PHYSICAL REVIEW A

VOLUME 16, NUMBER 2

AUGUST 1977

Energy loss of ions moving through high-density matter*

‘Stanley Skupsky
Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627
(Received 4 April 1977)

An equation is obtained for the energy loss of ions to electrons in a high-density plasma of arbitrary
degeneracy. The quantum-mechanical form of the dielectric function is used to produce a formula that is free
of the usual Coulomb divergence, so that the introduction of ad hoc cutoff parameters is not required. The
results show a decrease of 20% to 50% in the energy-loss rate when compared with other formulas that use

the standard Coulomb logarithm.

I. INTRODUCTION

One method to obtain high thermonuclear energy
gains for inertially confined fusion is to ignite only
a small region at the center of the fuel and to allow
the burn front to propagate into the relatively cold
outer parts of the pellet.! The mechanism for
burn propagation is that charged particles from
fusion reactions deposit their kinetic energy back
into the pellet so that cold fuel can be heated.

Most formulas that describe this energy deposition
contain a phenomenological cutoff parameter in
the Coulomb logarithm.?

The necessity for a cutoff parameter reflects
approximations made in the theoretical formulation

" that have caused logarithmic divergences in the
equations. The cutoff parameter is usually esti-
mated by physical arguments concerning the max-
imum and minimum impact parameters for a Cou-
lomb collision. Since any error in this term ap-
pears inside of a logarithm, it is generally as-
sumed that it will not significantly affect the slow-
ing-down formula. Indeed, this is the case for a
classical plasma where the argument of the lo-
garithm is large, but it need not be true when the
argument becomes small as can happen in the
superdense plasmas anticipated for laser fusion.
In this region, one requires a more exact formula-
tion of the problem, one in which all parameters
are well defined. Such a formalism is available
for high-density matter, using the quantum me-
chanical form of the dielectric function.® It will
be used here to obtain a general formula for the
slowing down of ions by electrons in a semidegen-
erate plasma. The questionable logarithmic di-
vergences do not occur in this calculation, and the
final result does reduce to well-known expressions
in the limits of strong and weak degeneracy.

The reason for the logarithmic divergence in a
classical plasma is illustrated by writing the Cou-
lomb logarithm in the form In(,,,/,.,.), where
‘the argument is the ratio of maximum to minimum
impact parameters for a collision. These quanti-
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ties are usually determined by two approaches,
each of which causes a different kind of divergence.
One approach is to describe the energy loss by
means of two-body collisions using the Rutherford
cross section. Then, b, is determined by the
maximum energy loss for a collision. However,

b nax Pecomes infinite due to the long range of the
Coulomb interaction, and it is necessary to intro-
duce a cutoff parameter in order to prevent the
logarithm from diverging.*

The second approach treats the plasma as a con-
tinuous medium described by a dielectric function,
and considers the slowing down to result from a
frictionlike force caused by plasma polarization.
Now b, becomes finite due to plasma shielding.
Unfortunately, this treatment also gives b, as
zero, and hence, the logarithm will diverge at the
other limit. This is caused by a breakdown of the
classical dielectric function at small distances,
and again requires the introduction of a cutoff pa-
rameter.®

These two approaches are seen to be complemen-
tary—one valid for close collisions, and the other
for distant collisions. A standard way of combining
them is to simply use b, from the two-body ap-
proach, and b, from the plasma dielectric treat-
ment. The result is sufficiently accurate for a
classical plasma in which the number of particles
in a Debye sphere is large. But when the number
of particles is small, as in high-density plasmas,
a more systematic approach is needed. '

For a quantum-mechanical plasma (i.e., one in
which the interelectron distance is less than the
Bohr radius), there is a more fundamental way
to combine these two approaches. Instead of using
the Rutherford cross section to calculate the en-
ergy loss, one can use the cross section obtained
from the Born approximation with a Debye shielded
potential. The resulting formula will not contain
any divergent terms and will be correct at low ve-
locities to within the accuracy of the Born approx-
imation. However, at high velocities this approach
is no longer valid, because the Debye potential
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around the moving ion can become distorted. Fur-
ther, this approach cannot describe the energy
loss to collective plasma oscillations. Here a
more detailed description of theparticle-plasma
interaction is required, and this can be obtained
from the random-phase-approximation (RPA) form
of the quantum-mechanical dielectric function.

This dielectric function describes the linear re-
sponse of electrons in a uniform high-density
plasma, for both distant and close interactions
with an external charge. Unlike its classical
counterpart, the RPA dielectric function can treat
short-distance phenomena fairly accurately. In
a natural way, close encounters are described in
terms of quantum-mechanical wave effects, and
distant interactions by plasma shielding. In the
past, the RPA dielectric function was used to find
the energy loss for charged particles in a totally
degenerate plasma,®>®7 i.e., at zero temperature.
The extension to arbitrary temperature and degen-
eracy in a high-density plasma will be treated be-
low.

Recently, Brysk®® obtained a formula that in-
terpolates between the limits of strong and weak
degeneracy. However, he had to introduce the
Coulomb logarithm in a rather ad hoc manner.
The plan here is to obtain the energy-loss formula,
for arbitrary temperature, by starting with the
RPA dielectric function. It will not be necessary
to introduce the Coulomb logarithm or any cutoff
parameters in the calculation. Only the loss to
electrons will be considered, as the loss to ions
should be adequately described by the classical
formula.*® Section II will give a brief description
of the dielectric formulation of the problem; Sec.
ITI will analyze the resulting equations; and Sec.

IV will contain a discussion of the range of validity .

for the equations, as well as a comparison with
the work of Brysk.

II. FORMALISM

A charged particle passing through a plasma
will induce an electric field ﬁmd by polarizing the
medium. This field will then act back on the par-
ticle and cause it to lose kinetic energy W accord-
ing to the formula

aw Ze..

o == Vo EJF0), 1, ‘ 1)

where Z, V,, and T are the charge, velocity, and
position of the incident particle. The induced elec-
tric field can be related to the dielectric function
€(k, w) of the medium through its Fourier trans-
form,"’ so that Eq. (1) can be rewritten

_Z%? *k v 1
dk—5°1 Sy . 2
dx " an? vof me(k,k'vo) @)

Here the approximation was made that the incident
particle moves in a straight line. This should be
quite accurate for MeV ions.

In addition to the loss described by Eq. (2), the
particle can also lose (or gain) energy by scatter-
ing from the electric-field fluctuations within the
plasma.® In general, this is a relatively small ef-
fect for ions, but it can become important when
the ion energy drops below the electron thermal
energy. Since this paper is only concerned with
the energy loss from MeV ions in a keV plasma,
this term will not be considered here.

The dielectric function to be used is obtained
from quantum-mechanical considerations. In the
RPA, it is given by

e,0)=1+3 7 4”2 s fd £,() ~f,@ = ik /my)

w-kV+ 7k2/2m g +id ’
(3) -
where the sum is over all charged species, and f
is the single-particle distribution fuction for the
unperturbed plasma. The term ¢6 is an infinitesi-
mal increment which indicates how to treat the
pole. It is seen that this expression does reduce
to the classical form, namely,

@ 0= 1+Z4nZefd.‘7k'8{s/BV A

- . ’
w-Kk*v+20

in the limit #Z — 0. The important point about the
quantum-mechanical expression, Eq. (3), is that
it provides a good description for the linear re-
sponse of the plasma electrons for all wave num-
bers &*7 whenever the average interparticle dis-
tance is less than the Bohr radius, i.e.,

(Ern)Y3<n?/me? . (5)

This is not the case for the classical expression
in which large-%# phenomena are not treated ade-
quately, as is seen from the well-known Coulomb
divergence for small impact parameters. Condi-
tion (5) means that large-% interactions are domi-
nated by quantum wave effects, which are already
contained in the quantum-mechanical dielectric
function. For a DT plasma, condition (5) is satis-
fied for densities greater than 20 times solid
(10** atoms/cm®). This contains the burn region
of interest for laser-induced fusion.

III. ANALYSIS

The energy loss of an ion to plasma electrons
will now be calculated for artibrary electron de-
generacy. The loss to plasma ions will not be
considered here, as the classical expression? is
probably sufficiently accurate. It is only for the
electron contribution that the Coulomb logarithm
becomes small and is questionable. Equations will
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be obtained for the case where the ion velocity
v, is less than the average electron velocity @),
as this is the main region of interest for a ther-
monuclear burn. '

The dielectric function of Eq. (3) is evaluated
using the Fermi-Dirac single-particle distribution
function

F®) =2(m/n)3lexpnv?/2T —n)+ 1],

where m is the electron mass, T is the tempera-
ture in energy units, and % is Planck’s constant.
The degeneracy parameter 7 is chosen to satisfy
the normalization condition

[ﬁfm:ne .

After some algebraic manipulation, the electron
contribution to the dielectric function becomes

- 2e2m2T (© —-mov? < 1
€(k’k"’°)=1+W o ln(“_e”—*") Volk — 0+ Tk/2m +i0  vopt — v — Bk/2m +ib v, (®)

where y =k*¥,/kvg. This will now be expanded,
keeping the parameter (7/2m)/{v) to only first
order. Such an approximation was found to be
fairly accurate, as the main contribution to the
slowing-down formula came when 7%/2m was less
than the average electron velocity. For small v,
(v,<{)), the imaginary part of the dielectric func-
tion was found to be

Ime (k, E'Vo) =k'§o (;nk)e !: xp(% —7)> + 1] - . (M
The result for the real part is

Ree (§, K%)= 1+ (23,/42)F ] 172(/F ;5 () (®)
where %, is the Debye wave number

k% =4mne?/T .

The function F,,, is the standard Fermi integral
1/ 2dx
1/2(77) f ex—n +1°
and is related to the electron number density by

n=4n/n*@2mT)* *F,,,() .

Equation (8) is the classical expression for the
real part of the dielectric function with the Debye
sc reemng length modified by the factor (F,,,/
{,2)"2. This term is the result of electron de-
generacy and was previously derived by Salpeter.'?
The expression for the dielectric function, Egs.
(7) and (8), can now be used with Eq. (2) to obtain
a formula for the energy loss to electrons. The
result is
aw Z%% fm \V/?
T =YW n —7—<ﬁ") v
8/ vu 1
¢
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Here a factor InAy; , has been separated out to
facilitate comparison with other slowing-down
formulas. This term is a generalization of the

I

classical Coulomb logarithm, and is defined by an
integral over %,

© k3 h—2k2 -1
InAgp,=(1+e >fo * wErP [eXp<8mT)'"] ’
(10)

where

kg:kzn ;/z(n)/Fuz(Tl) .

As will be shown below, InAgp, reduces to stan-
dard expressions in the limits of strong and weak
degeneracy. However, unlike the classical Cou-
lomb logarithm, In Ap;, is well defined and does
not result from a divergent integral.

IV. DISCUSSION

Figure 1 shows how InApp, varies as a function
of temperature for different electron densities.
As seen, the main effect of electron degeneracy is
to make InAg;, independent of temperature below
the Fermi temperature (indicated by a vertical line
on each curve). In thé limits of strong and weak
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FIG. 1. RPA Coulomb logarithm as a function of tem-
perature for different electron densities. The vertical
line on each curve indicates the Fermi temperature.
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degeneracy, analytic expressions can be obtained
for InAgp,.

For a nondegenerate plasma (7<1)InAgp, be-
comes

1InA =3(1+7y)e” f‘wi’idx--l

RPA ™ 2 y x 2
where v is related to A, the standard argument
of the Coulomb logarithm, by

y=3/N%
and
A% =12mT /0% (11)

In the limit of weak degeneracy, y is much less
than 1, so that further simplification is possible,
namely,

InAgpa~3[In(l+A%) -2]. (12)

The logarithmic part is the usual high-temperature
expression.* The nonlogarithmic term is, in part,
the result of electron shielding, and causes about
a 20% correction at these densities.

To investigate the limit of strong degeneracy
(n>1), it is useful to rewrite Eq. (10) in the form

InAgp,=(1+e )2 w;—? eTiijCTl- )
where

¢ =—x/lc+y)+1In(l +x/7)
and

x=W%k2/8mT .

Now the Sommerfeld lemma'! can be conveniently
applied to obtain the result

InAgp,~3[In(1+A2) - 1], (13)

which is in agreement with the expression obtained
by Ritchie.” The variable A,, and is defined by

A% = (8mT /n?k3)F,, ,(n)/Fy,,(n) .

For high degeneracy, A, can be further simplified
to

A =A3(T./T),
where
Tp=%nT

is the Fermi temperature. Since Ag is prop'ortion-
al to 7, it is seen that A, is just the high-tempera-
ture expression evaluated at T,. When Eq. (13) is
compared with Ref. 9, it is seen that Brysk et al.
used only the logarithmic part. This has a value
around 2 at these densities, so that the second
term will make about a 50% correction.

Equations (12) and (13) can be conveniently com-

7

6

ng = 5x10%m

0 : . \
10° 107 L0
TEMPERATURE (K)

FIG. 2. Comparison of the RPA Coulomb logarithm
[Eq. (10)] with the interpolation formula [Eq. (14)] and
with the expressions of Spitzer (Refs. 2 and 4) and Brysk
et dl. (Ref. 9).

bined by means of the interpolation formula
InAgpa® 5 [In(1+A%) - 1], (14)
where
A=Agl0.374+(T/Ty]2.

A comparison between this approximation and the
numerically integrated RPA expression, Eq. (10),
is shown in Fig. 2. The two are seen to differ in
only a small region around the Fermi temperature,
and that difference is less than 10%. Also shown
are the results using Spitzer’s expression®*
(InAg) and the formula of Brysk et al.® As ex-
plained above, both of these differ from RPA at
high temperature by about 20%, and at low tem-
peratures, Brysk’s differs by about 50%.

A number of approximations were made in de-
riving the energy loss formula (9) from the exact
(and more cumbersome) RPA expression. To find
the region of validity, calculations were per-
formed to evaluate the range of 3.5-MeV « parti-
cles using both the full RPA expression and Eq.
(9). For densities above 10?° electrons/cm?, the
two differed by less than 5% at all temperatures.
Below this density, the approximations in Eq. (9)
caused quite large errors for temperatures less
than 107 °K. Above 107 °K, there was good agree-
ment at all densities. Note that the range of
validity depends on the velocity of the incident ion,
and will be different for each of the charged re-
action products. However, the region of validity
is sufficiently large to make Eq. (9) adequate for
many thermonuclear burn calculations.

For these calculations the range was defined as
the distance over which the a particles lost 90%
of their energy. The ion contribution was included
by assuming equal electron and ion temperatures,
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FIG. 3. Range of 3.5~-MeV « particles in a hydrogen
plasma as a function of temperature for different elec~
tron densities. The vertical line on each curve indicates
the Fermi temperature.

and by using the classical slowing-down formula*
for the loss to ions. Figure 3 shows how the

range varies as a function of temperature, for
three values of the electron density. The low-tem-
perature part of this graph supplements the results
presented in Ref. 1 and shows how the range be-

comes temperature independent below the Fermi
temperature.

To summarize, the RPA was used to derive an
expression, Eq. (9), for the energy loss of an ion
to plasma electrons at high density and arbitrary
degeneracy. This approach contained a sufficient
amount of physics so that the usual Coulomb loga-
rithmic divergence did not occur, and it was not
necessary to introduce any ad hoc cutoff parame-
ters. Calculations were made for the range of
3.5-MeV « particles, and to evaluate the general-
ized expression for InA [Eq. (10) or (14)]. The
results showed how both become independent of
temperature when the plasma falls below the Fer-
mi temperature. When compared with the results
of other authors, there was found to be a 20% cor-
rection in the high-temperature limit,* and in the
limit of strong degeneracy, there was about a
50% correction to the expresion used by Brysk
et al ®
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