude modulations of any weakly nonlinear
wave which consists of a rapidly oscillating car-
rier with a slowly varying envelope, and which is
dispersive to leading order. """"'"

When the perturbation is missing (e =0}, the
general solution of the nonlinear Schrodinger Eq.
(2.1) consists of two very distinct types of waves,
solitons, and dispersive wave trains. A soliton
is a localized pulse" which is described analytical-
ly by the four parameter formula

r(x, t) = 2iq sech(2@[(x —x,) + 4gt]]

& exp(i[2)x+4(P —[i')t+(t)]), (2.2)

where $, q, x„(t) are constants. Notice the physi-
cal information which is carried by these param-
eters. A single soliton has both an amplitude en-
ivelope and a phase. The envelope translates at cori-
stant speed 4g; its width and height are deter-
mined by the constant g; initially the pulse is cen-
tered at x, . The phase of the soliton has wave
number 2g; the constant Q centers this phase.
There also exist analytical solutions containing
4N parameters which are called "pure N-soliton
states. " One representation of these waves takes
the form

y(x, t) = 2 g [t["(x, t) ]eet*. (2.3a)

Here k,"' is a solution of the linear algebraic
equation

["( )tt) QxM+, , ( tl [ x'( It) = ixy e'' it *et

(2.3b}

where the matrix M is specified by

The entire t dependence enters through the formula

(2.3d)y~(t) =I"Jexp(4g', t) .
The 4N parameters are ( f, =$, +iq, ;. I',. .
= ~I"~~ exp(i(t)z); j=1, 2, . . . NJ. In the case %=1,
the identifications

f, = g+iq,
reduce representation (2.3) to the single soliton
(2.2). Although initially complicated, the N-soliton
formula simpljLfie8 to a sum of solitons as t be-

B. Computational steps

Consider a wave which initially is a pure N-
soliton state. We wish to compute the modification
of this wave due to the perturbation af. We begin
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with the ansatz that the wave is of the form

r(x, t}=r,(x, t)+or, (x, t) . (2.4a)

ay~ 8 aI'~ 8
=y(v, )vi ' + ' +c.c.)v, ,

(2.5a)
where v =at and c.c. denotes the complex-conju-
gate operation. In terms of this effective source,
the first-order correction x, is defined by

[-ic,e, +a(r, )]r, =0,
r, (x, t=0) =0,

(2.5b)

where we have written the first-order correction
as a column vector r, with components x, and x,*;
similarly, the vector F has components F and F*.
The matrix o', denotes the third Pauli spin matrix,
and the matrix operator H is given by

(2.6)

In this framework, the natural inner product is
given by

Here ~0 is the N-soliton state, such as represented
by E[l. (2.3), except that all parameters are al-
lowed to modulate on the slow time scale as fol-
lows:

K& =K;(«),
(2.4b)

v, =r,(xc)c~l[oif O ,(« )*«'']l

We next compute the effective source F(r,)
'which is given by

F(ro) =f(ro) —[ ia p-a+ e ra+2 lro I' ro]
1

(G(x, t1 ~ t') F( t')) —= [G(x, t1x', t')]"F(x', t') dx' .
«OO

(2 8)

Since G satisfies E[l. (2.7c), it may be con-
structed by considering the null space of the oper-
ator L =—io',~t+H. The discrete component of this
null space is 4N dimensional [13]and is spanned
by the get

Is ro &ro Br 8r

l 8Zg~

The next step is to insure that leading seculari-
ties are absent in the first-order correction r, .
One demands that the full source 0 be orthogonal
to the discrete subspace,

('„", )))=o, (,';, e)=o,

~ ~ ~, F =0, ~, 1 =0, &=1, 2, .. . , N.

In view of the definition of the full source F (2.5b),
these orthogonality conditions provide 4N equations
which determine the slow modulations of the pa-

rameterss

( f~ 't and ( I'~ ) .
In order to obtain these equations explicitly, we

must calculate inner products of the type

In the Appendix, we evaluate these integrals using
orthogonality relations from inverse-scattering
theory; however, since the integrands depend only
upon the N-soliton wave form x„ these integrals
could be evaluated directly without reference to
inverse scattering. In any event, the equations
which result can be placed in the form

(u, v) =-
J [u'(x) v(x)]dc, (2.7a) -i8g ~ t 0~er& t

d 2 ~ ' ' sy(t)

(2.7b)

where, because H is self-adjoint with respect to
the inner product (2.7a), the matrix kernel
G(x, t1x', t') is defined by the final value problem
in (x', t'}

[ ia,s,, +H']G-( ~, ~ 1x', t') =0,

lim G(x, t1x', t') = io,5(x —x—') .
t' it

(2.7c)

In this representation of r„we have adopted the
convention for the (matrix) operator G that

where ~ denotes the Hermitian conjugate. The
linear E[l. (2.5b) may be inverted to yield a repre
sentation of the first-order correction r, in terms
of a (matrix) Green's function G,

t

r, (x, t) = (G(x, t1 ~, t'), F(, t')) dt',
0

Here

y, (t) = I'jexp(-ig~),
t

8,.(t) =- 4g',.(c t') dt',
0

and

d

where

(2.9b)
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In (2.9b) the independent variables in the partial
derivatives consist of the set (y, , g~, (y~)*, r,*,

Next, it is necessary to compute the inner pro-
ducts

~

~ ~ ~

er0
, f and, f, j=1, 2, . . . , K,er,. '

for the particular perturbation at hand, solve the
differential equations for {I",.(7'), f,.(r}), and in-
sert the result into the zeroth-order wave form
5r. At the completion of this step, we have com-

puted the perturbation's effect on the speeds,
widths, and locations of the N solitons. To obtain
this information, we have used scattering theory
only to identify the structure of the perturbation
scheme. In the actual calculations, no scattering
theory is necessary.

We do employ methods from scattering. theory to
represent the complete Green's function"

G(x, tlx', t') =G,(x, fix', f')+G, (x, fix', f'),
(2.10a}

where 6, is given by

(2.10b)

where p, and p denote reflection coefficient4. (The reflection coefficient p, is defined at x=+~, while p
is defined at x=-~. Throughout this paper, the a subscripts refer to this convention. )

A few remarks are in order here. First, the precise definitions of the integrands in this representation
of Q, are given in Sec. IV. Secondly, we do not need the formula for the discrete component t"„because
the full source F has been made orthogonal to the discrete subspace. Finally, representation (2.10a) and
(2.10b) of G is exact provided the parameters (f, , r,.] are constants; it becomes an approximation when
these parameters are allowed to modulate on the slow («) time scale.

With formulas (2.10a) and (2.10b) for G„we represent the first-order correction x, as a triple integral,

~, ( xt)=&" (G,(x, tl, f'), F(,V))df'+0(~),
0

(2.11)

a representation which admits an interesting physical interpretation. After interchanging the orders of in-
tegration, we obtain

The function r, (x, t; k) can be interpreted as the
density of phonons near wave number k which
have been created by the perturbation P acting on
the X-soliton wave form r, . The first-order cor-
rection x,(x, t) consists of a superposition of these
"nonlinear phonons. "

It remains to introduce enough scattering theory
to compute 0, and then to estimate the asymptotic
behavior of r, for large t. First, however, we dis-
cuss a single-soliton example in more detail.

III. A SINGLE SOLITON

Suppose that x0 is a single-soliton wave form
which is allowed to modulate on the v'=st time
scale. Using Eqs. (2.3) we represent x,(x, f) in the
form

-2i(g g+)'y-*e"'"
z &x t&=0» ~ y, y-y (g gg)2e2({(: ('+)x t

where the time dependence enters through

y =I' (et}exp[-i8(t, 0)],

(3.1a)

= e„(t,o)+ ie, (i, o).
Alternately, the identifications

g=g+in, I = lrle*+, lrl=2ne'""'

(3.1b)

P = &f&(&t), x, =x,(et),
reduce (2.3) to a representation of x,(x, t) in the
form

l =K(«) = $(~f)+i'll(«)

0(t, 0) = 4f'(et) dt = 4(f2 —q2) dt'+i ' 8)ddt'
0 0 0
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t t
x( xt} 24=2(-ta) eehe(2 t(tta):x —x,(at)aa 4(at )d't 'exp 4 2((at)xa4 '[(*(at ) —'lt (a't )]'dt'ap(at)

0 0

F=igo', r, g constant. (3.2)

This perturbation will modulate the constants in
the wave form. To obtain these modulations, we
use (3.1a) to calculate explicitly that

For this example, we assume that the soliton is
propagating in the presence of dissipation, and
that the inhomogeneous perturbation is given by

Integrating these equations shows that the modulat-
ing parameters take the form

&(et) = g(0), 8(et) =q(0) exp(-2get)

ln —=ln ' ' e '"' — "' )(1—e 'd"(1+2get)).
2'q 2'g(0) &g

(3.6a)

Br
By™

y 1—

o

Expressed in terms of x, and &f&, this last equation
ls

2q(a t)x, (et) = 2q(0)x, (0)e-""

e2[(f-f+)ttrt)t
y-y-g (3.3a)

4)r[(0)
(1 —e 2d"(1+2g&]4)}, (3.6b)

Bra

2~(g- g*)x
y y

Of course, the modulations of the parameters
g, q, x„Q can also be derived directly from Eq.
(1.12) using the representation Eq. (3.1c) of r, .
Thorn one needs to calculate the set of functions

ro ~ro ~ro ~ra
5ri

' 5$ ' 5xot 5Q

We now compute the inner products

(5r,/6y, 7) and (5r,/5t;, 7)

by elementary integration. For example,

(3.3b)

(3.4b)

Using these inner products in (2.4b), we find that
the slow evolution of the parameters g and I'
must satisfy the differential equations

dg—= —2ig)i, g = (+ ir[
dT

r- r-
+

dv 2n ' 2n

(3.5)

dx = s — r(r(~) dg
aeeCO aOQ

4ig,q' sech'[2]i(x+ x,) + Opt, 0)]dx
wOO

e$8(tgo)4s 4s
(3.4a)y- =r-

Similarly, the inner product (F, 5r,/5g) is a sim-
ple integral involving hyperbolic functions with the
result that

and require that these functions be orthogonal to
the full source F(r,). These orthogonality calcula-
tions again involve integrals of hyperbolic functions
and no scattering theory.

We can get an idea of the validity of this solution
by examining more closely the wave (3.lc) with
the prescribed modulations (3.6a) and (3.6b). ln
particular, after a long time, the amplitude of the
wave )i(et) becomes very small, the envelope of
the wave is spread out (since q is small), so that
the wave r,(x, i) resembles a linear dispersive
wave at wave number 2$. Since this solution
r,(x, t) is used as a first-order approximation to
the solution r(x, i), it is quite likely that r, begins
to resonate with the continuous spectrum near
wave number 2$ as f becomes large. To under-
stand when this resonance becomes important and
how it actually shows itself, it is necessary to cal-
culate the first-order correction r, (x, i). To do
this we need to study scattering theory and calcul-
ate the continuous part of the Green's function
G,(i, i').

IV. RADIATION (PHONON) COMPONENTS

In this section we obtain the continuous compon-
ent of the Green's function G„and thereby com-
plete the representation of the first-order cor-
rection r, . Much of the background material in
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this section can be found in various forms else-
where. '""" We have specifically included it here
to clarify the computation of G„and hence to as-
sure that all the ingredients of our perturbation
scheme are self- contained.

The coefficient a(f) admits an analytic continua-
tion into the upper-half P plane where its only
zeros occur at the bound-state eigenvalues g&.

At these eigenvalues P and P are linearly depen-
dent,

A. Notation from scattering theory
y(x, g,) =b,q(x,.g,), (4.6)

y(x, g) = io, [y-(x, K*)]*

$(x, t.) io, [y=(x, g*)]*, im(g)~ 0.
(4.3)

The pair of solutions ((, iP is linearly independent
as is the pair (Q, Q), Im(g) =0. These solutions
are related by

&t(x, r) = &(K)0(x, K) + b(f)4(x, f),
y(x, g)= V(r)y(x, r)+b(g)$(x, g), lm(g)=O.

The scattering coefficients (a, b, a, b) can be ob-
tained from the asymptotic behavior

(e(~)e '"l
&f&(x, f) =~

~

as x-+~,
(b(g)e' "1

t'b(~)e-""'I
y(x, g) =~

~

a,s x-+, rm(g) =O.
( n(g)e""l

(4.5a)

(4.5b}

We begin with a brief summary of the direct-
scattering theory of Zakharov and Shabat. " For
fixed t, consider the eigenvalue problem

(8„+if)v, = R~v»-

(8„-ig)v, =Ra„ for every xc=- (-~,~), R = r„—
(4.1)

and define two solutions Q and g by the asymptotic
boundary conditions

P(x, g) =~ ~e
""as x-- (4.2a)

(1&

koj

/0
P(x, t) =~' ~e"" as x -+, Im(g) 0. (4.2b)

&IJ
Symmetries on the eigenvalue problem immediately
yield two other solutions, Q and P, which are de-
fined by

where the "normalization constant" b& is given,
in the case r, has compact support, by b& =b(g&).
The coefficient a(g) admits a continuation into the
lower-half P plane where its only zeros occur at

In this case, symmetries yield the relation-
ships

a(g) = [a(l*)]*, Im(f) ~ 0,

b(g) =[b(g)]*, im(g) =O,

~;=[~,]*, b;=[b;]*
(4.3')

This notation enables us to define the following
set of scattering data 8,

8, =S,US„

where

S, =-fp, ($}for every

(4.V)

pc (-~, )
~
t;» P~ for each j c (1, 2, . . . ,N)].

Here the reflection coefficient

p, (g)-=b(g)/a(g), y&=-b&/a&, a&=-—a, P, =S,d

gsag

[because of Eq. (3.3b)], and the notation f [ ] sep-
arates the "continuous" scattering data from the
"discrete". (In the preceding sections, we have
used y& to mean y&.)

At the foundation of the inverse method is the
map between r, ( ~, f) and the scattering data at
time t, 3,(t). At any fixed time f this map is one-
to-one and invertible. The evolution of r, in t in-
duces an equivalent evolution of 8, in t. For ex-
ample, when this evolution of r, is dictated by the
(unperturbed) nonlinear Schr5dinger equation, the
temporal behavior of the scattering data is given
explicitly by

S(t) =(p(g, t) =e4" 'p($, 0) for every $E(-~,~) ~p&(t) =p&(0), )')(i) =e' te'z&(0) for each jc(1, 2, . . . ,N)}.

(4.8}

Since the map from r, to S, is invertible, knowledge of S,(t) is equivalent to knowledge of r, ( ~, t).
The main point of the preceding paragraph is that any solution of the nonlinear Schrodinger equation is

parametrized by its scattering data at f =0. The variation of r,(x, t) with respect to each one of these pa-
rameters will provide a member of the null space of L =—io,B,.+H(r,}. That is, the set

Bra Bro(x, i) Bro(x, f)
}

Bro(x, f) Bra(x, t) Bro(x, f) Bro(x, f)
Bs,(t=O)

=
Bp,((,0)' bp. ((,0)' "'"

Bg,
'

Bg, ' By', (0) ' By,(0) '

(4.9}
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provides an infinite number of solutions of the linearized equation. This set, which certainly consists of
two types of components(discrete and continuous), actually spans the null space, and can be used to construct
g 13

In this construction it is convenient to introduce an additional set of scattering data 8 which is equivalent
to 8, . The scattering data 8 is defined by

I =S„US,

S -=(p (g) for every $c(-~,~) ~g~, y~ for each je(1, 2, . . . , N)].

where p (g) =—b($)/a($), y, =-[(a~)'y&] ', and 7 =(S )*. The time evolution of 8 under the unperturbed flow
is given by

S (f) =$p (g, t) = e "~ 'p ($, 0) for every $E(-~, ~)
~
f&(t) =f,.(0), y &(t) = e "(s'y &(0) for each je(1, 2, . . . , &)).

(4.10b)

With this notation from scattering theory, we can write the Green's function" C as

1 &r,(x', t') Or, (x, t) t . 1 6r,(x', t') 6r,(x, t)..[~(&)1' I (g, o) ~r, (t;, 0)
" '", [V(g)]' 6r(g, o) 6S.(g, o)

Here the contours of integration run along the real axis from f =-~ to f =+ ~, the first (8,) being indented
above all zeros of a(f) while the second (8~) runs below all zeros of a(r) Def.orming these contours to the
real axis yields

G(x, t ix', t') = G,(x, t ix', t')+ G.(x, t ix', t'),

where the discrete component G„arises from the residues at the poles of [a(f)] ' which occur at the bound-
state eigenvalues. We will not need the exact form of G„. Qn the other hand, the continuous component is
given by

"e4" ""' &r,(x', t') t)r, (x, f) t . "e 4" &' "' 6r, (x', f') 6r, (x, t) ~

[g(k)]' 6p (k f') 6p, (k, t) „[a(k)]' 6p (k, t') 6p, (k, t)

B. Formula for the continuous eigenfunetions

Without an explicit formula for 4, representation
(4.14) of G, will not be very useful; moreover,
when ro denotes some 'arbitrary solution of the non-
linear Schrodinger equation, such explicit expres-
sions for 4 are not available. Fortunately, when

ro denotes an exact N-soliton solution, 4 can be
computed analytically. In this section, we show
how to obtain these squared eigenfunctions. Our
presentation begins with an arbitrary exact solu-
tion x, of the unperturbed Schrodinger equation.
We specialize to the N-soliton wave from only at
the necessary stage in the derivation.

The construction is based upon inverse-scatter-
ing theory. It begins with the solutions (P and gP

of the linear scattering problem (4.1). These solu-
tions are specified by boundary conditions at
x =+ ~, such as (4.2b). These boundary conditions
may themselves be considered as solutions (g',
tI)') of the free-scattering problem with x, =0,

The foundation of the inverse-scattering method is
A

an operator X which transforms these free-scatter-
ing functions ((C)', )I) ) into the full scattering func-
tions (g, iP,

(I) =(I+X)p',

t((I)+X))tI'.
(4.15)

This transformation operator X can be represented
as a Volterra integral operator,

[()+I')f](x) F(x)+f x-=(x, yf(y)dy,

with matrix kernel

~( )
Ilf'2(x y)]* &g(x, y)

-[K,(x,y)]* l~,(x, y)

The wave form xo is given in terms of the trans-
formation kernel K, by

0

&1)
(4.12)

r,(x) =2', (x, x)]+. (4.16)

y~'(, ~) =-~
/I

(oi
(4.14) Thus, an explicit representation of X will yield a

representation of the eigenfunctions g and $ and a
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representation of the wave r0.
To compute a representation of 3,', we use the

Marchenko equations which define X in terms of
the scattering data S,. These integral equations
take the form

K,(x, y) f —[K (x, s)F(s+y)] ds = [F(x+y)]",

(4.17)
[K,(x, y)]"+ f K(x, s)F(s ty) ds 0, =

where I is a transform of the scattering data S„
j oo N

F(x) -=— p, ($)e""d(—i Q y'.e"~".
2+ ~ pl

In general, analytical formulas for the solutions
E& of these integral equations are not known. How-
ever, when x0 is an N-soliton wave form, one can
solve these integral equations analytically. In this
case, the reflection coefficient p.(g) =0 for all
$ (= (-~, ~), and the kernels K&(x, y) take the form

K,(x, y) = Q k,"'(x)e "J"
/=1 (4.18}

N

K,(x, y) = Q k,"'(x)e "d'
/=1

Upon setting p, (E) =0 and inserting this ansatz for
K&(x, y) into the Marchenko equations (4.17), one
finds the function k, (x) is defined by the linear
algebraic system

k&»(x)+ g M„(x)k&'&(x) = i[y',e "&"]~,

j=l., 2, . . . , N,
where the matrix M is specified in terms of the
scattering data S, by

N~ (,) .exp[—i(gy —2g„+ g,*)x]
( )

(~,* ~.)(~ —-~,*)

Moreover, k, is given in terms of k, by
N

e 'C g-C'+)

l=l

In this N-soliton case, the kernel X(x,y) can be
computed explicitly. Moreover, the (x, y) depen-
dence in X(x,y) separates, as can be seen from
(4.18). This separation permits explicit integra-
tion in Eq. (4.17). Thus, in the N-soliton case,
both the eigenfunction ]I) (4.15) and the wave form
x, (4.16) can be represented explicitly in terms of
the discrete scattering data g~, y)). This construc-
tion is the origin of the particular N-soliton wave
form given in Eq. (2.3) although for Secs. II and III
any general expression for the N-soliton state is
sufficient. Here we emphasize that the explicit
formula for X(x,y) yields the continuous eigenfunc-
tion P,

]I)(x, k) =
(

/e' "+ X(x,y)( [e' 'dy
[ IJ " (1i

(4.22a)

(W,.~„~ i t'ki[ '(x)l;(a e*)„
&11:-'( ' ik["(x)i

(4.22b)

where k(x) can be obtained by inverting the linear
algebraic system (4.19}.

This representation of ]I), together with the form-
ula

N

s(4) =
( '), tm(4) 0, (4.23)

r, (x, f) = (G,(x, f ix', i'), 7( ~, f'))df'+ O(e.).
0

C. Single soliton case

With these ingredients at hand, we return to the
example of a single soliton. Recall that the struc-
ture of the modulated soliton as described in Sec.
III indicates the existence of a resonance in the
continuous spectrum near wave number (2$).

For this single soliton case, k(x) is given by

k, x = i(f —f*)'(y')*exp[-ig "x]
(K —K*)'- y'(y')* exp[2i(L —L )x] '

which is valid anytime p(k) =—0, provides all the
ingredients of the continuous component of the
Green's function, G, .

At this point, we have derived (for a pure N sol-
iton) representations of the wave from r, and of the
continuous component of the Green's function G, .
The dependence of these representations upon the
discrete scattering data (f& and y &) has been dis-
played explicitly. If this scattering data evolves
in time as

L;(f) = 0;(0), w', (i) =&',( )0e"' s'

the wave form x0 is an exact solution of the non-
linear Schrodinger equation, and the formula for
G, is exact. On the other hand, when modulations
are introduced,

g, =g(ef),
t

y; F;(st)sxp =4(f 4't(sF)dF,
0

x0 solves the nonlinear Schrodinger equation to
leading order,

-i&, ~, +s„„~,+2 ~~, ~'~, =O(e),

and our formula for the continuous component of
the Green's function is also an approximation.
With this approximation denoted by P„ the first
order correction r, is given in formula (2.11) by
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ty (y )*(K+—K) exp[ t(K*- 2K)x]
(t -t*)'- ~'(y')*exp[»(K —L*)x] '

in terms of which t", can be constructed and used
in our representation of r, (x, t). A rather cursory
stationary phase analysis of the triple integral
representation of r„shows that x, grows like lnt
for large t. Only the leading secularity has been
removed. Moreover, as is apparent from this
representation, the source of the lnt secularity is
indeed a resonant coupling between the continuous
spectrum and the phase exp[i(2)x+8„(t, 0)+P)] of
the soliton r, . As r, decays in (&t), this phase
generates continuous components with wave num-
ber in the neighborhood of (2(,). The secularities
which result presumably could be removed by in-
troducing some continuous spectrum in r, which
would modulate on the (ex) scale as well as (et).

These results on the modulation of a single soli-
ton due to damping are not new. They were ob-
tained by Kaup" and have recently been analyzed
by Kaup and Newell in an attempt to eliminate -the

secularities which remain. This problem does
provide a good example to illustrate our perturba-
tion scheme, and it permits a direct comparison
of our method with the approach of Kaup and New-
ell. This comparison is discussed in the final
section.

V. CONCLUSION

In this paper we have introduced a perturbation
scheme for N-soliton waves which is a natural ex-
tension of classical perturbation methods. The
approach is based upon a Green's function and a
rather standard "two-timing" procedure. In the
scheme, the modulations in the speeds and in the
locations of the solitons are computed directly
from the N-soliton wave form. Inverse-scattering
techniques are not needed at this leading order.
Since the entire approximation is given in space
time, it admits direct physical interpretation.
The actual construction of the Green's function
and, therefore, the first-order correction does
require inverse scattering. The first-order cor-
rection is represented as a triple integral from
which its physical structure and its asymptotic
behavior can be seen.

In these final paragraphs we compare our scheme
with another due to Kaup" and Newell. " Their cal-
culations use a very simple idea. Since systems
which support solitons are conservative, the energy
integral is a constant of the motion. Weak pertur-
bations cause this energy to change slowly, a
change which is easy to compute and to approxi-
mate. Most wave equations which can be inte-

. grated by inverse-scattering methods possess an

infinite number of constants of the motion. In
fact, half the degrees of freedom are constant in
time, while the other half satisfy trivial equations
in t. A perturbation causes these "constants" to
change slowly. Kaup and Newell approximate these
modulations in the unperturbed "constants of mo-
tion. " In this manner they obtain the identical
modulation equations that result from our scheme.
Both approaches are equivalent to leading order
zn 6.

Unfortunately, this beautiful idea of computing
changes in the invariants relies heavily upon scat-
tering theory, which is used even to identify the
constants of motion for the unperturbed flow.
Kaup and Newell begin by transforming the full
dynamics (with perturbations) into scattering space.
That is, they use scattering methods to find a dif-
ferential equation for the scattering data S(t}. This
equation is equivalent to the full nonlinear Schro-
dinger equation. The map which defines this trans-
formation is implicit in the sense that it depends
upon the unknown r( ~, t); or equivalently, the map
depends nonlinearly and implicitly upon the scat-
tering data itself. However, to leading order, it
depends only upon the zeroth-order solution r,
and is explicit to this order. Using the leading
order of the map, they obtain an approximate
differential equation for S,(t). For example, dg&/
d7 is given by (2.9b) of Sec. II, with a similar
equation for dz,./dv. One then solves these equa-
tions in scattering space using techniques of singu-
lar perturbation theory to eliminate leading secul-
arities. These discrete components of the approx-
imate dynamics define the modulations in the N-
soliton wave forms. In order to check the accuracy
of the scheme, they estimate the size of the con-
tinuous components by studying the approximate
equation for the reflection coefficient p($, t}. If
p remains small for all time, the scheme has el-
iminated all secularities; if not, only leading sec-
ularities have been removed without a modulation
of the continuous components.

Although these two schemes are equivalent to
leading order, their derivations differ substantial-
ly. %'e believe that our scheme, which minimizes
the use of scattering methods, should be easier
to follow and to use, particularly for those who

are not experts in inverse scattering theory.
Furthermore, we believe that the Green's function
will provide estimates of accuracy in a more direct
manner. In any case, it is helpful to have an alter-
native derivation available as an aid to understand-
ing the nature of the perturbation theory.
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TABLE I. Variations of r with respect to members of
the sets of scattering data.

6r(x, t) i=-—024(x, t, g) for every )C(-, ),
5p, ($, t) 7r

6r(x,t), d
') =-2y,'{72 —4(x, t;f)~t

nr(x, t)
ay,'-(t)

=-2o24(x, t;g~) .

ar(x, t) z

np, g, t)
=—0 4(x t $) for every $&(-~,~),

ar(x t) —, d-= -2y,'o2 —
( +(x, t; 0)

6 ~t

6r {x,t)
&T,- (t)

= -2'~+�(x, t; E;.) .

or{x,t) |.
6p (~', t)

--= "= ——0+(x, t; f) for every $Q{-, ~),

6r(x, t) . „d @g—2', (x, t, 0)
Cg

6r(x, t) .@g( t ] )
. by~(t)

ar(x, t) ] —~
6P (~', t)

=-. "=—++(x t $) for every $~(-. ~,~),

TABLE II. Completeness and orthogonality of the
squared eigenfunctions. Note: All inner products of
barred with unbarred squared eigenfunctions are zero.

Completeness

(" ") [ te ("' "g)[e(" "f,)pdg
(1

(o z)

+ — , k'—(x',t; L) Ã(x, t; K)) dt'
~ g f~{&)j'

b

Orthogonality

{e*(,t; t), 4"(, t; g')) = }ra'(-t )ls(L —f, '), Im(f) = nu(&') = o,
=0, all other cases.

gA{y t, f )

2

—+{',t; ~)

{e+(,t;g), e"( , t; f')) .=~a'(t)6(t -t'), ln}(g) =Img') =O,

=0, . all other cases.

6r(x, t) —2', (x, t, g)
C~

6r (x, t)
', . =2K (x, t;g~).

6p~ (t)

= -2Z@k)'~kg .
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APPENDIX

In this appendix we summarize one derivation
of the modulational equations (2.9b). Because of
our own background, we use some orthogonality
relations from scattering theory in order to evalu-
ate certain integrals; however, as we have em-
phasized in the text, this use of scattering is not
necessary.

The null space of L =-io,e, +II can be parame-
terized by the initial values of the scattering data
I (t =0) which is defined by equation (4.10a). In
particular, the discrete component of this null
space is spanned by

I
0
~II

1~10

~

~
0

~1

~
~ID!

I ~~ 1 a ~ 2 I ~ ~ ~
~

~

}

ro ~ro ~ro ~ro
sg;. ' s(g,-)*' ()r,-' ()(r;.)*' ~

To derive the modulational equations, we demand
that the full source F be orthogonal to this discrete
subspace. For example,

jn this manner we obtain the modulational equations in the form

a»' } a}"aa},
' ' a»' a}};;i» '. *ar', ' a»' }g;} ' "ai'» ' a»'" a(},)»' "ar'» .=' a(C}»' )','

(A1)
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together with three similar equations in which
8rp/8(fp)* is replaced by 8rp/8&, , 8'Fp/8(I"p)*, and
8rp/8I', T. hese four equations define the modula-
tions of the discrete part of the scattering data
2, ; that is, of g& g=—&, gf (P=—&)", I'i=—I'&, and I"ie

=(I;) .
To evaluate the inner products which appear on

the left-hand side of the modulational equations,
we find it convenient to change variables from I'&

to y&,

together with their "conjugate expressions. "
Next we use Table I to express the inner pro-

ducts of (A3) in terms of squared eigenfunctions.
For example,

8r, 8ro
8(~)*' '8~

=4iy„y, -(y.~ (, t;g), o, oP (,t;g,))

4y -y (+" ( t K*) 7'(', t'&*)l')
t

y p~=-I'p~ exp[ai8t], 8( =4 f~~(st') dt'.
0

These variables and the identities

8 8 8y~ 8

8$~ 8$~ 8$~ 8y ~
'

8 . 8
, - [exp(+i8i)]

(A2)

The orthogonality relations for the squared eigen-
functions are known" and are summarized in
Table II. With these orthogonality relations, we
compute

c
8 ro 8ro

8(g;)* ' ' 8g,

4y y,-([~ ( ~, t ~~)]* ~"'( ~ t ~*))'

8ro 8r
8(~)" '8~, '

8'P 8r
8(g )Pc I 3 8y

8ro 8ro
8(y,)"' '8~, '

(
8r, 8r,

8(y -)e I 3 8y

(A3)

permit the inner products which we must compute
to be expressed in terms of gt f=-» —'&a) ~,

In this manner, Table II can be used to compute
all inner products of type (AS). These, together
with (A2), 'can be used to place the modulational
equation (Al) in the form (2.9b).

*Supported in part by NSF Grants MPS75-07621.
)Supported in part by NSF Grant No. MPS75-07530.
~Solitons, edited by R. Bullough and P. Caudrey, to be

published by Springer Verlag (1977).
I'roceedings of a National Science Eoundation Confer-
ence on Solitons, edited by H. Flaschka and D. W.
Mc Laughlin, to appear in Rocky Mountain Mathematics
Journal (1977). This volume contains many survey
articles with extensive references to the physical lit-
erature.

V. I. Karpman, Nonlinear Waves in a Dispersive Med
iud (Pergamon, New York, 1975).

4Y. C. Lee and G. J. Morales, Phys. Rev. Lett. 34, 930
(1975).

M. B. Fogel, S. E. Trullinger, A. B. Bishop, and J. A.
Krumhansl, Phys. Rev. Lett. 36, 1411 (1976). Also
preprint, Material Sciences Center, Cornell Univer-
sity (1976).

M. Toda, Phys. Reports 18C, 2 (1975).
'L. D. Faddeev, 'Quantization of Solitons", Institute for

Advanced Study, 1975 (unpublished).
B. F. Dashen, B. Hasslacher, and A. Neveu, Phys.
Rev. D 11, 3424 (1975), and references within.

S. Coleman, "Classical Lumps and their Quantum Des-
cendants", Harvard University, 1975 (unpublished).
R. Rajaraman, Phys. Reports 21, 227 (1975). And
references within.

iiD J. Kaup, SIAM J.Appl. Math. 31, 121 (1976).
A. Newell, two articles found in Refs. 1 and 2,
J. P. Keener and D. W. McLaughlin, A Green's Func-

tion for a Linear Equation Associated with Solitons,
Univ. of Arizona, 1977 (unpublished).

~4As it appears, representation (1.11) is valid only when
the linear operator L (r()) satisfies

t
(f, 8&. +H(rp) g)dt'= ([8t+H(rp)-) f,g)dt'.

0 0

When this symmetry does not hold, one must consider
both L(ro) and its formal adjoint. However, in these
cases very similar formulas apply. One example is
the Korteweg-de Vries equation.

5D. W. Mc Laughlin and A. C. Scott, "Fluxon Interac-
tions", University of Arizona, 1977 (unpublished).
D. W. McLaughlin and A. C. Scott (unpublished).

'TT. K. Gustafson, P. L. Kelley, B. Y. Chiao, and R. G.
Brewer, Appl. Phys. Lett. 12, 165 (1968).
A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23,
142 (1973).

~9D. J. Benney and A. C. Newell, J. Math. Phys. 46, 133
(1967).
G. J. Morales and Y. C. Lee, article in Bef. 2.
H. Segur, article in Ref. 2.

22G. Lamb, Jr. and D. W. McLaughlin, article in Ref.
l.
A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin,
Proc. IEEE 61, 1443 (1973).

24We use the term phonon rather than pfgoton in order to
emphasize the dispersive nature of these waves.

2 V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz.
61, 118 (1971) [Sov. Phys. -JETP 34, 62 (1972).



J. P. KKE1WER AND D. %. M c LA UG H LI5 C6

~M. J. Ablowitz, D. J. Kaup, - A. C. Newell, and H. Segur,
Stud. Appl. Math. 53, 249 (1974).

2~H. Flaschka and A. C. Newell, in Lecture Notes in
Physics 88, Dynamical Systems, Theory, and Appli-

cations, edited by J. Moser (Springer Verlag, Berlin,
1975).
A. C. Newell (private communication).


