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A theory is developed to describe the effect of simultaneously occurring vibrational relaxation on
intermolecular excitation transfer in the presence of radiative and nonradiative sinks. The basis is a master
equation whose rates are combinations of the Forster-Dexter transfer rates and the Montroll-Shuler
relaxation rates. Exact solutions are obtained for the probabilities of occupation of single vibrational levels as
well as of site occupation, and for quantum yields and differential photon count rates. It is shown how
phenomena exhibiting dependence of quantum yields or similar quantities on the wavelength of initial
excitation can be quantitatively approached with the help of this analysis. The concept of time-dependent
transfer rates is developed, and it is shown that at long times the transfer rate could tend to a value different
from the thermalized Forster-Dexter rate. It is also shown how the relaxation process can result in an
effective transfer rate (for singlets) whose dependence on the intermolecular distance R is other than R ~°.

I. INTRODUCTION

The study of the transfer of electronic excita-
tion is of vital importance to diverse fields of re-
search such as sensitized luminescence and photo-
synthesis, and many aspects of the process have
been interpreted successfully in terms of the basic
theory! of Forster and Dexter. However, one of its
underlying assumptions being that vibrational re-
laxation is much faster than intermolecular (elec-
tronic) excitation transfer, the theory is inap-
plicable to situations wherein transfer times are
comparable to relaxation times. Traditionally,
extremely small values (1072 sec or less) have
been assigned to the latter in the condensed phase,
and they have been believed to be smaller than
transfer times by two orders of magnitude or
more. If this extremely fast relaxation were a
universal characteristic of condensed-phase sys-
tems, the above-mentioned inapplicability would
hardly constitute a practical limitation of the theo-
ry. However, slow vibrational relaxation has been
recently reported® in a number of systems in the
solid and liquid phases. Indeed, some of these
observations show that the process can be ex-
tremely slow, lasting for several seconds. There
is now no doubt that situations exist wherein trans-
fer times are small enough and relaxation times
large enough for the two processes to compete
and affect each other to appreciable extent. Furth-
ermore, the advent of picosecond spectroscopy
has brought processes taking 10°!! or 10'2 sec
from the “infinitely fast” to the “accessible”
category. As a consequence, excitation transfer
may no longer be universally analyzed as decoupled
from vibrational relaxation, and a theory of the
single combined relaxation-transfer process is
required.

Such a theory should ideally involve exact calcu-
lations from the exact microscopic equations of
motion. However, the complexity of the problem
makes this program impossible in practice and
forces the use of alternative procedures. Thus one
might attempt approximate solutions of the exact
microscopic equations or obtain exact solutions
from approximate macroscopic starting points
such as master equations. In this paper we pre-
sent a framework for the latter type of approach.

Several experiments associated directly or in-
directly with the relaxation-transfer process have
been reported. A qualitative explanation of '
Weber’s red-edge effect® and generally of observa-
tions* of the dependence of transfer efficiency of the
the wavelength of the exciting light can be given in
terms of prerelaxation transfer through rates de-
pendent on the vibrational state. “Hot-transfer”
observations have been reported in a variety of
systems® studied in the Soviet Union, and experi-
ments of triplet transfer in liquids by Anderson
et al.® have also exhibited the interplay of relaxa-
tion and transfer.

Theoretical work aimed specifically at the re-
laxation-transfer problem has been primarily due
to Hizhnyakov and Tehver,” who have given an
analysis of prerelaxation transfer based on the
overlap of the absorption spectrum and the reso-
nant secondary radiation spectrum of the molecules
involved, and due to Dexter,® who earlier empha-
sized that the sequential picture of relaxation oc-
curring before transfer (or luminescence) does
not have universal applicability, and analyzed the

‘problem in the limit of no relaxation.:

The basic quantity of interest in the present
analysis is P¥(t), the probability that the electronic
excitation resides on site M and the system is in
the mth vibrational state.® In taking a master-
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}g EFFECTS OF RELAXATION ON
equation approach to the problem, we restrict
ourselves to the description of quantities that do

not require off-diagonal elements of the density
matrix in the representation of “states |M ,m)”

and we tacitly assume that the probabilities follow

a closed evolution equation having the master form

dpH(¢)

=) [RMTPY() - &M PAD)] (1.1)

nN

wherein the ®’s are the transition rates. It must
not be forgotten that no rigorous and completely
satisfactory derivation of a master equation has
ever been given from the Schriédinger equation un-
der geneval conditions, van Hove’s work!® involving
the diagonal singularity conditions, the initial ran-
dom-phase assumption, and the “I\%* limit” being
perhaps the most satisfactory analysis available.
It is therefore difficult, if at all possible, to assure
oneself, from first principles, of the validity of
such a starting point. However, it must also be
emphasized that the Forster- Dexter theory® of in-
termolecular transfer decoupled from relaxation,
and the Montroll-Shuler theory!! of pure relaxation
in a single molecule involving no transfer, are
both based on a master-equation approach and have
been successful at interpreting experiments. In
fact, the basic evolution equations of these two
theories are fomally contained in (1.1). Thus,
dropping the subscripts m and n and writing ®#¥

= F¥¥ reduces (1.1) to

apH(y)
at

=2_ [F¥¥P¥() - F¥PH()] (1.2)
N

the formal basis of the Forster-Dexter analysis,

while dropping the superscripts M and Nand writing

®Rpp = Ymn reduces (1.1) to

L) 5 [y PO~ 1an Pa)] (1.3)

which, when the Landau-Teller prescription'? for
the relaxation rates is incorporated into the y’s,
becomes the basic equation of the Montroll-
Schuler analysis of pure relaxation.

To give Eq. (1.1) physical content, a specific
form for ®¥¥ must be chosen. Considering a dim-
er (a pair of molecules) for simplicity (see Fig. 1)
note that the problem may be analyzed as the
evolution of the system point on a phase space
consisting of two quadrants (see Fig. 2). Each
quadrant has the vibrational states of the “ex-
cited oscillator” of one site on one axis and those
of the “ground oscillator” of the other site on
the other axis. Relaxation corresponds to motion
within the quadrants while transfer involves hops
from one quadrant to the other. We now assume
energy conservation during the transfer process,
and this makes the transfer rates “horizontal”
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FIG. 1. Schematic representation of the dimer show-
ing the “ground oscillator” and the “excited oscillator”
of the two molecules, corresponding to the vibrational
manifolds of the ground and excited electronic states.
The crosses denote electrons and the figure shows
molecule 1 as excited.

(see Fig. 2), since transfer from a point

on one quadrant must take place to points on

a line of slope -1 passing through the correspond-
ing point on the other quadrant. This has been
emphasized in Fig. 2 by showing these lines ex-
plicitly. We shall also neglect the internal dy-
namics on the lines.'* Finally, we assume that
the relaxation rates do not depend on which site
the electronic excitation occupies, meaning thereby
that we believe the bath interaction (which causes
relaxation) to be essentially independent of which -
molecule is under consideration. These physical
assumptions result in

(R'ri;me=Ymn 6lll,lv'"FgNém,n bl (14)

which reduces (1.1) to

d_P—(_t)"‘Z YmnP“(t) =Ynm m(t)]
+ D [F¥NPN@) _FNUDH (1) (1.5)
N

Equation (1.5), the basis of our analysis in this
paper, describes the relaxation and the transfer
parts of the combined process respectively,
through the first and the second terms in its right-
hand side.

II. TRANSFORMATION AND RESULTS
FOR THE LIKE DIMER

The dimer problem involving /{ke molecules is
analyzed in this section. Thus M, N run over the
values 1 and 2, and F:*=F2'=F, . Equation (1.5)

m*
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FIG. 2. Two-quadrant phase space of the dimer show-
ing “horizontal,” i.e., energy-conserving, transfer and
intramolecular relaxation. See text for details.
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reduces now to

dgin(t) :Z”: [Ymn P,l,(t) = Ynm Pi'"(t)]-;- F, [an([) —P}n(t)]

(2.1)

and a similar equation for PZ(¢). Basic to our
analysis is the transformation

Pi(t)=PL@) £ P(t). (2.2)
It results in

dZi”(t) =z": [Y "’"P; (t) = Ynm P:n(t)] b) » (23)

dr; (¢
T A P05 P01 0) . 2.0)

These equations describe the decoupled evolutions
of Pt (f) and P, (f). Equation (2.3) is formally ident-
ical to (1.3) and can therefore be immediately
solved if solutions to the corresponding pure re-
laxation problem are known. Equation (2.4) is
formally identical to equations that have appeared
in the work of Seshadri and the author'* in the
context of luminescence competing with relaxation
and in the earlier work of Matthews ef al.'® and of
Freed and Heller.!® The transformation (2.2) thus
converts the relaxation-transfer problem into two
sepavate relaxation problems: one with and the
other without a true sink process.

Let us now use the Montroll-Shuler descrip-
tion'1»12:14-17 for pure relaxation

Y mn=E[(m+1)8, ...+ (m+D-1)e?s , (2.5)

which arises from harmonic-oscillator selection
rules, the assumed D-fold degeneracy of the
oscillator,'” and the requirement of detailed bal-
ance. Here k characterizes the interaction with
the bath and 8 is #w/k; T, the dimensionless in-
verse temperature, w, kg, and T being the oscil-
lator frequency, the Boltzmann constant, and the
temperature, respectively. The dependence of the
transfer rates F, on the vibrational energy label
m can be obtained by computer calculations within
the Franck-Condon framework. Such calculations
have shown a monotonic increase with m which we
shall model by the linear dependence

ny m-l]

F,=B+mC (2.6)

for analytic tractability.

T*(1 - e™BoT™) =T (1 — e"PoI'*) exp [~ tke™® (T - T7) ]

The relaxation-transfer problem as described
by (2.1), with the substitutions (2.5) and (2.6), can
be solved exactly. The first step is the solution of
(2.3) and (2.4) with the help of techniques developed
earlier for the pure relaxation'! and the relaxation-
with-sink!*!® problems; the second step is the re-
verse use of the transformation (2.2). The method
of solution of (2.3) or (2.4) consists of solving the
fivst-ovder partial differential equations for the
Green’s functions

G*(z,0)= D 2" PA(0), @.7)

and it yields exact solutions for P; () for arbitrary
initial conditions. The details are similar to the
analysis presented in Refs. 11 and 14 and will not
be given here. However, we shall treat a specific
example which, while requiring relatively little
algebraic detail, clarifies the physics of the situa-
tion. As stated abovel” we have put D=1 in (2.5)
for simplicity.

Let molecule 1 be initially excited electronically,
the vibrational distribution being of a Boltzmann
form at a nonenvironment temperature T,
= (iw/kyB,). Thus,

PL(0) = 7 ™0(1— e80), (2.8)
P2(0)=0, (2.9)

and the average vibrational energy of molecule 1,
in units of 7w, is (efo—1)"!, The transformation

(2.2), when applied to (2.8) and (2.9), yields
PE(0)=e""o(1 — e~50) . (2.10)

With these initial conditions, the exact solution of
(2.1) can be shown to be

Pp(t)=z{em V(1 e M)}
+3{e ™) (1 - T"e"B1))(1 —¢Bo)
X (1 - eBoT") Yexp(~ {[2B + ke 8(1 - T"])}
(2.11)

where the sum of the two curly brackets corres-
ponds to P} (t), and the difference to PZ(#), and
where

B(t) = 1n< g

T*=3(eB+1+0)+ [5(eB+1+06)2— eB]/2

—ePoT") —(1—eBoT™) exp[—tke™8(T* - T7)]

vy = 1 (L L= €20) = (1= e520) exp[~ 1k (1= )]
’ (t)—ln< (T-e™0) - (1 - e¥Po) exp|- tk(1- )] ) ’
(2.12)
> ’ : (2.13)
(2.14)
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with 6=2Ce®/k. It might be useful to note that for

C=0, signifying a transfer rate which is indepen-

dent of the vibrational state, I'* and I'" become re-
spectively identical to e® and 1, and (2.13) reduces
to (2.12). »

Equation (2.11) gives the probabilities of occupa-
tion of any vibrational state of either molecule for
all times. It thus describes exactly, and in full
detail, the relaxation-transfer process under the
initial condition that the electronic excitation was
placed entirely on molecule 1 in a Boltzmann dis-
tribution at a nonenvironment temperature. All
information concerning the process present in the
probabilities is thus available from (2.11)-(2.14).
In particular, the simpler quantities P!(f) and
P%(¢), which denote the respective probabilities
that molecule 1 and 2 are electronically excited,
are obtained by summing (2.11) over the vibrational
states:

1 1-ePo 1-Tre8®
PL(t) =3 [1+ <1 — ) < % >

X exp{—¢[2B + ke™¥(1 - T") ]}} (2.15)
1 1_e™ \ /1T eB®
PO =3 [ - <1- e"‘””)( 1-TeP )
X exp{~t[2B + ke B(1 - r-)]}] , (2.16)

where B(f) and P* are given by (2.13) and (2.14),
respectively. Equations (2.15) and (2.16) should
be compared with

PLy(t)=3(1+ exp{-£[2B+2C(e? - D),
P3,(0)= 41 - expl-t[2B+2C(* - 1],

which are the result of the Forster-Dexter (FD)
theory,! wherein the relaxation process is assumed
to be completed before transfer and the “ther-
malized” rate F'" is used:

2.17)
(2.18)

Fth= Z Fe™l-e®)=B+Cf-1)'. (2.19)
m

I TIME-DEPENDENT TRANSFER RATES

The comparison of our results (2.15) and (2.16)
with the Férster-Dexter results (2.17) and (2.18)
brings out several interesting points. To appreci-
ate them consider the quantity P-=P'— P2, It can
be shown'® that it obeys

daP=(t)

2+ 2P ()[B+C(e*® - 1)1]=0. (3.1)

The corresponding quantity Py, =PLp - P2%, in
the Forster-Dexter theory obeys

dP ()

200 1+ 2P (0)[B + C(ef~ 1)]=0. (3.2)

Equations (2.20) and (2.21) may be considered
consequences of a transfer process-wherein the
dynamics of the vibrational states is not described
explicitly but the trvansfer rates ave taken to be
generally time dependent. Thus

PO - roP0- o), (3.3)
PO - rorPH0 - P20 (3.4)

reduce to the Forster-Dexter results (2.17), (2.18),
and (3.2), when F(t) is given by (2.19) and to our
general results (2.15), (2.16), and (3.1) if F(¢) is
given by

F(t)=B+C(ef® - 1), (3.5)

Observe the similarity of (3.5) and (2.19).

This time-dependent transfer rate F(f) has the
initial value F(0)= B+ C(efo - 1)™! corresponding to
the initial vibrational distribution on molecule 1,
and it changes in time as a consequence of the re-
laxation process. A striking result is that at large
times the rate does not tend to the thermalized
value F'" given by (2.19). .Instead it tends to a
smaller value

F(0)=B+C(ef™ - 1)'=B+C(I'"*-1)"'. (3.6)

This behavior of the rate is intimately related to

a result described in Ref. 14 wherein the temper-
ature of an excited state tends at large times to a
value below that of the environmental temperature.
As will be explained in Sec. VII, this behavior of
the transfer rate is expected to have general valid-
ity and not to be an artifact of the particular tran-
sition probabilities and master equations used in
obtaining (3.6).

The transfer rate F(¢) has been plotted in Fig. 3,
and the probability of the initially unexcited mole-
cule in Fig. 4, as functions of time for several
values of the initial temperature. If the latter is
higher than the environmental temperature, the
transfer rate is initially high, it slows down with
time, crosses the value F and ends up being
equal to (3.6) and therefore lower than the Forster-
Dexter value. If the temperature of the initial dis-
tribution is low, the rate starts with a small value,
rises to F(«) and never reaches the FD value.

The “depression” of F(») below F'* is, of course,
independent of ti: - initial distribution, and is

small or large according as the ratio C/ke™® is
small or large. The rate-depression phenomenon
predicted above should not therefore be observable
in the limit of very fast relaxation (¢ — «) or of an
m-independent F,(C - 0).

It should be noted that whether the average rate
of transfer is slower or faster than the FD rate
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FIG. 3. Time-dependent transfer rate F(¢) as a func-
tion of time for several values of the initial tempera-
ture Ty=7% w/kgP, representing energy of initial excita-
tion. Parameter values are arbitrary: g=1, B=0,
C=1. The rate-depression phenomenon, i.e., the ten-
dency of the rate F(t) to the value F( «) below the
Forster -Dexter value F™, is clearly seen.

F*™  willdepend on the relative values of ,, 8, and
C/ke™®. An initially high energy of excitation,
measured by 7Zw(efo— 1), does not guarantee
faster transfer in spite of F,, being an increasing
function of m. On the other hand, an initial exci-
tation with a temperature below that of the envi-

Bo=075

05

P, (1) —>

kt —

FIG. 4. Probability of the initially unexcited mole-
cule as a function of time showing the dependence of
transfer efficiency on the energy of initial excitation.
Parameter values are the same as in Fig. 3.

ronment does guarantee transfer slower than the
one given by the FD theory.

This analysis thus yields the explicit dependence
of transfer efficiency on the initial energy of ex-
citation. The case of low initial energy corre-
sponds to Weber’s observations® of the red-edge
effect. Excitation at long wavelengths, i.e., at
the red edge of the spectrum, dumps a small
amount of initial energy and, as has been quanti-
tatively shown above, leads to less efficient trans-
fer. In this discussion we have used initial distri-
butions which have a Boltzmann form. This has
been done for calculational convenience as it brings
out the essential physics of the relaxation-transfer
process.'® Excitation will generally result in a non-
Boltzmann distribution, and the above simple
form of the time-dependent transfer rate will be
destroyed. However, the qualitative behavior of
transfer described above will not change. For the
forms of F,, and v,,, used above, it is indeed pos-
sible to give exact solutions of PY'2(¢) for any ini-
tial distribution.

IV. QUANTUM YIELDS AND LIGHT INTENSITIES

It has been shown above how the relaxation-
transfer process may be studied in terms of exact
analytical solutions for the probabilities. In a
real system other processes involving a true de-
cay of the probability coexist with relaxation and
transfer and may compete with them. Examples
of these are luminescence and nonradiative intra-
molecular transitions (such as intersystem-cross-
ing and internal conversion). The competition of
the latter with relaxation alone has been analyzed
thoroughly by Freed and collaborators.'® The
luminescence-relaxation problem has been treated
by Seshadri and the author!*'2° and the full details
will be reported separately.?® We now show how
to analyze the combined relaxation-transfer-decay
process where the decay may include both radia-
tive and nonradiative channels, and how to obtain
expressions for experimentally measurable quan-
tities such as quantum yields and differential pho-
ton count rates.

To this end we extend Eq. (1.5) to include the
decay processes by adding to its left-hand side the
terms a, PY(t) and a/, P ¥(t). The first term re-
presents radiative decay and, as has been shown
elsewhere®' the assumption that it is linear in m,

a,=b+mc, (4.1)

is exact within the Franck-Condon framework
provided the electron-phonon coupling does not
involve nonlinear terms. The second term repre-
sents nonradiative decay. The assumption of
linearity is poorer in its context, but following
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Freed and Heller'® we shall use it in the present
treatment, the reason being, as in the case of
(2.6), analytical tractability. Thus,

al=b'+mc’. (4.2)

The basic equation for the relaxation-transfer-
decay process is then

d M
dPtm+ (a,+al)P¥

=S G P~ v P) + 3 (PEYPE_ FIAPE).
n N
(4.3)

Restricting the analysis to the dimer and making
the transformation (2.2) we get

dP? +
it (@nr ap)Pr= > GunPo=VYimPr) (4.4
n
ary, (a, +a’ +2F )P = (v P2 P)
dar + &y, + ap,+ m m_z")fmn n= Yamt m) >
n

(4.5)

which are two decoupled equations both describing
relaxation processes with true sinks. Since (2.6),
(4.1), and (4.2) make the decay terms in (4.4) and
(4.5) have the respective linear expressions (b +b')
+m(c+c’) and (b+b’+2B)+m(c+c’+2C), the same
techniques used in the solution of (2.4) may be
immediately applied to (4.4) and (4.5). One ob-
tains, through (2.2), expressions for the probabil-
- ities P »2(¢) for all times corresponding to any
given initial distribution. The solution of the re-
laxation-transfer-decay problem is thus complete
within the above framework.

The experimentally accessible quantities I(t),
the differential photon count rate, and ¢, the
quantum yield of luminescence are, respectively,
given by

10)=3 a, P,(0), (4.6)

b= (fow dtI(t)>< \; pm(0)>'1, (4.7)

where we have not displayed the site labels on I,

¢, and P,. Equation (4.1) introduces a significant
simplification in the computation of these quanti-
ties. The details of PL:%(f) are not needed, only
the “zeroth moment” P %(¢) and the “first moment”
22,nPY2(t) = (n(t)) 2 being of interest:

IM2()=bPY2(t) + c(n(t)*2, (4.8)

pr2= <b fwdtP"z(t)+c fwdt<n(t))1v2>
0 0

x (; PLO)+ 3 PLO) >'1. (4.9)
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Note that the last factor in (4.9) contains the total
initial probability that the dimer is excited. Ex- -
pressions for PY2(¢) and (n(f))*2 can be computed
exactly for arbitrary initial distributions. De-
fining (n(@E)*=(n@)* £ (n(¢))? and P*() =P'(¢)

+ P2(¢), it is possible to write

d<7;(tt)>*+ <n(t)>+[b+b’+c+c'+k(1— e-B)]
=P*(t)[ke"B+ g%(t)], (4.10)
d%(f»- +{n@){p+b'+2B+c+c’+2C+E(1-e®)}

=P-(t){re B+ @)}, (4.11)

dz;(t)+P*(t){b+b'}+{c+c’} w@)*=0, (4.12)
dI;;(t) + P (0o + b+ 2B+ e+ e+ 2CH () = 0

(4.13)

for a 6-function initial distribution of the probabil-
ities: PL(0)=6,, , and P%(0)=0. This represents
initial excitation on molecule 1 in the single vibra-
tional state v and these results can be used to cal-
culate the required quantities for arbitrary initial
distributions by using the principle of superposi-
tion. Information about the initially excited level
7 is contained only in the terms ®;(¢) of Eqgs.

(4.10) and (4.11). Explicit expressions for these
terms are complicated, are completely analogous
to those given in Eqgs. (10) of Ref. 14(b) and will
not be displayed here.

It is straightforward, if tedious, to develop ex-
plicit expressions for the differential photon count
rate and the quantum yield for initial Boltzmann
distributions. The procedure is described below.

The solution of (4.4) and (4.5) can be cast into
the simple form

1+ (1- I")x(t)e_,g

T A-x0)° (4.14)

P(¢)

where the “quasimoment” % y(¢) is given by

x(®)= (e~ 1), (4.15)

The suffixes+ have been omitted in (4.14), but we
emphasize that I'", x(¢), and g are different for
P*(¢) and P~(¢). The substitution of 2B by (b+b’
+2B) in (2.14) and (2.13) gives I'" and B(t), re-
spectively, for P-(¢); and g is given by [(b+b’
+2B)+ke®(1-T")]. The substitution of 2B by
(b+0d’) in those equations gives the respective
values of T'™ and B(¢) for P*(t); and g is given by
dropping 2B from the expression corresponding

to P~(f). The addition and subtraction of P*(¢) and
P~ (t) then yields P!(f) and P2(f) through the trans-
formation (2.2).
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As a result of the invariance of the Boltzmann
form,** one can derive the following simple result
for (n(f))*:

(n@)=x@®)PE)

=[TTGTITW]X<’)‘*’“

[ 1-T°
+

K(T_TTX@] X (0et, (4.16)

where again the suffixes £ on (n(t)), P(t), x(),

g, and T have not been displayed explicitly. The
quantities ¥*(¢) and x(¢) are connected through the
differential equation

1+{1-ef- a}x(t)_k—i_g%g—)= 6x%(t) ,

(4.17)
which has been derived in another context earli-
er.!®® The addition and subtraction of {n(f))* and
(n@))" gives (n(?))* and (n(f))?, and the differential
photon count rate and the quantum yield are then
obtained from (4.8) and (4.9).

It may be useful to observe that while the calcu-
lation of the quantum yield ¢ involves the integrals
Jo=dte=tx(t) and [ dte ¢*¥?(t), the latter can be
expressed in the terms of the former through
(4.17) as

[Cateerew= (1 +(A=T)x(O) , )&= ke?- r-)>

og og
1-ef-06 geb
+9<-T—?6->, (4.18)

where
9= f dtesty(t) .
0

The evaluation of this integral g involves an infinite
series as it is related to the Laplace transform of
hyperbolic functions. A quick view of the depen-
dence of the quantum yield on x(0), which mea-

- sures the initial energy of excitation, may be ob-
tained by approximating x(¢) by an exponential
leading to

g=XO | px()
g+ glg+ )’

where p is the rate constant in the assumed ex-
ponential decay of x(¢). Note in this context that
x(0) appearing in the + equations is the same as
that appearing in the — equations.

(4.19)

V. GENERALIZATIONS

The analysis of the dimer of like molecules
presented in Secs. TI-IV will now be generalized
in several different ways. In each of the following
cases an additional term denoting a true sink

(radiative or nonradiative) may be added to the
equations without changing the analysis in any es-
sential way.

A. Generalization to a periodic array of many like molecules

Instead of (2.2) use the transformation
Pi@t)= Zpg(t)e”'ﬂ, (5.1)
M

where M (as well as £) can be a three-dimensional
vector and where the sum over M covers all the
molecules in the array. Equation (5.1) when used
in (1.5) yields

dpt,

S ALPL= D Yo Phm Yam Pl (5.2)
Al= 3 eftrummguN, (5.3)
(#-N)

~AMN= F UN for M#N and AM¥ = ZFZM (5.4)
¥

Equation (5.2) which describes the evolution of the
probability distribution (over the vibrational states
m) of the “£th mode” of the transfer process, also
presents a relaxation-with-decay problem already
analyzed in the context of (2.4). Notice that the m
dependence of the decay coefficient A, is identical
to that of F# and techniques discussed in Secs.
II-1IV can therefore be trivially applied towards
the solution of (5.2). Thus the initial information
about P%(O) is translated into information about
P! (0) through (5.1), Eq. (5.2) is solved as before,
and (5.1) is used again to obtain the required
probabilities P #(t) and any derived quantities.

B. Generalization to an arbitrary nonperiodic array
of many like molecules

Here the transformation (5.1) is not useful be-
cause the absence of periodicity makes F#¥ de-
pendent on more than merely the difference M-N.
Exact solutions of (1.5) can still be obtained in
this case if solutions of the corresponding trans-
fer problem are known. Required thus are the
eigenvalues and eigenvectors of the matrix of A’s
in

d

PM MNp N _ M M
=+ ;Am pl= ; VmnP ¥ = v P, (5.5)

where the A’s are given by (5.4). Calling the
eigenvalues A%, Eq. (5.2) is again obtained al-
though (5.3) does not hold. The analysis of the re-
laxation-transfer problem proceeds then as in
Sec. VA. Of importance is the fact that the diago-

nalization of the matrix of A’s has nothing to do
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with the vibrational manifold. Note here that in
general the given transfer matrix must first be
symmetrized by an appropriate transformation
before attempting to find its eigenvalues and eigen-
functions.

A simple but important application of the gener-
alization of this section is the analysis of the dimer
of unlike molecules. The details of that analysis
will be reported elsewhere.

C. Generalization to “nonhorizontal” transfer

By “nonhorizontal” transfer we mean that the
transfer matrix F #¥ is of the general nondiagonal
form F¥¥ in the vibrational states. This would
correspond to (a) transfer processes wherein en-
ergy conservation does not hold on account of their
being bath-assisted for instance, or to (b) the case
where the internal dynamics on the “lines of slope
1” of Fig. 2 is not neglected, labels m,n being
used also to denote points along those lines. For
a dimer this means

(Rilln = (R:nzn = an ? (R:":.ﬂ = (anzn = 7 mn 3 (5‘ 6)

and it results in (2.3) for P, with the matrix y re-
placed by the matrix (y+F) and
d

p-
' a +<2zn: F",n)P;,,

=Z[(ymn"an)P;:_(Ynm"an)P;n]: (57)

for P,,. Comparing (5.7) to (2.4), one observes that
F,, is replaced by (0, F,,) and y,,, by (¥ ;.= Fomy)-
The “nonhorizontal” part of transfer thus adds to
the relaxation of the “+ mode” but subtracts from
the relaxation of the “~ mode”. The generaliza-
tion to an arbitrary nonperiodic array is obvious.

D. Generalization to coherent transfer

Much recent work® has gone into extending the
basic theory' of excitation transfer in order to in-
corporate coherent or wavelike transport. The
author has shown®® explicitly how the various theo-
ries can be reinterpreted in terms of non- Markoff-
ian master equations. These replace the ®’s in a
master equation such as (1.1) by memory-possess-
ing rates making the equation nonlocal in time.
Wavelike (coherent) behavior results in the early
stages, and diffusive (incoherent) behavior in the
later stages. The competition between such gen-
eralized transfer and relaxation may be described
by

e =2 PO = v Pr0)]

$2
+ f datrw, (t - t)[Pa M) — Ph2(t)], (5.8)

INTERMOLECULAR TRANSFER 773

where we have considered a dimer of like molecules
for simplicity, w,(¢) is related to F,, through

[ atw,0=F,, (5.9)

and where we have not incorporated memory ef-
fects in the relaxation rates, although their in-

clusion is straightforward. The transformation
(2.2) then results in

Pt)= <€+2'C€7m(e)+,; y,,m>-1

x (P;(O) +2 Y un P (€)>, (5.10)
n

for the Laplace transform of P} (¢), € being the

Laplace variable and tildes denoting transforms,

and (2.3) for the evolution of P}, (). Whether or

not (5.10) can be solved exactly will depend on the

memory functions W, (¢).

VI. DISCUSSION OF THE ASSUMPTIONS

A. Use of master equations

As stated in Sec. I, despite important advances®®
in the subject of nonequilibrium statistical mech-
anics, the exact domain of validity of master equa-
tions is still not understood well in general. It
is thus possible that important physics is lost by
the use of a master-equation approach in the pre-
sent context. However, the virtue of such an ap-
proach is that it can be carried through without
the use of uncontrollable approximations, and
the results obtained are guaranteed to be con-
sequences of the original equations and not the ac-
cidental outcome of an approximation. This is not
so for any microscopic approach developed so far
for the present problem. Furthermore, the pre-
vious success of the master-equation approach in the
transfer problem alone' and in the relaxation prob-
lem alone!! leads one to expect that it will be rea-
sonably accurate for the transfer-relaxation prob-
lem.

We must also mention a shortcoming of the
present approach which has nothing to do with its
validity. Being concerned with probabilities, it
is incapable, in the present form, of describing
quantities requiring off-diagonal elements of the
density matrix in the representation chosen. On
account of this, as well as of the validity question,
we shall attempt, in the near future, to relate this
approach to a full density-matrix analysis.

B. Neglect of internal dynamics on “lines of slope-1”’

These lines (see Fig. 2) are regions of constant
energy in the dimer phase space.” The internal dy-
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namics on these lines represents probability flow
among isoenergetic states which have the same
molecule electronically excited, but have a dif-
ferent distribution of the vibrational quanta be-
tween the two molecules. The details of this in-
ternal motion of the system have been neglected in
Sec. I for simplicity. This neglect is justified if
there exists a physical process that leads to “mix-
ing” or “equilibration” on each of the lines, and if
it is considerably faster than both transfer and re-
laxation. The applicability of the present analysis
would then be restricted to times larger than the
characteristic times of the mixing process. This
fast-mixing process would mean (see Fig. 2) that
the two molecules are in communication with each
other through means other than transfer, and it is
perhaps related to the entropy-sharing process
mentioned by Dexter and Fowler.?*

If the fast-mixing process is absent, our neglect
of the internal dynamics should be considered as
an “averaging” approximation. To drop this ap-
proximation, one must keep track, in greater
detail, not only of the relaxation process but also
of the transfer rates, since the latter are dif-
ferent from (and to) different points on those lines.
However, the dependence is given by Franck-
Condon factors. And the generalization cf Sec. VC
shows explicitly how to carry out the analysis for
this general situation.

C. The form of the relaxation, transfer, and decay rates

The nearest-neighbor character of the relaxa-
tion rates and their peculiar dependence on the
vibrational energy [see Eq. (2.5)] are consequences
of harmonic-oscillator selection rules and an
oscillator bath interaction that is linear in the
oscillator displacement. The particular express-
ion of Eq. (2.5) for the relaxation rate will not be
valid if the bath-molecule interaction is nonlinear
or if a harmonic oscillator is not a good represen-
tation of the molecule. This representation by a
single oscillator involves a nontrivial assumption
since a real molecule will have many modes. The
Kassel- Buff-Wilson extension!” with the degeneracy
D cannot cover the whole story in this context be-
cause the various modes of the molecule will have
different energies. As in the analysis of Freed
and Heller,'® we here consider an effective single
oscillator or mode.

Asmentioned in Secs. Il and IV, the assumption of
linearity in the vibrational energy does not have the
same strength in the context of the transfer, radiative
decay, and nonradiative intermolecular rates. In
the third case it is not a good assumption, in the
second it can be quite good (even totally valid), and
in the first it is reasonable. We mention here that,

where necessary, the linearity assumption can

be dropped and a perturbative scheme constructed
to handle the problem. This scheme is entirely
analogous to the one applied to the luminescence
problem?® 2 and is based on Ref. 25.

Equation (1.4) assumes the transfer rates to be
“horizontal,” i.e., energy conserving. This is not
an essential assumption. We have shown explicitly
in Sec. V how bath-assisted transfer requiring
“nonhorizontality,” i.e., F, # F, 0., can be handled

mn m “mn

within the framework of our analysis.

D. Use of initial Boltzmann distributions

We emphasize that when the various rates are
given by Eqs. (2.5), (2.6), (4.1), and (4.2), we can
give exact expressions for every quantity of in-
terest for arbitrary initial conditions. Thus the
probabilities can be shown to be certain combina-
tions of hypergeometric functions when the initial
excitation process causes a single vibrational state
to be populated. And any general initial distribution
can be analyzed as a superposition of these “in-
itially localized” solutions. However, initial Boltz-
mann distributions introduce significant simplifi-
cations in the algebra and can be used to elucidate
the physics of the situation. Thus high initial tem-
peratures correspond to high initial energy and can
therefore represent excitation at high frequencies.
Our only object in using initial Boltzmann distribu-~
tions has been to get at the essential physics with
the minimum amount of algebra.

VII. CONCLUDING REMARKS

Several assumptions of various degrees of val-
idity have gone into the analysis presented in this
paper. However, they have all been made at one
place (the starting point) in the analysis and have
been followed by exact calculations. The assump-
tions have been discussed in the previous section,
and it has been indicated explicitly how most of
them can be relaxed within the framework of the
analysis. The primary mathematical idea of the
analysis is the trivial one of successive diagonal-
izations of the ® matrix, first of its transfer part
and then of its relaxation part.?® The first part is
based on a transformation like (2.2) or (5.1) and
results in a relaxation-decay problem for every
mode, the decay containing transfer contributions.
The relaxation-decay problem is then solved with
the help of methods developed earlier.!*

Before applying this theory to a specific system,
values must be assigned to the various parameters.
These are as follows: The relaxation rate 2 indi-
cative of the strength of the bath interaction; the
degeneracy D suitably chosen to mimic the real
density of states; the frequency w of the effective



16 EFFECTS OF RELAXATION ON

oscillator; B and C in the transfer rate F,, and

b and c in the radiative decay rate «,, all four of
which can be calculated from Franck-Condon fac-
tors; and b’ and ¢’ in the nonradiative intramolecu-
lar decay rate o/,

What comes out of the present analysis
is (i) a prescription for a quantitative at-
tempt at the explanation of Weber’s red-edge ef-
fect® involving the dependence of transfer efficiency
(specifically, of the quantum yield) on the wave-
length of initial excitation; (ii) the concept of time-
dependent transfer rates which is especially help-
ful in making quick calculations avoiding com-
plicated algebra: thus, Egs. (3.3) and (3.4) may be
used with a simple dependence for F(f) such as
F(t)=F(»)+[F(0) = F(~)]e™*"; (iii) the rate-de-
pression (or rate-enhancement) phenomenon
whereby the long-time limit of the transfer rate is
seen to be generally different from the thermal-
ized Firster-Dexter value [see Eq. (3.6) and Fig.
3]; (iv) a natural mechanism that could be re-
sponsible for the observed deviation in some sys-
tems, of the dependence of the effective transfer
rate on the intermolecular distance from the
Forster-Dexter prediction of R™® (for singlet trans-
fer). / ’

It should be noted that (iii) and (iv) do not re-
quire the particular linear forms for the rates
used in our analysis. If the transfer rates from
individual vibrational levels do increase with in-
creasing vibrational energy, the result F(«)<F™®
is expected independently of the specific form for
F,. This is so because the higher vibrational
states of the initially excited molecule will empty
their excitation faster than the lower states (be-
cause F,, is larger at high m), leading to an ef-
fectively lower temperature and consequently a
lower transfer rate.?” By the same token, F(«)
>F*'" will obtain if F, decreases with increasing
vibrational energy.?® The rate depression or rate-
enhancement effect is thus a general result. Slow
relaxation has therefore two effects: the transfer
rate F(f) changes in time at afinite pace, and its
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long-time value splits off from F*. As has been
mentioned in Sec. III the difference F* - F(«) is
large or small according to the largeness or
smallness of C/ke™®. (See, however, footnote 28.)

The effective rate of transfer will obviously in-
volve an average of F(f) over an appropriate in-
terval. The interval will depend on what property
related to F(¢) is of interest and will be derived
from the duration of some physical process (such
as luminescence) used to probe F(¢). For sim-
plicity let us consider the effective F as given by
the following weighted average:

[, at et F(t)

Foy = (7.1)
eff j(‘)ecdt o-t/r

where 7 may be a luminescence decay time. Equa-
tion (3.5) reduces (7.1) to

Fo; =B+ (C/T) f dt e-t/T (eB(t)__ 1)t , (7.2)
1]

- wherein F,, is seen to depend on C in two ways:

through the factor multiplying the integral and
through B(¢). The latter dependence becomes clear
on observing the presence of 5, which is propor-
tional to C, in Eq. (2.13) for g(f). The factor C is
however dependent on the intermolecular distance
R (just as B is) and goes as R™® for singlet transfer
by dipole-dipole interactions. It is clear therefore
from (7.2) that F,,, will have an R dependence that
is other than R™® in general.?? This result also is
independent of the specifics used in the present
analysis.

o
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