
PHYSICAL REVIEW A Vo LUMK 16, N UMBER 2 AUGUST 1977

Large-distance and long-time properties of a randomly stirred fluid

Dieter Forster*
Department of Physics, Temple University, Philadelphia, Pennsylvania 19122

David R. Nelson~
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

Michael J. Stephen~
Physics Department, Rutgers University, New Brunswick, New Jersey 08903

(Received 14 February 1977)

Dynamic renormalization-group methods are used to study the large-distance, long-time behavior of
velocity correlations generated by the Navier-Stokes equations for a randomly stirred, incompressible fluid.

Different models are defined, corresponding to a variety of Gaussian random forces, One of the models

describes a fluid near thermal equilibrium, and gives rise to the usual long-time tail phenomena. Apart from

simplifying the derivation of the latter, our methods clearly establish their universality, their connection with
/

Galilean invariance, and their analytic form in two dimensions, -(log t) '"/t. Nontrivial behavior results

when the model is formally continued below two dimensions. Although the physical interpretation of the
Navier-Stokes equations below d = 2 is unclear, the results apply to a forced Burger's equation in one
dimension. A large class of models produces 'a spectral function E(k) which behaves as k' in three
dimensions, as expected on the basis of equipartition. However, nonlinear effects (which become significant

below four dimensions) control the infrared properties of models which force the Navier-Stokes equations at
zero wave number.

I. INTRODUCTION

Renormalization group methods have enjoyed
success in fields as disparate as high-energy phy-
sics, ' critical phenomena, ' and solid-state phy-
sics. ' In particular there has been considerable
progress in the application of renormalization
group theory to study dynamic critical phenomena. 4

The Navier-Stokes equation for an incompressible
fluid with a random forcing function bears a super-
ficial resemblance to various models used in
studies of nonlinear spin dynamics. "' Here we
exploit this similarity to give an analysis of the
large-distance, long-time behavior of velocity cor-
relations generated by the Navier-Stokes equations
with a variety of different forcing functions. Al-
though our analysis does not pertain to the prop-
erties of a fluid near its critical point, renormal-
ization group methods useful in the study of criti-
cal dynamics can be taken over directly.

In Sec. II we will discuss different possibilities
for the behavior of.the force-force correlations
at small wave number. One of the models (model
A), with the force regarded as a noise field simu-
lating the effects of the molecular degrees of free-
dom, describes a fluid near thermal equilibrium.
This model generates the familiar long-time tails
in the renormalized viscosity, and produces new

singularities at small wave numbers as well. Re-
normalization group theory leads naturally to a
unified treatment of these anomalies and provides

a scaling description of the breakdown of hydro-
dynamics which occurs for d~ 2.

Other models are also described in Sec. II. A
kind of universality applies: large classes of mod-
els exhibit similar infrared, 'long-time properties.
In particular, the more "realistic" models all ex-
hibit a spectral density function E(k) which goes
as k" ' at small wave number. This agrees with a
result obtained by Saffman' for homogeneous iso-
tropic turbulence. We should note, of course, that
our considerations refer to the region of effective-
ly small Reynolds' number, and E(k) ™k~ ' is sim-
ply a consequence of equipartition and phase-space
considerations. It is all the more noteworthy,
therefore, that one model (model 8), which forces
the Navier-Stokes equation even at k = 0, leads to
rather different results at small k. Here nonlin-
earities dominate the infrared behavior of E(k)
below four dimensions, and lead to logarithmic
anomalies in d=4.

We have supplemented our analysis of the Nav-
ier-Stokes equation with a brief discussion of two
additional equations appropriate to fluid behavior:
A forced version of Burger's equation in one di-
mension, and a model of the diffusion of a passive
scalar. The results for Burger's equation appear
to be new, and it would be interesting to test them
in a numerical simulation.

In Sec. II we define and discuss the model sys-
tems considered in this paper. We discuss the
relationship of our analysis to previous work on
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long-time tails, as well as the molecular basis
for the continuum equations employed here. In
Sec. III we present a recursion relation analysis
of the large-distance, long-time properties of a
variety of fluid systems. Although the calcula-
tions will be presented in some detail, reference
will. be made to the exposition of the dynamic re-
normalization group approach given for ferromag-
netic systems by Ma and Mazenko. '

It will be shown in Sec. IV that many of the re-
sults of Sec. III can be derived quickly and -ffi-
ciently by a direct graphical approach. The graph-
ical analysis is.simplified considerably by a Ward
identity related to the Galilean invariance of the
underlying dynamical equations. This same identi-
ty shows that certain results obtained in Sec. III
are, in fact, valid to all orders in e (here, e is
either 2-d or 4 —d). The graphical manipulations
are conveniently performed using the formalism
developed by Martin, Siggia, and Rose. ' We will
not derive this formalism here but note that it can
be quickly developed from the equations of motion
described in Sec. III using a path integral ap-
proach. " Although the graphical analysis quickly
produces results derived somewhat more labor-
iously in Sec. III the recursion relation method
appears to be more generally applicable, and
should be of more utility when Ward identities do
not produce such enormous simplifications.

Section V summarizes what has been accom-
plished.

II.. DYNAMICAL EQUATIONS

A. The forced Navier-Stokes equation

Consider the Navier-Stokes equation describing
an unbounded incompressible fluid subject to a
random forcing function f (x, t}, namely,

9)v+ Xo(v' V)v = -XOVp/p+ POP v+ f, (2.1)

where v = v(x, t) is the fluid velocity, p = p(x, t) is
the pressure, p is the fluid mass density, v, is
the (unrenormalized) viscosity, and X, is a pertur-
bative parameter which will eventually be set to
unity. The pressure term in (2.1) is used to en-
force the condition of incompressibility,

V v=0. (2.2)

Equation (2.1) has often been considered as a,

model of homogeneous, isotropic turbulence. "
The use of a statistically defined force sidesteps
consideration of the onset of turbulence with
increasing Reynolds number, and allows the gen-
eration of the statistically steady state. If we take the
force to act only at long wavelengths, it is plausi-
ble that it sets up an inertial range cascade which,
at short distances, is independent of the details of

&f,(k, }f,(k, »
= 2D(k)(2V)"' &(k+ k') 5((d + (d')(5&& —k&k&/k ),

(2.3)

where f(k, +) is the Fourier transform of f(x, t) in
space and time,

((k, tx)= Jdx J d(f(z, ()e' (2.4)

Three. prototype models will be discussed cor-

the force.
We are concerned here with the infrared, long-

Hme properties of correlations generated by
f(x, t). Clearly, the long-wavelength fluid behavior
will depend to some extent on the properties of the
force. However, as mentioned in Sec. I, some de-
gree of universality applies even at large dis-
tances. While we will not attempt to treat the for-
midable and probably more interesting problem of
the ultraviolet (short-distance, short-time} cor-
relations described by (2.1), i.e. , of fully devel-

. oped turbulence, the infrared properties are in-
teresting in their own right. Batchelor and Proud-
man" originally considered the behavior of the
large eddies in freely decaying (unforced) turbu-
lence. Specifically, they studied the residual
motion far downstream in a wind tunnel experi-
ment, on a scale which is larger than the mesh
which initially produced the turbulence. (In this
region most of the energy in the fluid has been
dissipated, and the Reynolds number is effectively
small. ) Saffman' has considered turbulence gen-
erated at an initial instant by a distribution of
random impulsive forces, and finds that the spec-
tral energy density behaves as k" ' for small k.
Although forced turbulence is a somewhat differ-
ent problem than that treated by the above authors,
we do find that most of the models considered in
this section behave as predicted by Saffman. We
consider, in addition, the low-frequency proper-
ties of the correlations, and corrections to the
leading behavior of E(k). Large-distance, long-
time properties of freely decaying turbulence can
be treated by the methods described in Sec. III,
but will not be discussed further in this paper.

We now specify the statistical properties of the
force entering Eq. (2.1). The force is taken to be
purely solenoidal without loss of generality —any
longitudinal component can be absorbed into the
definition of the pressure. The problem is sim-
plified further by assuming Gaussian "white noise"
statistics for the force. Deviations from a strictly
Gaussian force can be considered, but. these do
not alter the asymptotic infrared behavior. Thus,
it is only necessary to specify the two-point force
correlations which are of the form
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responding to different forcing functions D(k):

model A: D(k) = Dok

= 0, otherwise.

model B: D(k)=D, ~k~ &A,

(2.5)

field which, at d=3, obeys

s,v+ (v V)v = v,V v+ f,
with the restriction

V&v=0.

(2.8)

(2.9)

= 0, otherwise.

~~d~l C: D(k)=Do

= 0, otherwise.

(2.6)

(2 7)

Model A" can be considered simply as a Langevin
model for a fluid near equilibrium. This connec-
tion will be discussed further in Sec. IIC. In this
case the fluctuation-dissipation theorem requires
D, = v,ksT/p. It can also be thought of as repre-
senting some macroscopic stirring force whose
spatial integral vanishes. Model B includes a
statistically defined force which acts on the fluid
even at k= 0. Heuristically, it corresponds to a
macroscopic "shaking" of the fluid container. "
While it is perhaps somewhat artificial to imagine
exciting a fluid even at k= 0, model B does exhibit
intriguing behavior below four dimensions. Model
C, with 0&A&A, is perhaps the most realistic.
The Quid is excited in a band in k space below k
= A, and one is interested in the resulting corre-
lations near k= 0. We shall show that the infrared
behavior of model C is the same as that of model
A, which is a further motivation for considering
model A. Of course, we can consider variations,
such as an O(k } correction to D(k) in model A.
However, model A and model B will turn out to be
representative of two broad universality classes;
most variations turn out to be irrelevant variables
in the sense of Wilson. '6

It should be emphasized that the cutoff A occur-
ring in Eqs. (5)-(7) has here the interpretation of
an inverse stirring length (except in the case of a
fluid near thermal equilibrium, see Sec. IIC). It
will be. in general much less than the inverse of
any dissipation length scale (we will focus pri-
marily on the limit of small viscosity) and of
course much less than any molecular cutoff.

B. Burger's equation and the diffusion of a passive scalar

In Sec. III it will be shown that model A develops
nontrivial behavior when formally continued below
two dimensions. However, an incompressible fluid
is not of much interest in, say, one dimension
where the correlations vanish identicallyl More-
over, recent work by Frisch, Lesieur, and Sulem"
suggests that Navier-Stokes turbulence may not be
realizable for any dimension less than two.

Fortunately, the same renormalization group
methods apply to a d-dimensional generalization
of Burger's equation. " We consider a velocity

s, T+(v v)T=~,V'T (2.11)

Here v is the fluctuating velocity field appropriate
to model A. This problem has also been treated
in the long-time tail literature. "
C. Long-time tails and the d-dimensional Navier-Stokes equation

The problem of long-time tails in Green-Kubo
functions is physicaOy very different from those
introduced above; it concerns the dynamical prop-
erties of a fluid near thermal equilibrium. More
precisely, it concerns the question of whether the
usual linearized Navier-Stokes equations correct-
ly describe the space and time correlations of
spontaneous velocity fluctuations (or, equivalent-
ly, the relaxation to equilibrium of sufficiently
small externally induced fluctuations), at least
for large distances and long times. It is, of
course, always formally possible to reorganize
the Liouville equation for the local microscopic
velocity into the suggestive form'o

S,v(x, f) — dt' dx' vs(x -x', f —f')V "v(x', f')
Np

= f s(x, f), (2.12)

where the "random force" f ~ vanishes on the aver-
age, is uncorrelated with the initial value e(x, 0),
and where

(fs;(x, f) fs~(x', f')) = -(ks Tlp)v'v„(x x', f —f') &;, -
(2.18)

because of equipartition and the fluctuation-dissi-
pation theorem. Here the angular brackets signi-
fy the usual thermal equilibrium average, of

Using the identity (v V)v = 2Vv' —v x (V & v) and
deleting the last term, this model is trivially con-
tinued to arbitrary d. In one dimension, the ultra-
violet behavior is of interest in its own right, and
is dominated by shock-wave excitations. " We will
exhibit new singularities in the one-dimensional
large-distance, long-time properties of this model
for a Gaussian random stirring force with corre-
lation

(f)(k, (g) f~(kI, (u ')) = 2Dok)k~(2v)~'~5(k+ k') 5((o + (g)') .
(2.10)

We have also considered a, model of the diffusion
of a passive scalar T which satisfies an equation
of motion
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course, and we denote here by v the transverse
part of the unaveraged fluid velocity so that V v
=0. Equation (2.12) is then, of course, equivalent
to the customary definition" of a renormalized
viscosity in terms of the velocity-velocity corre-
lation function. Conventional hydrodynamics re-
sults if one assumes that all of the many modes
which contribute to f ~ decay over microscopic
distances and times. Then the spatial Fourier
transform of v~ is effectively of the form

v„(k, t —t') = 2@~(t—t') (2.14)

for sufficiently small k and long times, where v
is the measured viscosity.

The long-time tails are corrections to (2.14) of
the form -(t —t') " ' in d& 2 dimensions. They must
result from microscopically slow modes which are
still contained in f „. In accord with previous
work" we make the plausible assumption that the
only such terms are products of the conserved am-
plitudes which, for sufficiently small wave vec-
tors, certainly decay over macroscopic times as
welL (In order to exclude for simplicity terms
which involve coupling of sound and heat diffusion
modes we restrict consideration to an incompres-
sible isothermal fluid. ) A kinetic equation in which
such mode coupling terms are still explicitly ex-
hibited should be local and Markovian. However,
it can have those properties only for wave num-
bers k below a cutoff A where A ' is large on a
microscopic scale but small on a macroscopic one.
The former restriction is necessary, of course,
for any continuum theory; small wavelength veloc-
ity fluctuations are, instead, treated as noise,
along with all other molecular degrees of freedom.
Note that for sufficiently large A ' the relative im-
portance of highly nonlinear terms is strongly re-
duced from phase-space considerations which our
renormalization-group analysis renders more pre-
cise. The second restriction must be imposed, of
course, to guarantee that only small wavelength
fluctuations are treated as noise.

There is no difficulty in formally "deriving" the
corresponding kinetic equation by way of projector
techniques. " Using the standard Zwanzig-Mori
procedure, one would project the Liouville dynam-
ics onto that part of phase space which is spanned
by, in principle, arbitrary powers of the velocity
variable, with wave number k small than A, and
treat the remainder as stochastic noise. In fact
the resulting equation is strongly restricted by the
requirements of momentum conservation, sym-
metry, incompressibility, and Galilean invariance.
If we omit terms of higher than second order in e,
and keep only the lowest-order terms in a gradient
expansion, we obtain model A, i.e. ,

(&, —v,V')v+ (v V)v = f„ (2.15)

v(x, t)-v, +v (x —v, t, t), (2.18)
which is an exact symmetry of the microscopic
dynamics, must also be a symmetry of semi-phe-
nomenological models. It is important, in our
case, because it prescribe the vertex of the non-
linearity in Eq. (2.15). [If one introduces a book-

where because of equipartition and the fluctuation-
dissipation theorem the two-point force correla-
tions are given by (2.3), with

D(k) = v,(k~Tlp)k'. (2.16)
Note that v, is now a "bare" viscosity which does
not as yet contain the contribution made by the
mode coupling term. Since we further know, from
statistical mechanics, that the equilibrium dis-
tribution of v is Gaussian, it is consistent to
choose the noise force f, Gaussian as well.

This is the model which Zwanzig" has solved to
second order in perturbation theory. For dimen-
sion d~3, the result,

vs(k= 0, t) =(kBTlp) [(d' —2)/(d'+2d)](8vvt) ~ '
(2.17)

for large t, is fairly convincing since perturba-
tion theory converges term by term. However,
as Zwanzig noted, at d= 2 perturbation theory is
questionable since it diverges logarithmically,
term by term, at low frequency and wave number.
(The expansion parameter is X'= (ksTlpvo) whose
"naive'* dimension is d —2.) The renormalization
group methods which we discuss below overcome
this difficulty. Further, on the basis of Wilson's"
ideas about irrelevant variables, they afford a
convincing and simple demonstration that results
obtained from model A will not be invalidated if
one extends the model in several respects: to in-
clude higher derivative terms than those exhibited
in (2.15), terms of higher order in v, accompany-
ing non-Gaussian contributions to the noise, or
even velocity-dependent noise forces. For a near-
equilibrium fluid, this is particularly important
since model A can only be a crude approximation
of the problem which one actually would like to
solve. Of course, even renormalization-group
methods do not allow one to escape entirely from
the assumption, physically plausible as it may be,
on which our considerations are based: That there
is a coarse-grained level of description at which
a kinetic equation, roughly of the structure studied
here, describes the dynamics of an incompressible
fluid properly.

We conclude this section with a brief note on
Galilean invariance since it plays a major simpli-
fying role in this work. Obviously, the transforma-
tion
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keeping parameter X, as in Eq. (2.1), it multiplies
only the v, in the argument of (2.18).] Of course,
in formal "derivations" of kinetic models via pro-
jector methods, one must require that the "noise"
term be separately invariant since otherwise an
interpretation as a Langevin force w ould obviously
be nonsensical. The standard Zwanzig-Mori tech-
nique is in accord with this requirement.

III. RECURSION RELATION ANALYSIS

A. Renormalization-group method

In reality, of course, the high-k velocity modes
will eventually be excited" by the nonlinearities
in the Navier-Stokes equation even for a cutoff
force. The supposition here is that the ultraviolet
excitations do not affect the infrared modes popu-
lating the steady state which develops for k «A.
Indeed, in line with the usual arguments advanced
for the universality of critical phenomena, ' we ex-
pect that the short-distance properties are irrele-
vant to the large-distance, long-time behavior.
Short distance phenomena will, of course, affect
the amPlitudes of power-law singularities in the
correlation functions. These amplitudes are non-
universal, and cannot be determined by the re-
normalization techniques described here.

Substituting the decomposition (3.1) into (2.1),
and using (2.2) to eliminate the pressure, we ob-
tain the transformed Navier-Stokes equation,

v, (k, (u) = G,(k, (o)f,(k, (u) —pic, G,(k, (o)Pg „(k)

x v (q, Q)v„(k q, u) —0). (3.2)

Here we have defined an unrenormalized propaga-
tor~

&,(k, ~) —= [ i&a+ v,k']-',
and the function

(3.3)

P, „(k)= P,„(k)k„+P—,„(k)k (3.4)

where P&z(k) is the transverse projection operator,

P;~(k) = &;~ —k, k~/k'. (3.5)

Furthermore, we have adopted a standard conven-
tion by defining

(3.6)

It is useful at this point to review the dynamic
renormalization- group procedure. ' Correspond-
ing to the cutoff A in the definitions of the forcing
function, the Fourier decomposition of the velocity
field will be cut off for

~
k

~

)A:

d

A particular mode v, (k, &u) is coupled to the re-
maining degrees of freedom by the nonlinear term
proportional to X, on the right-hand side of (3.2).
In principle Eq. (3.2) can be iterated in powers of
this coupling.

In practice, however, there are difficulties.
Consider model A for concreteness. Note that ex-
pressing time in units of 1/v„velocity in units of
(D,/v, )' ' and the force in units of 1/(Dov, )'~'

amounts to setting D, = v, = 1 and replacing the ver-
tex ~o b

X, = X,D,"/ v', ~' (3.7)

Thus while one naively calculates a perturbation
expansion in powers of X, the actual series in-
volves powers of X,. This is fortunate since Q was
only introduced to organize the expansion, and
must eventually be set to unity. However, there
are obvious difficulties with a naive perturbation
theory for small viscosities v,. Note further that
Xo has the dimension of length to the power 2~(d —2).
Thus an expansion of the dimensionless ratio v„/
vo, for example, where v~ is the renormalized vis-
cosity at zero frequency and wave number, must
involve terms of the form

v„/v, = 1+const &', (1/q') + ~ ~ ~, (3.8)

which, in two dimensions, diverge logarithmically
due to small wave-vector fluctuations.

It should be unproblematic, however, to selec-
tively assess the effect which modes in a shell Ae '

& ~kj &Ahave on the dynamics of the remaining ones
if l is not chosen too large. In effect this is what
the renormalization group does. One projects the
equations of motion onto the phase space spanned
by modes with 0 & ~k~ &Ae ', and pushes the re-
mainder into the appropriately redefined, par-
tially renormalized noise. This is clearly an iter-
ative procedure frown whose asymptotic behavior
the properties of macroscopic modes can be ex-
tracted.

As explained by Ma and Mazenko, ' the dynamic
renormalization group procedure consists of two
steps. First, we eliminate from (3.2) the modes
v', (k, ~) such that Ae '& ~k

~

& A. This is done by
formally solving the equations for v';(k, ~) as a
power series in X,. The solution, because of the
nonlinearities, depends on the remaining modes
v((k, +). These formal solutions a,re then substi-
tuted into the equations for v~(k, ~)to eliminate their
explicit dependence on v)(k, ~). Finally, the re-
duced set of equations is averaged over the part
of the force f~&(k, ~) that acts in the shell Ae '
&

~
k

~

& A." This redefines the coefficients which
enter the reduced equations of motion. The fluctu-
ating remainder is added to the noise force ff(k, &o),
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and redefines the coefficients which characterize
its spectrum. The parameter / is a measure of the
fraction of the degrees of freedom which have been
eliminated.

The second step consists of rescaling space,
time, and the remaining velocities and forces in
order to make the new set of equations look as
much as possible like the original Navier-Stokes
equation. For example, we would like to keep the
coefficient of S,v in Eq. (2.1) fixed at unity.

This procedure will in general produce compli-
cated new couplings (higher powers of v and V),
in addition to the original Navier-Stokes nonlinear-
ities. However, these couplings turn out to be ir-
relevant variables, and can often be neglected to
a'leading approxiination (for example, they can be
neglected in model A above two dimensions, and
also to first order in &=2-d below. two dimen-
sions). The direct graphical approach discussed
in Sec. IV bypasses the complications introduced
by these new couplings.

The. output gf almost any renormalization group
calculation can be expressed in terms of a homo-
geneity relation. Consider for concreteness the
velocity-velocity correlation function,

(v,.(k, (u)vg(k', (u'))
(2v)~+'5(k+k') 5((o+ u)')

(3.8)

vz--v, [1+A~A,aa(1 e'~ '-")/(d - 2) ],
DI=D, [1+2~7,'(I —e '~ '")/(d —2)],

I = &0

(3.10)

(3.11)

(3.12)

calculation described in Sec. IV 8 of the paper by
Ma and Mazenko. ' These authors consider a dif-
ferent problem, but one which also involves a
quadratic nonlinearity. The recursion relations
are conveniently expressed in terms of Feynman
graphs. The graphs which occur are the same as
those appearing in the standard graphical expan-
sions of the Navier-Stokes equation, "but with the
interpretation that the internal lines carry momen-
ta in the ra, nge e 'A&

~
k~ & A and the external lines

carry momenta such that ~k~ &e 'A. Both internal
and external frequencies are unbounded.

Intermediate recursion relations for the propa-
gator, the force-force correlation, and for X are
shown schematically in Fig. 1 to leading order in
X. The term "intermediate" is used because we
have not yet rescaled space, time. , etc. From Fig.
1, one can simply "read off" the intermediate re-
cursion'relations for v, D, and X. As an illustra-
tion, we evaluate the recursion formula implied by
Fig. 1(a) in Appendix A. The reader is referred to
Ref. 8 for more details.

The intermediate values of v, D, and X are

for model A. We will bypass the problems which
arise in a direct expansion in powers of X, by
means of a scaling law (to be derived in Sec. III B),
namely

Gi~(k, (o;Xo)=e (t)G ~[elk en(t)& &(I)] . (3 9)

(0)

0 + ~ + ~ ~ ~

This scaling or homogeneity relation holds for
small k and &. It expresses the fact that 6,.&

can
be computed from boththe original and the re-
duced set of equations. Here o.'(I) is a function
characterizing the time rescaling necessary to
preserve the form of the Navier-Stokes equation,
and X(l) is the effective coupling constant after a
fraction 1 —e "' of the degrees of freedom have been
eliminated.

The left-hand side of (3.9) is difficult to calculate
if y, is large and/or, yn two dimensions, i't and +
are small. In fact we will discover that, for d & 2,
X(l) can be made as small as desired by choosing
I sufficiently large. Since o(l) turns out to be a
linearly increasing function of /, we can, for large
I, compute the right-hand side of (3.9) by ordinary
perturbation theory. The assertion that X(I) -0 as

might be called "infrared asymptotic free-
dom" in the language of quantum field theory. '

B. Model A
I

We now carry out the program outlined above for
mode) A. The calculations are very similar to a

(b)

j:~ + ~ ~ ~

(c)

+ ~ ~ ~

FIG. 1. Schematic representation of recursion formu-
las describing propagator, correlation function, and
vertex renormalization to leading order for the Navier-
Stokes equations. Intermediate frequencies are summed
from —~ to +~, while the intermediate momenta q are
integrated over tht. shell e 'A&

~ fi j & A. A light line
terminating in an open circle represents the bare propa-
gator Go(k, (d) times the random force. Heavy lines
represent the full solution of the interacting Navier-
Stokes equation, e &(k, ~). Figure 1(a) describes vis-
cosity renormalization, Fig. 1(b) describes renormal-
ization of the force-force correlations, and Fig. 1(c)
gives the renormalization of the coupling Xo. See Fig. 3
and Appendix A for more details.
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Here A„ is a dimensionality-dependent constant,
positive for d) 2 and equal to 1/16m in two dimen-
sions, and we have, for convenience, set A=1. As
in the model considered in Ref. 8, the "vertex cor-
rection" contributions to Xi shown in Fig. 1(c) van-
ish identically. These intermediate couplings en-
ter an intermediate Navier-Stokes equation for
v((k, (d), which is of the form (3.2) but with vz re-
placing vo, Xl replacing Xo, and with f((k, (d)

-f', ,.(k, (d) where

(f~;(k, 4))f(;(k', (d'))

=2D(k'(2v)~ "6(k+k')5((o+(d')P(~(k). (3.13)

To implement the second step of the dynamic re-
normalization group procedure we set

v'(k, (d) = g(l)v'(k', (d'), (3.14)

where

dv(l)/dl = v(l) [-2+z(l) +A~&'(l) J,

dD(l)/dl = D(l) [ 2+ z(l) +A+'(I) ],
dN((l)/dl = X(l) [-1—2d+ z(l) ],

where

(3.21)

(3.22)

(3.23)

l

(((l) = z(l')dl'
J0

(3.24)

(3.25)

(3.26)

in accord with (3.7).
The function z(l) is still arbitrary at this point.

However, z(l) drops out of the recursion relation
for the reduced coupling X, namely,

gn. (l)/dl =-'eX(l) -A,X'(1),

k'=e'k. and e'=e "'co (3.15) where we have set

The rescaling of k compensates for the eliminated
degrees of freedom, and f(l) and (((l) are to be
determined. The force must be rescaled by

fr(k, (d) = e ~" 'g(l)f'(k', (d'). (3.16)

The recursion relations for v and D are then given
by

vl = v(l) en(l )-2( v (I) (3.17)

D' —= D(l) = e"" "[exp[n(l) + 2(dl]/((l) ]'Dl(l). (3.18)

f(l) = exp[a(l) + 2dl]. (3.19)

With this choice the recursion formula for X is

We note from (3.11) and (3.12) that v and D are re-
normalized in the same way. This property, which
persists to all orders in perturbation theory, is
maintained by the rescaling if we choose

6 = 2 —d. (3.27)

X(l) = X, exp2el[l+ 2A,X20(e" -1)/c]'~'. (3.29)

The scaling relation to be derived below simpli-
fies considerably if z(l) is chosen to keep v(l) and
thus D(l) fixed at their initial values. From (3.22)
and (3.23) we see that the necessary, l-dependent
choice is

Above two dimensions (a &0), the recursion formu-
la (3.26) drives 7(l) to zero as l-~. In exactly two
dimensions, X(l) still goes to zero, although much
more slowly. Below d= 2, the fixed point at X = 0
is unstable to small perturbations, and X(l) (for
X,)0) is driven to a stable fixed point,

X*=(8wc)'~', (3.28)

to order e'~'. The solution of (3.25), which dis-
plays the behavior described above, is

X' =—X(l) = exp[a(l) — (d 22) 1+]& . I (3.20)
z(l) = 2 -A~X'(1). (3.30)

Because the renormalization group can obviously
be iterated it is convenient to replace l by an in-
finitesimal parameter 5, which leads to diffexen
tia/ recursion relations. More accurate values of
the parameters v(l), D(l), and X(l) (which describe
the system after a finite fraction 1 —e ~' of the de-
grees of freedom have been eliminated) are then ob-
tained by integrating these differential equations.
On taking the limit 6-0 we find'4

Thus, as l-~, z(l) approaches a fixed value,

g 2 $ d 2

g 2 -2&, d(2.
(3.31)

The homogeneity relation (3.9) follows from the
fact that for k& e ', G,.&(k, ~) can be computed both
from the original and the reduced set of equations.
Because of the velocity scaling (3.14) we have

(v((k, (d)vjgk', (d')),
( ) ~„„(» (v$(e'k, e "'~)v,'(e'k', e "'(d'))

(2p)&+ 5(k+ ki) 5((d+ (di)
—

(2m')~+ 5(e(k y e(kt) 6(eu( ~(d + ee(( ~(di)

= exp z(l') dl' G;; e'kexp , z(l') dl' &u;&(1) .
0 0

(3.32)
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4(x) = Xv/[x'+ v'], (3.34)

where X—= D,/v, = kBT/p, and v is the measured vis-
cosity.

Indeed, the renormalization (in the conventional
sense) of this transport coefficient is easily ex-
tracted from (3.32) as well since for. sufficiently
large I [such that X(l) =0] we have more accurately

~ l
z(l') dl'-2l —= -4= -&~ &(I') dl', (3.35)

p p

except for exponentially small terms. Since we
know the correlation function for X =0, we obtain
(3.34), with

v/v, = e~= [1+2A X'A" /~ z
(
]'t', (3.36)

where we have restored the wave-number cutoff
A. In an equilibrium fluid above two dimensions,
this formula gives the contribution of modes with
wave number below A to the measured viscosity.

In order to discuss corrections to conventional
hydrodynamics it is convenient to consider the re-
normalized viscosity vz(k, &u), defined implicitly
by representing G;&(k, a&) in the form"

G,&(k, &o) = 2P,&(k) Re(X/[-i&@+ k'v„(k, e) ]}. (3.37)

This definition agrees with that implied by Eq.
(2.12). A scaling relation for vz(k, v) follows,
namely

v (k (o X )=e" "'v [e'k e "'(o K(l)]. (3.38)

As an example consider the case of 0=0. We eval-
uate the right-hand side of (3.38) at I = I* such that

(3.39)

By choosing co small enough we can make the ef-
fective coupling, X(l*)-X,d't" ~', as small as de-
sired so that vs[0, 1;X(I*)] can be expanded. Noting
that perturbation theory involves only even powers
of X it is clear that the lowest-order correction is
of order +" ""'.This argument, which is just a

, simple application of Wegner's theory" of the cor-
rections to scaling, has thus produced the cele-
brated long-time tail correction to the renormal-
ized viscosity. Explicitly in d= 3 we find

vz(0, ~) = v+ [7ix/120m v](i+/2v)' '+ 6(&o) (3.40)

in agreement with the long-time tail literature. "

Above tsvo dimensions, f z(I') dl' approaches 2
p

for large I, and X(I) tends to zero. In this case Eq.
(3.32) implies that, for asymptotically small k,
G,z(k, v) can be expressed in term of a scaling func-
tion, '

G„(k, ~) =P„(l)k 'C(~/k'). (3.33)

This is just the prediction of conventional linear-
ized hydrodynamics, provided we take

In exactly tsvo dimensions the slow approach of
X(l) to zero gives logarithmic corrections to con-
ventional hydrodynamics which, in contrast to the
results for d& 2, are not conveniently handled by
ordinary perturbation theory but which the renor-
malization group method yields easily. Inserting
the expressions (3.29) and (3.30) to compute n(I)
near d = 2 one obtains

vz(k, &u;7,) = [I+V(e" —1)/8wc]'t'

vz[e'k, e'*'(o; X(l)], (3.41)

where z* is the value given in (3.31). To find
v„(k, &u = 0) we evaluate the right-hand side by
choosing l=/* such that e' 0=1. We can take 0
small enough to make X(l*) as small as desired.
Nevertheless, the wave-number argument on the
right-hand side of (3.41), ke', remains firmly
pinned at 1, and since even in two dimensions the
perturbation expansion for v~ is unproblematic for
jinite k (or &u), we can simply replace vs[1, 0;X(I*)]
by its unrenormalized value, vp. The result, "

vz(k, 0) = v, [1+720(k ' —I)/8m&]'t', (3.42)

is valid for ~e
~
«1, and gives a logarithmic cor-

rection to the hydrodynamic result in d= 2, namely

vz(k, 0) = [(X/8m) ln(1/k)]'t' (3.43)

for asymptotically small k. Similarly, (3.41)
gives». &&

vz(0, ~) = [(y/I'6z) In(1/a&)]' ' (3.44)

for asymptotically small frequency in two dimen-
sions, and since z*= 2 —2 c for d& 2, one obtains
vz-(I/&o)' ""for d&2 '"" [Equation (3.44) dif-
fers by a factor of 2' ' from the result convention-
ally extracted from the mode coupling formula,
see p. 117 in Pomeau and Resibois, Ref. 19. We
believe that (3.44) is correct. Tlie difference can
be understood by arguing that the mode coupling
formula computes not v(~), but 6v(up). ]

A quantity of considerable interest in turbulence
theory is the spectral energy density, "
E(k) = [-.'S,/(2~)~" ]k'-' TrG)~(k, (o) d&u, (3.45)

where S„ is the surface area of a d-dimensional
sphere, S~ = 2m "t '"/I" (—,d). Because the prefactor
e "~ in (3.9) is identical to the frequency rescaling.
J TrGO(k, &u) d&u is a constant for small k in any di-
mension, and E(k) k~ ' in accord with the results
of Saffman' for a somewhat different problem. In
fact, as shown by Edwards and McComb, "all equal
time correlations generated by a force whose auto-
correlation goes as Dpk' are Gaussian distributed.
Anomalies (controlled by the exponent z) only ap-
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pear when the correlations are considered at un-
equal times.

C. A generalized Burger's equation

As explained in Sec. II, there are difficulties in
the physical interpretation of results obtained for
model A below two dimensions. For this reason,
we consider the d-dimensional Burger's equation
described in Sec. IIB. Although it is interesting
to survey its properties as a function of dimen-
sionality, the model is rather unrealistic outside
of one dimension since it does not conserve "en-
ergy" [i.e. , the integral f d'x v'(x, f) ] in the in-
viscid limit. We shall see that there are corre-
sponding anomalies in the recursion relation anal-
ysis near d= 2. In this subsection we merely dis-
play these peculiarities, and demonstrate that the
small viscosity infrared properties are not readily
susceptible to analysis near two dimensions. Re-
sults derived in Sec. IV will, in fact, allow explicit
predictions to be made about this model in one di-
mension.

Upon Fourier transformation, Eq. (2.8) takes
the form

v, (k, (u) = G,(k, (u) f,(k, (d)

—&iXoG,(k, (d) k; v&(q, 0)v&(k - q, (d —0),

(3.46)

where G,(k, e) is again given by (3.3), and the pa-
rameter Xp has been inserted multiplying the non-
linearity. The recursion analysis proceed as
sketched for model A; the graphs shown in Fig. 1
again appear, but with interpretations dictated by
(3.46) and (2.10). Because of Galilean invariance
the "vertex correction" graphs" shown in Fig. 1(c)
again vanish when the external momenta and fre-
quencies are taken to zero. However, the model
develops nontrivial static properties, and there-
fore vp and D, no longer renormalize in the same
way. We therefore rescale the velocities and
forces as in (3.14) and (3.16) but extend (3.19) by
means of the parametrization

scales with an exponent x=2, i.e. ,

G(k, (()) = k ' '4) ((()/k' ') . (3.53)

D. Convection of a passive scalar .

It is instructive to study the convection of a pas-
sive scalar by the velocity field appropriate to
model A. We must consider the auxiliary equa-
tion of motion (2.11), where the variable T is in-
tended to represent temperature, or the concen-
tration of a labelled set of particles. "~"

Introducing the Fourier-Laplace transform of
the scalar field T(x, t),

As in the discussion of model A, y(I) and z(l) can
be chosen to be functions of X(l) such that v(l) and
D(l) remain at their initial values. However, dif-
ficulties arise when we consider the recursion
formula for 7(l),

dX(l)/dl = 2(2 —d)X(l) + K„[(2d—3)/4d]A, '(I) . (3.51)

This equation differs qualitatively from the corre-
sponding equation for model A [Eq. (3.26)] near d
= 2 because of the sign of the cubic term. A non-
trivial fixed point- exists above two dimensions,
but it is unstable to small perturbations. If X is
initially larger than this critical coupling, X(l) be-
comes intractably large for large l, and homo-
geneity relations such as (3.9) are of little use.

It is only below 1.5 dimensions, where the cubic
term changes sign, that (3.51) has any similarity
to (3.26). Of course, higher-order terms in X(l)
may be of importance in these dimensionalities.
Note that the recursion relations for v(l) and D(l)
can be made identical in one dimension, where
energy becomes a conserved quantity. In Sec. IV
we will show that v and D are related by a fluc-
tuation-dissipation theorem in one dimension.
This relation, together with a Ward identity re-
lated to the Galilean invariance of the theory, will
lead to a nontrivial prediction in one dimension.
Specifically, we will demonstrate that the corre-
lation function,

G(k, &u) = (v(k, (u) v(k', (d'))/(2v)'&(k+ k') &(&u+ (u')

(3.52)

(3.47)
( l

('()) = exp [e((') ed((') e *'d[dl }. '
"0 T(k, (d) =

~dP

dt e'"'T(k, f)

(3.48)

(3.49)

(3.50)

In d dimensions the recursion relations for v(l),
D(l), and X(l) are, to leading order in X = XD'~'/
p3/2

dv(l)/dl = v(l) [-2+z(l) + K„A,'(l)(2 d)/4d],

dD(l)/dl = D(l) [-2+z(l) 2y(l) + K X'(I)/4],

dd(. (l)/dl = X(l) [-1—2d+ z(l) + y(l) ],
where K„=l/[2~ 'v" "~I'(—,'d)].

Np

dd~ (e$ut Ik xT(x f)- (3.54)

Eq. (2.11) takes the form

T(k, (u) = 9,(k, (d) T(k, f = 0)

—id(.,9,(k, e)k,. v, (k —q, (u —Q) T(q, Q) .
(3.55)
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where as before
rl

g(/) = exp s d/+ ( s(/') d/'
dp

(3.58)

(b)

+ 4 0 k)

+ 0 ~ ~

+ ~ ~

In this case X,(/) and X(/) are identical for all /.
The differential equation for ((:(/) is then

d, (/)/d/= [ 2,.(/)],(/), [("-')/"] '(')"'(')
[v(/) + z(/) ]

(3.59)

(3.60)

where K~ was defined in (3.48). This equation is
to be solved in conjunction. with the equations
(3.21)-(3.25) for model A.

After completely averaging over the fluctuating
velocity field, the "temperature" relaxation is
customarily described by

(T(k, ~)) = [-t~+k'x, (k, ~) ]-'i(k, f = 0) .

A parameter X, has been inserted in the nonlinear
term, and we have introduced the bare diffusion
propagator

9,(k, n)}= [-i&v+Kok'] ' (3.56)

Equation (3.55), which is to be solved in conjunc-
tion with (3.2), is depicted schematically in Fig.
2(a) together with its iterated solution. Figure
2(b) shows a schematic representation of (3.2}. .

The relaxation from the initial condition
T(k, f = 0) results upon averaging over the fluctuat-
ing velocity field. As discussed earlier, this can
be done gradually, by integrating out modes in
successive shells of k space. The graphs which
represent the recursion relation for the diffusion
propagator are shown in Fig. 2(c}. As usual, non-
linear corrections to the vertex vanish. Note that
if X,X„ the theory is not formally Galilean in-
variant; even then vertex corrections vanish as a
result of the transversality of the velocity field.
However, since initially X, =Xp= 1, Galilean in-
variance is assured at every recursive step if we
choose the same rescaling for 1 as we did for the
velocity field,

f'(k, ~) = k(l) T'Ie'k, exp
Qp

z(l') d(' ~ I, ($.57)

(c)

FIG. 2. Schematic representation of the coupled equa-
tions of motion describing the diffusion of a passive
scalar. In Fig. 2(a), the light wavy line is the bare dif-
fusion propagator, while the solid circle represents the
initial conditions T(k, t= 0). Heavy wavy lines indicate
the solution of the diffusion equation before averaging
over the random force. Figure 2(c) summarizes the
recursion formula for the diffusion propagator obtained
by averaging over components of the random force
f; (k, cu) in the shell e 'A &

~
k) & A.

It is then easy to show that the renormalized dif-
fusion coefficient K„scales according to

It (k + Tc X )=e" '"'It [e'k e'"'n) (c(/), X(/)],

where the dimensionless ratio I(:(/) = tc(/)/v(/) obeys
the recursion relation

de(/) /d/ = -A,X'(/)(tc(/) —2(d —1)(d+ 2)

x f(d' —2)[g(/)+1]] '). (3.62)

The analysis is completed in the usual way. We
can integrate the renormalization equations until
l = I* such that, for example,

~20/ &l +)~2+ p2~4l +y4 (3.64)

This ensures that diagrammatic corrections to
(3.55) are cut off by either a finite frequency or a
finite momentum so that no infrared divergences
can complicate the analysis at 1= l*, even in two
dimensions. By choosing k and w sufficiently
small, X(/*) can again be made as small as de-
sired Recalling. that s(/) was chosen to keep v(/)
fixed at v„we find that x(/) is given by the equa-
tion

x'(/) —1 [x(/) —1]/(x, —1) ' ,e" —1—
x,' —1 [x(/) + 1]/(x, + 1)

(3.65)

where

and

x(/) -=([2~(/)+ 1] (3.66)

' ( ' =—1+8(d —1)(d+ 2) /(d' —2). (3.67)

This equation, together with (3.61) and (3.64), de-
termines x„(k, u&) in implicit form On setting k = 0.,
it is straightforward to exhibit a long-time tail in
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((„(0,~) = ~+ [iX/6(((v+ (() '~'](z(d)'~', (3.68)

((z(0, (d)'9 from the more general results derived
here. The result in three dimensions is

is then

dA. (E)/dE = 2(4 —d) &(E) -(-a)B„&'(E).

The choice of z(E) which fixed v(E) at v, is

(3.74)

where x is the measured diffusion coefficient which
is given by ((= v(((E-~). Similarly, the divergence
of the super-Burnett coefficient in three dimen-
sions is easily understood by a "corrections to
scaling" analysis of )(„(k,&=0). In two dimensions
the result, for asymptotically small k and &, can
be written in the intriguing form

)(„(k,(u)/v„(k, (d) = )(( ) =-'(1+ &17). (3.69)

This ratio remains universal if the theory is for-
mally continued below d= 2, except that (((~) is re-
placed by the c-dependent solution of x(~) =- 1.

We note, finally, that these results are unchanged
if the scalar field T(x, f) is itself driven by an in-
dependent Gaussian source of thermal noise, in ad-
dition to being convected by the velocity field. This
assumption is a natural one for the case when
T(x, f) is to represent the density of a dilute solute.

E. Model 8

The treatment of model 8 follows closely that
sketched for model A, but with rather different
results. Infrared singularities due to the nonlin-
earities modify the large distance properties of
this model below four dimensions.

Construction of recursion relations for the equa-
tion of motion (3.2) [with a forcing function gov-
erned by (2.6) ] proceeds as before. Nonlinear con-
tribu ions to the renormalization of Xp again vanish,
but Dp and vp are renormalized very differently.
In particular the graph shown in Fig. 1(b) does not
contribute to the constant part of the force auto-
correlation, but generates instead a term propor-
tional to O'. This term is irrelevant when the force
is rescaled to keep D(E) fixed at D„.

When velocities and forces are rescaled as in-
dicated by Eqs. (3.14) and (3.16), we find [from
(3.18) with the factor e" removed] that the choice

f(E) = exp 2 [3z(E') + d] dE' (3.70)

is necessary to keep D(E) fixed at D, and to pre-
serve the form of the Navier-Stokes equations. The
resulting recursion formulas for v(E), D(E), and
X(E), accurate to 8(X'), are

dv(E)/dE = [-2+z(E) ]v(E) +B~X'(E)D(E)/v'(E), (3.71)

dD(E)/dE = 0, (3.72)

u(E)/dE = [-1——,'d+ —.'z(E) ]~(E), (3.73)

where B~ = K~(d —2)/2d with K~ as defined in (3.48).
The equation for the reduced coupling X =—XDz '/v'~'

z(E) = 2 —B~X'(I).

Above four dimensions (3.64) exhibits a stable
"hydrodynamic" fixed point at X*=0, which leads
to the conventional result z 2. Below d= 4 how-
ever, a stable nontrivial fixed-point controls the
infrared properties. Thus, the asymptotic behav-
ior of the frequency rescaling exponent z(E) is

(3.75)

z(E)-2, d~4

z(E)-2-(4-d)/3, d&4.
(3.76)

The homogeneity law analogous to (3.32) for mod-
el B is

G;,(k, (d; X,) = exp 2 z(E') dE'
0

~G,,, ek, exp
Jp

l
z((')d(' ~ (())I

v„(k, (u = 0) - In'E'(1/k) (3.78)

in four dimensions. Hydrodynamics breaks down
for this model below four dimensions.

Because the prefactor in Eq. (3.77) differs from
the frequency rescaling, &(k) does zzot vary as k~ '
for this model. Indeed, using the results derived
above, we readily deduce that

&(k)-k' ', d&4,

&(k) - k/In'i'(I/O), d = 4,

B(k) kl" (2/3) (4 (()

(3.79)

This anomalous behavior is a consequence of forc-
ing the Navier-Stokes equation at macroscopically
large wavelengths, i.e. , of a nonvanishing function
D(k) at k=0.

F. Model C and universality

Model A and model 8 are representative of two
broad universality classes; their infrared long-
time properties characterize a Large number of
similar equations of motion. In particular, k' cor-
rections to D(k) for model B and k' corrections to
D(k) for model A'0 are irrelevant variaMes, and do
not affect the asymptotic properties derived in this

(3.77)
We will not pause to calculate the renormalized
viscosity for this problem, although the methods
of Secs. IIIB and IIID can be extended straightfor-
wardly. Vfe note, however, that there are "long-
time tails" in v/k= 0, &u) above four dimensions,

' and logarithmic corrections in d= 4. For example,
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section. The term irrelevant is used here in the
same sense as in critical phenomena: the coeffi-
cients which parametrize such correction terms
vanish at the fixed point, and their asymptotic ap-
proach is faster than that of the "leading irrelevant
variable" X. For example, a term of the form
pV'v'(x, f) in the equations of motion (because of
momentum conservation and symmetry, there must
be at least two gradient factors in this term) would
lead to R recursion relation of the form

dV (I)/dl = [z(l) —2 —d] p(l) + diagrams, (3.80)

and thus approach the fixed point as e""', for d ~ 2.
The. exponent, z —2 —d, simply characterizes the
space and time dimensions of p, and is thus easily
found. If, therefore, such a term were inserted in
homogeneity relations like (3.38), it would only
contribute a correction term of, at least, order
co" ' " which is asymptotically negligible. In this
fashion it is straightforward to demonstrate that
terms of higher order in V, S„and v(x, f) in the
equations of motion are irrelevant, as are devia-
tions from the Gaussian character of the noise or
velocity-dependent noise forces. Of course, this
analysis can only be carried out in a small neigh-
borhood of the fixed point considered here. We
have nothing to say about the mathematical pos-
sibility that a different fixed point might in fact be
approached for which X, LU, etc. are finite.

Even barring this bizarre possibility one should
note that the irrelevant variables, which for the
equilibrium fluid are undoubtedly present in the
initial model, renormalize the remaining param-
eters. That is, if the "time" l=l, is such that for
E& l, all irrelevant parameters can be disregarded,
the parameters vp Do and &p will have changed to
v(l,), D(l,) and X(I,). It is at this point, practically
speaking, that our present explicit analysis starts.

Model C is more realistic than models A and B
because the fluid is stirred only in a narrow band
of wave numbers. Although somewhat idealized,
it nevertheless represents a good example of the
kind of "universality" discussed in the above para-
graph. The large-distance and long-time proper-
ties of model C are just those of model A.

To demonstrate this, we use the renormalization
group developed for model B to "integrate out" the
pulse of force in k space. Repeated elimination of
degrees of freedom occupying shells in k space
gradually removes the constant part of the force
autocorrelation. No new contribution to the con-
stant part of the force-force correlations are gen-
erated at small k because, as discussed in Sec.
III E, graphs like that in Fig. I(b) contribute only 0'
corrections to the renormalized force autocorrela-
tions. Recursion relations such as (3.71)-(3.73)
need only be integrated until I= la= ln(A/A), when

G. Results to all orders in e

The reader may have noted that the recursion
relations such as (3.23) and (3.73) derived for "con-
vective" coupling constants in this Section are all
extremely simple. No nonlinear terms [8(&')] ap-
pear on the right-hand side of the recursion for-
mulas for X(l). This feature is the reason, for ex-
ample, for the simple canonical exponents (t~~')
which characterize long-time tail phenomena for
model A above 2 dimensions, as well as the sim-
ple exponents 2 of logarithmic corrections at d= 2.
For model A this feature is quite general, a con-
sequence of the Galilean invariance (2.28) of the
underlying equations of motion which is also a sym-
metry of the shell integration. A graphical proof
will be given in Sec. IV.

Accepting this multiplicative renormalization of
X(l), results such a,s

z=2 —2e (@=2—d&0)

for model A and

z = 2 ——,'e (c -=4 —d & 0)

(3.81)

(3.82)

for model B appear to be correct to all orders in
The derivation of such results by means of re-

cursion relations was sketched for model A in Ref.
14, and is given in detail for a problem in dynamic
critical phenomena by Halperin, Hohenberg, and
Siggia. " We will not pause to repeat such a dem-
onstration here, but instead refer the reader to the
graphical treatment in Sec. IV. As stated in that
Section, we have been unsuccessful in producing a
graphical proof that the r'esult (3.82) for model B
is correct to all orders.

the lower edge of the pulse is reached. At this
point, the system is described by renormalized
equations of motion in which "partially dressed"
couplings v(I,) and X(l,) appear.

The crucial feature is that the force-force cor-
relations no longer contain a constant part, and be-
have instead as k' for small k. Although this k'
term was irrelevant in the analysis of model B, it
now dominates the infrared behavior. No nonanal-
ytic terms such as k or k' ' can appear at. this
point because the (analytic) recursion relations have
only been integrated a finite amount of "time" l,
= ln(A/A). Model C now resembles model A, and
can by analyzed by the methods developed in Sec.
III B. In particular, the infrared properties of the
two models should be identical.

These conclusions should not depend on the ra-
ther special rectangular shape of D(k). We expect
that any force whose autocorrelation is cut off both
above and below will generate dynamics falling
into the universality class exemplified by model A.
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IV. DIRECT GRAPHICAL ANALYSIS

A. Model A

We first discuss the small k, small w properties
of the response function Gz(k, &u) = (&v;/6f;)(k, e)
and the correlation function

G(k, w) = TrG,.&(k, e) (4.1)

appropriate to model A. An analogy with critical
phenomena suggests that these functions can be
written in a scaled form,

G ~(k (g) =k2 "g(~/k&)

Gz'(k, (o) = k' "gz((u/k'),
(4.2)

where the exponents q and z are to be determined.
The fluctuation-dissipation theorem discussed in
Appendix B requires that G"' and G„' scale with
identical exponents q and z. In a linear treatment
of the fluctuations, these two functions are sim-
ply given by

G,(k, ~) = 2D,k'/[~'+ v',k'],

G,„(k,~) = [-i++v,k'] ', (4.3)

which satisfy (4.2) with q= 0 and z = 2.
For model A at least, these exponents can be de-

termined more generally by the following simple
arguments:

(i) The equal time velocity fluctuations are given
by

(v, (k, t)v, (k', t))
(2m) 6(k +k') G(k, e) d&u/2m

= D,/v„ (4.4)

where this last result follows from the Gaussian
distribution of these fluctuations [Eq. (Bl)]. This

At this point we demonstrate that results ob-
tained in the previous Section can be quickly and
efficiently derived using a direct graphical ap-
proach. Although the techniques employed here are
perhaps more familiar than the recursion relation
formalism of Sec. III, they do in fact rely on re-
normalization group ideas, such as Wilson's Feyn-
man graph approach, ' and the parquet graph resum-
mation method. " They allow a convincing demon-
stration that results obtained for model A are in
fact valid to all orders in e =—2 -d, and permit pre-
dictions to be made about'the infrared properties
of Burger's equation in one dimension. Part of the
utility of this graphical approach rests on the Ward
identity proved in Appendix B. As mentioned in the
Introduction, we expect the recursion analysis to
be of more utility in situations where Ward iden-
tities do not produce such enormous simplifications.

leads immediately to an exponent relation,

8= 2 —n- (4.5)

(ii) A second relation between q and z follows
from simple power counting arguments. In Appen-
dix B it is shown that vertex corrections vanish for
small k and &. The requirement that perturbation
theory be consistent with (4.2) and this result leads
to an additional relation,

3q+z= max(2, 4 —d). (4.6)

We thus have two relations for the exponents g and
z. On substituting the values g= 0;z = 2 appropriate
to linearized hydrodynamics into (4.6) we see that
d= 2 is a special case. The following results, which
agree with those of Sec. III, are then obtained:

(1) d&2.

q=z(2-d), z=2-2(2 —d), (4 7)

and the renormalized viscosity is singular,

v (k 4) = 0) - k " '"' "
R

v„(k = 0, (u) —(I/(u)" """". (4.8)

x
sk R ' 16m kv~(k 0)

(4.11)

Imposing the boundary condition vz(k = A, 0) = v„
this equation integrates to

vz(k, 0) = v, [1+ (y/Bn v', ) In(A/k) ]'t'.

An analogous calculation gives

(4.12)

The correlation and response functions can be de-
termined as expansions in powers of e = 2-d."

(2) d&2. To leading order the exponents and cor-
relation and response functions in Eq. (4.2) are
given by linearized hydrodynamics. There are,
however, nontrivial corrections of the form dis-
cussed in Sec. III. These corrections may be de-
termined by calculating the self-energy contribu-
tions to G '(k, &u) and G~'(k, &u). In three dimensions,
the renormalized viscosity appearing in (3.3V) is
then given by

vz(0, &u) = v+ [7iX/120mv](iu)/2v)'t'+ 6((u), (4.9)

vz(k, 0) = v -(1+ ~n)(y/96m v)k+'6(k'), (4.10)

where as in Sec. III various constant terms have
been absorbed into the measured viscosity v, and
X=Dgv, =k, r/p.

(3) d=2. This case requires special considera-
tion since logarithmic corrections arise. However,
we can apply the parquet method used in critical
phenomena" by writing a self-consistent equation
for the renormalized viscosity. This equation can
be determined as an expansion in the parameter
1/vs which is logarithmically small:
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B. Burger's equation in one dimension

The results described above can be extended to
the Burger's equation model described in Sec. IIB,
but only in one dimension. It is only in one dimen-
sion that a fluctuation-dissipation theorem relates
the response and correlation functions generated
by Burger's equation in a simple way. Just as for
model A, one can show that the vertex corrections
to Burger's equation are negligible in the infrared
limit. It follows, repeating the arguments of the
previous subsection, that

(4.14)

for Burger's equation in. one dimension.

C. Model B

There is no obvious fluctuation-dissipation theo-
rem for this model, which complicates the analy-
sis. We might again expect that the response and
correlation functions scale, and postulate the func-
tional forms

G '(k, (u) = k'g((u/k'), G~'(k, ur) = k' "g„((o/k').

(4.15)

Linearized hydrodynamics gives the results o = p
=0, @=2, and

G,(k, (o) = 2D,/[e'+ v',k ], G,~(k, (o) = 1/[-i(o+ v,k'].

(4.16)

We determine the exponents to leading order in
c=4-d by the following arguments:

(i) In the limit k 0 we have G~"(0, +)= iv whic-h

requires again that

8 2 ~go (4.17)

(ii) Arguments similar to those used in Appendix
B show that the leading vertex corrections for this
model vanish. We have not been able to extend this
result to higher orders.

(iii) Neglecting vertex renormalization, power
counting arguments relate the exponents g, z, and
(Fq

4@+g+ g= max(2, 6 —d). (4.18)

The critical dimension in this .case is d= 4. A de-
tailed calculation of the self-energy to first order
in &=4 —d shows that 0 is at least of order e'.
Thus the above relations give, to leading order in
a=4-d,

g= —,'e+ 6(e'), z = 2 ——,'&+ 6(e'). (4.19)

v~(0, ur) = v, [1+(X/16vv,') In(v, A'/(u)]'~'. (4.13)

These results agree, of course, with those ob-
tained in Sec. III by different methods.

V. SUMMARY

We have applied renormalization group methods
useful in studies of dynamic critical phenomena to
the large-distance, long-time properties of a ran-
domly stirred fluid. Long-time tail phenomena and
the large eddy properties of the forced Navier-
Stokes equation are understood in terms of an at-
tractive hydrodynamic fixed point above two di-
mensions. A stable, nontrivial fixed point appears
below d= 2. The slow approach to the hydrodynam-
ic fixed point in exactly two dimensions leads to loga-
rithmic corrections to conventional hydrodynam-
ics. Althoughthephysical significance of an incom-
pressible fluid in less than two dimensions is un-
clear, we have produced a model, model B, for
which hydrodynamics breaks down below four di-
mensions. This breakdown is described in terms
of scaling laws and exponents, and is associated
with a nontrivial fixed point.

Most results obtained for a fluid near thermal
equilibrium were derived previously using the
mode-coupling approximation. " The large eddy
properties of a randomly stirred Quid presumably
follow from the analogous approximation scheme
in turbulence theory, Kraichnan's direct interac-
tion approximation. " Many of the results obtained
in renormalization studies of critical dynamics
were also anticipated by mode coupling theories. '~

The advantage of the approach taken here is that
it renders these essentially uncontrolled approxi-
mations systematic. Specifically, we find that sim-
ple low-order perturbation schemes (such as the
mode-coupling or DIA integral equations) are ade-
quate provided we are interested only in the small
k, small & properties of the correlations. Con-
versely, our results suggest that these approxi-
mations would be ratherpoorly suited to treat the
ultraviolet behavior of a fluid. Heuristically at
least, one can imagine running the recursion for-
mulas presented here backwards in an attempt to
study large wave-number properties. However,
the recursion relations derived here [see, e.g. ,
Eq. (3.26)] indicate that the effective coupling con-
stant X(l) will become larger, not smaller, at these
wave numbers. Weak-coupling perturbation
schemes simply will not work.

Accompanying the formal manipulations entering
a renormalization group transformation are Wil-
son's ideas" about irrelevant variables. To test
the importance of a particular term in a fluid equa-
tion, we simply study its recursion formula in the
vicinity of the fixed point of interest. If this term
decays rapidly to zero, it can be neglected in an
analysis of the infrared long-time behavior. Simi-
lar reasoning leads us to neglect corrections to the
Gaussian character of the random force in the lim-.
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it. To convincingly exclude non-Gaussian or velocity
dependant contributions to the force using micro-
scopic arguments alone appears to be rather dif-
ficult.

We would also like to point out the essential sim-
plicity of the considerations presented here. In
particular, the recursion relations (3.21)—(3.23)
for Model A can be written down on general
grounds, viz. : (i) Dz D, is a stability requirement,
(ii) Dz/D, = vz/v, is a consequence of the fluctuation-
dissipation theorem, and (iii} X, = X, follows from
Galilean invariance in conjunction with momen-

tum conservation. Thus the only feature of Eqs.
(3.21)-(3.23) which requires explicit calculation to
order X', is the magnitude of the coefficient A„; in
other words the -amplitude of long-time tails, while
their leading exponents are universally determined.

In conclusion, we believe there are advantages
in describing fluctuating hydrodynamics in terms
of fixed points and recursion flows. It is our hope
that the techniques described here will be of uti-
lity in attacking other problems in fluid mechanics
or in irreversible statistical mechanics.

ments.
Writing out the algebraic equation associated with

Fig. 1(a), we have

v~(k, (u) = G,(k, (d) f~(k, (d) + 4G,(k, (d)(2iXO)'

x P,„„(k)I„„,(k, (u)u~~(k, (d) + ~ ~, (A1)

where
1

I „;(k,(d) = P„, (k —q. )GO(k —q, (d —Q)
"qn

x C,(q, A)P, „(q) .
A combinatorial factor 4 is associated with the
graph of Fig. 3, and there is an implied summa-
tion over repeated indices in (A1} and (A2). The
symbol f,„means (2n)(~"'' f„dQf d"q, where the
momentum integrals are restricted to the domain
e '& lql &1, e '& Ik-ql &1 The upper momentum
cutoff has been fixed, for convenience, at unity.

Equation (A1) can be rearranged to give an equa-
tion of motion of the form

[ i(d+ 0'v, (k, (d-)]v', (k, (u) =f&((k, (u)+, (A3)

APPENDIX A: EXPLICIT CALCULATION

OF A RECURSION FORMULA

where vl(k, (d}= vo+hvl(k, &u), with

0'd v~(k, (d)P, )(k) = X', P, „(k)I„„~(k,(d) . (A4)

As an illustration of the analysis developed in
Sec. III, we extract a recursion relation for model
A from the graphs shown in Fig. 1(a). The pro-
cedure is very similar to that sketched by Ma and
Mazenko, ' but is complicated by a proliferation of
indices appearing on transverse projection opera-
tors. The indices and momenta accompanying the
Feynman graph of Fig. 1(a) are shown in Fig. 3,
together with the meaning of its constituent ele-

Thus the diagram in Fig. 3 renormalizes the vis-
cosity. The appearance of the projection operator
on the left-hand side of this equation is an obvious
consequence of symmetry.

The frequency integral in (A2) is readily done,
with the result

O'Lv, (k, (d)P, ~(k) = 12O(D,/v, )P,„„(k)k,."d q P„~(2k-q)P„((2k+ q)
(2v)" i (d+ 2v,q'+ -,' v—p'

(A5)

k~ QP

Pmn

k, QJ

k, (u

Pmr}

ni]

-1[-i ~ + vak ] Pp~& ( k ) = Go ( k, ru ) Pt ~„(k )

qQ -qQ
[~ + ppq j 2Dpq P~j (k): Cp(k&~)P~j(k)

fTl I

where we have made a convenient change of vari-
ables, namelyq q+2k, and used the properties
of the projection operators. It is now apparent
that, for small k and co, we can evaluate the in-
tegral in (A5) at k = 0 and m = 0. The momentum
integral is then restricted to the spherical shell
e ' & lql &1, and the angular average of the pro-
jection operators is evaluated straightforwardly.
We obtain finally

k, cu

= V;(k, ~)

1= -—i)(k
p P

(A6)

where s~ = 2v" ""/I'(~d). Thus the "intermediate"
viscosity vz= v, +hvl(0, 0) is given by (3.10), with

FIG. 3. The momenta, frequencies, and vector in-
dices accompanying the Feynman graph shown in Fig.
1(a) . The meanings of the various constituent elements
are also indicated.

1 d2 2 Sd
2 d'+ 2d (2m')~

' (AV)

It is a simple matter, in principle, to work out
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graph rules that describe the extension of this
second-order calculation to higher orders. We
will not do so here but mention that (i) the sum of
all 1PI diagrams with one incoming and one out-
going arrow renormalizes the viscosity v„(ii) the
sum of all 1PI diagrams with two incoming arrows
renormalized the force strength D„and (iii) the
sum of all 1PI diagrams with one incoming and two

outgoing arrows renormalizes the coupling con-
stant X,. 1PI diagrams are those which do not fall
apart if a. single line is cut, and they have no fac-
tors G, associated with the external lines. The
momentum integrals over the internal lines are
all restricted to the shell e '&

~q~ &1.
Finally, we note that if we integrate q in (A5)

over the full momentum space, 0& q &1(=A),
we obtain the quantity v„(k, e) —v, defined by Eq.
(3.37), to order 7',. The calculation of long-time
tail corrections like (3.40) is based on (A5), in
conjunction with the homogeneity relation (3.38)
for va. Equation (A5) is, of course, then just the
standard-mode coupling formula.

i

APPENDIX 8: FLUCTUATION-DISSIPATION THEOREM

AND VERTEX CORRECTIONS IN MODEL A

A perturbation theory applicable to the Navier-
Stokes equation has been developed by Martin,
Siggia, and Bose (MSB)' and others. The theory
involves correlation functions [G(k, &u) ], response
functions [Ga(k, ~) ] and vertex functions (I'), and
in general all these must be worked out. In the
case of model A a fluctuation-dissipation theorem
(FDT) exists and the perturbation theory can. be

simplified considerably.
Several classes of classical processes for which

FDT's exist have been discussed by Deker and
Haake. " Model A exhibits detailed balance, and
the irreversible terms in the equation of motion
are linear in the velocity; it thus corresponds to
the second class considered by Deker and Haake.
It is then easy to show that the equal-time velocity
fluctuations are determined by the Gaussian dis-
tribution

G(k, (u) = G (k, (o) [2D,k'+ Z(k, (u) ]G*(k, (u), (B3)

G„(k, ur) = [-i&u+ v,k' —Z„(k, ~) ] '.
Equation (B2) becomes

Z(k, (u) = -(D,/v, )[Zs(k, (u)+Za(k, (u)].

(B4)

The perturbation theory of MSR can be further
simplified for model A by noting that vertex cor-
rections vanish in the infrared limit. This result
is essentially a consequence of Galilean invariance
and is easily proved to all orders in perturbation
theory. The theory of MSR involves three ver-
tices. However, in the case when the steady-state
distribution is Gaussian it has been shown by
Kawasaki" that only one type of vertex need be
considered. In the notation of MSR one then shows
tha. t the vertex F,'. &" (k„k,; f„f„f,) reduces to its
bare value y;J (k&+k,)6(t, —t,)5(t, —t,) when the ex-
ternal momenta k, and k, are small. The bare
interaction has the form

y', , (k) =-ik 5,, —ik,.6, (Bv)

(d) We use the FDT (B2) to replace all correlation
functions by retarded or advanced response func-
tions depending- on the time labels attached to the

y;) (k)=-ik (5„—k;kq) —ik, (5, —k, k ). (B6)

Typical diagrams contributing to l" are shown in

Figs. 4(a) and4(b). The method of proof employed
here is similar to some methods used by Deker
and Haake. We need the following:
(a) We consider each diagram of perturbation the-
ory at fixed times of the vertices. We note that t,
is always the latest time in a diagram because the

t,
' vertex is connected to every other vertex

through a series of retarded response functions.
(b) On the internal lines of a diagram we neglect
the external momenta k, and k, .
(c) The bare interaction has the form (B6) and one
notices that the pressure terms will not contribute
if the vertex is an internal one (i.e. , has no exter-
nal lines attached), because of the incompressi-
bility condition. Thus, what enters is

P,- exp —(v,/2D, ) Q v;(k)v,*(k) (B1)

and thus show no corrections in any dimension. In
particular this result also applies to Burger's
equation (2.8) with the forcing function (2.10).

The FDT takes the form

G(k, (u) = (D,/v, ) [Gs(k, u)) + G~(k, (u) ]

connecting the correlation and response functions.
This relation can also be written as a relation con-
necting the self-energies. The self-energies are
defined by

(c)

FIG. 4. The two third-order diagrams (a) and (b) in
case t f &t~ & t3. Response functions Gz are denoted by~ and correlation functions G by '~~. Iu (a) we
have neglected the external mometa on the internal lines
of the diagram.
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two vertices involved.
Making use of (a)-(d) alone it is possible to show
that all the perturbation terms (except the bare
interaction) for I'" cancel. An example is given
in Figs. 4(a) and4(b). With the time order t, &t, &t,
we use (d) to convert both these diagrams into the
form shown in Fig. 4(c). The lower left vertex has
the form y;'z (-k') in 4(a) and y,'z (k') in 4(b), the
rest of the diagram being the same in both cases.
As y;'&„(-k')+y&& (k') =0, the sum of 4(a) and 4(b)
vanishes.

In general me look at the vertex with the earliest
time label. If this is an internal vertex there mill
be three diagrams which are distinct in that this
vertex appears in the three different orientations,
the rest of the diagrams being the same. When we
use the FDT the three vertex ends become equiva-
lent, and the sum of the three contributions mill
thus be proportional to (omitting the pressure
terms) y,';„(k)+y,',.„(k,)+y,'.,„(k,) =0. If the vertex

with the earliest time is an external one (either
f, or f,) it can appear as in Figs. 4(a) and 4(b), the
rest of the diagram being the same. The sum of
the two contributions will cancel as in the example
of Fig. 4.

Thus in the limit of small external momenta the
vertex I'" reduces to its b~.re value (B6), with no
corrections due to renormalization. This result
also applies to Burger's equation in one dimension.
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