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We report a computer simulation of simple shear flow in order to investigate the transport properties of a
two-dimensional microscopic model of a fluid. The numerical results exhibit nonlinear profiles for the fluid

velocity, and the viscous resistance depends linearly on the shear rate. These experiments confirm that, in

two-dimensional fluids, the Navier-Stokes equations do not exist in their usual form. We propose a

phenomenological expression for the viscous part of the pressure.

I. INTRODUCTION

The Boltzmann kinetic theory allows one to de-
rive the fluid equations from microscopic dyna-
mics. This is done by the well-known Chapman-
Enskog method' where any thermodynamic flux,
say Y (which could be, for instance, the nondia-
gonal part of the pressure tensor), may be ex-
panded in terms of the gradients of the thermody-
namic quantities (the fluid velocity is one of these
variables):

Y= k~VX+ k2V X+k3V X+' '

The symbol X represents the set of the independent
equilibrium parameters.

We have omitted any vector sign in this equation;
in order to write it in detail, one should account
for the various space symmetries and for the pos-
itiveness of the entropy production. The quantities
such as k, (i.e. , the coefficient in front of the first
spatial derivative of the equilibrium parameters)
are the transport coefficients of the Navier-Stokes
order. In an isotropic monatomic fluid, they are
three independent Navier-Stokes transport coeffi-
cients: the shear viscosity, the bulk viscosity, and
the heat conductivity. The quantities such as k,
are the Burnett order transport coefficients.

For dense fluids, the coefficients k, are given by
time integrals of equilibrium autocorrelation func-
tions. It is now well known that, in three-dimen-
sional fluids, the integrals giving the coefficients
as k, are divergent, although in two-dimensional
fluids the transport coefficients are already di-
vergent at the Navier-Stokes order. This diver-
gence is due to the slow decrease of the time cor-
relations which arises itself from hydrodynamical
phenomena. '

In this paper we investigate the "viscosity" ef-
fects in a two-dimensional classical lattice fluid.
As the standard shear viscosity coefficient diver-
ges, the Newton relation between the viscous
stress and the gradients of the velocity field no

longer holds, and our knowledge about the rela-
tions replacing the Newton and Fourier relations
is rather poor. Therefore we have simulated a
stationary microscopic Couette flow to investigate
the transport phenomena in this lattice model. In
a sense this is a viscosimetry experiment carried
out with a computer.

In Sec. II, a definition of the model and the
boundary conditions of the Couette Qow are given.
Section III is devoted to an exposition of the "ex-
perimental" results and Sec. IV to their interpre-
tation: some results can be predicted theoretical. -
ly. Further a few indications are given about the
form of the new transport equations replacing
the Navier-Stokes equations for this model.

II. DEFINITION

The model which we shall describe has been de-
signed to simulate "realistic" motion of a classi-
cal fluid, but with a microscopic evolution law
adapted to numerical work. As in digital compu-
ters any continuous motion of particles is simu-
lated by discrete jumps, we choose a model where
the time, the positions, and the velocities are dis-
crete variables. Since the detailed description of
the model was given in a preceding paper, ' we
shall only describe it quite briefly.

The particles are identical and, at time
t= 0, lie on the vertices of a two-dimension-
al square lattice. The mass of each particle
is unity, their kinetic energy 2, and their veloc-
ities point toward one of the four directions of the
lattice (see Fig. 1). Two particles can lie at the
same vertex, provided they have different veloc-
ities. The density (i.e., the mean number of par-
ticles per vertex) is then smaller than or equal to
4 and the momentum density is smaller than or
equal to v2.

The time evolution process occurs step by step
and each step is the result of two successive oper-
ations acting separately on velocity space and po-
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sition space, namely collision and translation. As
shown in Fig. 1, the collision process changes
the situation when there are two particles at a
vertex with opposite velocities: in any other case,
the situation remains unchanged. This process
is carried out simultaneously at each vertex of
the lattice.

After that, the translation steps forward all par-
ticles in the direction of their velocities. This in-
teger time-evolution process seems to be the
simplest one which satisfies the usual microscopic
conservation laws.

Let us remark that, due to its anisotropy, this
model implies a special form for the Navier-
Stokes equations (by supposing that they exist,
which is not the case), and the Green-Kubo form-
ula giving the transport coefficient exhibits the
same divergence as in any two-dimensional fluid. '
The energy and number density being connected to
each other in a simple way, there exists only one
transport coefficient, quite similar to a shear
viscosity. In order to investigate the effects of an
anomalous viscosity, we studied a stationary
Couette flow; external boundary conditions main-
tain a velocity gradient in the fluid.

The velocity gradient is produced by adsorption
on parallel boundaries (straight lines) moving with
opposite equal velocities. The particles colliding
at some time with these boundaries are reintro-
duced at the next time step in the fluid according
to the following laws: (i) the velocity component
normal to the boundary is reversed; (ii) the com-
ponent parallel to the boundary is replaced by a
random velocity whose mean value is equal to the
boundary velocity (i.e., the boundary is perfectly
rough).

We choose to place the boundaries parallel to
one of the two bisectors of the directions of the lat-
tice, so that intersections with it occur on the
vertices only, as shown on Fig. 2. The adsorption
process does not conserve the component of mo-
mentum parallel to the boundary; the difference
represents the contribution of the colliding parti-
cle to the viscous force applied to the boundary.
The velocity and the viscous force per unit length
cannot exceed +v 2 and an &2, respectively (n is

FIG. 1. Collisions at a vertex.

periodic boundary conditions

moving
boundaries

n
FIG. 2. Boundary conditions of the viscosimeter ex-

perixnent.

the number density, 0~n ~4), the modulus of the
particle velocities being unity. In the computation-
al simulation we must use a lattice of finite length
in the direction parallel to the boundaries, and we
take in this direction periodic boundary conditions,
by inserting at the same distance from the moving
boundaries, but below (for example), a particle
which has gone away above at the preceding time.

At time t = 0 the system is completely filled, with no
macroscopic current; because of the boundary condi-
tions, it reaches a new equilibrium after a brief
lapse of time. The simplicity of the model allows
one to explore the dependence of the Couette flow
with respect to parameters such as the boundary tan-
gential velocity V, and the distance d between the
moving parallel boundaries; in continuous models
this requires a larger amount of computational
time.

Recently, Cabannes' studied a Couette flow in a
three-dimensional model with discrete velocities,
but which can have different moduli. A conserva-
tion equation for energy is obtained which differs
from the continuity equation. As expected in a
three-dimensional model, the velocity profile is
close tobeinglineax. We shall see in Sec. IIIthat the
two-dimensional models present very special fea-
tures and the Navier-Stokes equations do not hold
in their usual form.

III. THE NUMERICAL RESULTS

In this section we shall first present the numeri-
cal results and then discuss some particular fea-
tures. .

A first unexpected result is that, although the
standard viscosity does not exist, the "viscous"
force remains proportional to the velocity V, of the
moving walls, as in the numerical experiment done
by Hoover et al. This i.s a little surprising as it
could be conjectured that the viscous resistance in
a two-dimensional fluid is a nonanalytic function of
the thermodynamic force Vo/d at Vgd = 0; recall,
for instance, the nonanalytical dependence on the
Reynolds number of the viscous drag encountered
by a cylinder in a direction perpendicular to its
axis at low velocity. This linearity remains ex-
act, at least at the accuracy of our computation,
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FIG. 5. Apparent viscosity as a function of the dis-
tance between the moving boundaries at n = 1.08.
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FIG. 3. The apparent viscosity as a function of number
density and of the distance between the moving boun-
daries.
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f= 8Vo/d, (3 1)

where 6I stands for viscosity. This formula is not
exact in our case; however, we shall define an ap-
parent viscosity 8 by (3.1), 8 being then dependent
(as usual) on the number density n, and (less usu-

if the other main parameters (i.e., number density
and size of the system) are modified. In addition
to the velocities +Vp of the moving walls, the vis-
cous force depends on the distance d between them
and on the number density n. In the case where
the Navier-Stokes equations exist, the viscous
force per length unit can be expressed by

v(x) = v, v(x/d, n), (3.2)

+Vp being the velocities of the moving boundaries

ally) on the distance d. The results obtained are
summarized in Fig. 3. One observes that the vis-
cosity exists in the usual sense (i.e., 8 becomes d
independent at large d) near n = 2 only. The vis-
cous force is a function of the distance d between
the moving boundaries which vanishes more slowly
than 1/tf when d increases. At n=O, the viscous
force no longer depends on d; the fluid at n —0 be-
haves like an ideal Knudsen gas without collision.
By comparing Fig. 3 and Fig. 4, one may under-
stand the difference between the actual results and
the ones which were found in the case of a normal
viscosity.

To show more explicitly the connection between
the viscous force and the size of the system, we
plottedin Fig. 5 8(d) at a given density (n=1.08)
chosen arbitrarily in an intermediate region. To
complete our study of the model we give in Fig. 6
the velocity profiles for different densities. Be-
cause of the symmetry of the profiles (which. is
verified in the experiment), Fig. 6 represents a
half-system only. The velocity is measured by
averaging the microscopic current along lines par-
allel to the moving boundaries as shown in Fig. 7.

%e observe that the velocity v of the fluid is
given in any case by

4 1/d number density

FIG. 4. Apparent viscosity in a Couette flow for a
usual gas near N= 0 (Maxwell paradox).
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on the size of the system, on number density (but
very slightly), but not on the velocity of the moving
boundaries. Figure 8 shows that the delay needed
for reaching a time-independent stress on the
boundary is approximately 50 for n=2 and d =36;
for larger d this delay increases but remains
smaller than 2000 for d & 200. There is another,
but less direct w@y to show that a stationary state
is reached. In fact, let us consider the equations
of momentum conservation which are

FIG. 7. The position parameter x in the velocity pro-
files. BJ„1B* + ——(n+P) =0;

2 Bx
(3.3a)

O
O4

N

O x
O

o Vo = 0.062
d V(, =0.12

Vo =0.23

x Q
OP
N

do
X XO p 0d P

d
0 d x p pX Od x

X

time

0
I

100 200

FIG. 8. Time dependence of the normalized viscous
force on the moving boundaries.

and n the mean density. Equation (3.2) means that
there is universal law (independent of the choice
of the unit length) describing the velocity profiles,
at least if d is not too small (i.e., in the fluid re-
gime, as opposed to the free molecular regime).
As appears in Fig. 6, the velocity profiles are not
linear. Thus one can infer that the Navier-Stokes
equations do not. take their usual form for this
model. Furthermore, one observes that, at low
number density (typically less than 1.2), the vel-
ocity profil. es seem to have an infinite gradient
near the moving walls. In Sec. IV, we shall try to
explain these peculiar features.

We have checked in some particular cases that,
after a rather short delay of time, the velocity
profiles reach a stationary state. In fact, it could
be argued that our "experiment" has shown non-
linear profiles because the usual Couette profile
would be reached at very large times only and that
these nonlinear profiles do not imply a nonclassi-
cal behavior for the fluid. To give an idea of the
value of this delay we plotted in Fig. 8 the time
dependence of the normalized viscous force on the
moving boundaries. As the nonstationary force for
a given numerical run fluctuates wildly, we have
only given the dependence versus time of a force
averaged on various initial conditions. We ob-
served that the normalized viscous force depends

BJ, & B'+ ——(n -P) =0.
BI; 2 B$

(3.3b)

In Eq. (3.3), J„and J„are the (x, y) components
(the x, y axes are parallel to the directions of the
lattice) of the momentum J, and P represents the
viscous "pressure. " Owing to the symmetry of the
Couette flow, one can guess that the number densi-
ty remains uniform. Thus, from (3.3), the pres-
sure P is also constant in a steady Couette flow.
We verified that the mean number density is con-
stant throughout all the flow with a relative devia-
tion less than 10 '. A microscopic definition of the
pressure P can be found by noticing that P changes
its sign if the axes (x, y) are rotated by zm. The
only combination allowed for P is

P(x, y) = E(n)(a(x, y) -b(x, y)+c(x, y) -d(x', y)) .
(3.4)

In Eq. (3.4) the quantities (a, b, c, d) are equal to
one (or zero) if there is (or is not) a particle at the
site (x, y) with a velocity pointing toward (x„y„,
x, y ), respectively, as shown in Fig. 9, and if
E(n) is a function of density only. In Eq. (3.4), the
average is taken on the initial conditions. We find
that the-viscous pressure P is constant, although
there is a slight decrease of the order of 3% near
the moving boundaries in a layer of a mean-free-
flight length. The value of the mean- free-flight
time is given in Fig. 10 and was calculated theo-
retically. ' By increasing the size of our system,
we can reduce the relative importance of this kin-
etic boundary layer.

I et us give a last qualitative feature; by remov-
ing the collisions, one gets a flow wherein every-
thing can be computed very simply. The corres-
ponding velocity profile is shown in Fig. 11 and,
as we shall see in Sec. IV, the viscous force (a
misleading expression is this case) can be related
in a simple way to the velocity v, of the moving
boundaries.

After these verifications, there is little doubt
that our numerical experiments show actually that
the velocity profile in a Couette flow in our model
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FIG. 11. Velocity profile of the collisionless gas.

FIG. 9. Four cardinal directions of the lattice.

is not linear, as would be predicted by the
Navier-Stokes equations; the question is: what
sort of "generalized" Navier-Stokes equation can
explain the observed behavior?

IV. INTERPRETATION

In this section we shall try to relate the results
of our "experiments" to existing theories.

We shall first examine in more detail the ad-
sorption process which communicates momentum
from the walls to the fluid, and relate themicro-
scopic adsorption law to the apparent vel-
ocity of the boundary. Let us denote by (n„n„n„
n, }the mean number density of particles on the
boundaries with velocities pointing toward the di-
rection (1,2, 3, 4), respectively, as shown in Fig.
12 andP the probability that, if a particle collides
along a moving boundary, the next time it will get
a velocity in the direction 3. If two particles (in-
stead of one) are colliding at the same vertex on'

the boundary (which means they have different vel-
ocities), we just reverse the velocities in order to
keep constant the number of particles. This arises
from the discrete nature of the velocity space; it
complicates a little the expression for the velocity

of the moving boundaries. Let us assume that,
close to the boundary there is no correlation be-
tween the particles with different velocities at the
same vertex; then, from the definition of the ad-
sorption process,

n4 —n3= [n,(1-n,)+n2(1 —n,)](1—2P) . (4.1a)

At each collision the momentum normal to the
boundary changes its sign. Thus,

n +n2=n +84. (4.lb)

Let Vp be the fluid velocity close to the boundary.
Thus,

n, -n, = (n, +n,)Vox 2 '~';

n -n =-(g +~ )y x2-'~'.
(4.1c)

(4.1d)

Defining n as the mean particle number per site,
from (4.1)

V l4nV- + (I -~n) =0,
1 —2p

(4.2)

where V= Vp~2 ' '. This connects the value of the
boundary velocity with the number density and the
probability I'; for a given P this velocity decreases
with-density, as expected. Figure 13 gives a com-
parison of the solution of (4.2) and "experimental"
observation; the agreement is better than 3%.

Another point can be predicted theoretically: in
the collisionless limit (i.e. , if the mean free path
is much larger than the distance between the
walls), the expression for the "viscous" force is

15—

boundary

5—I
n4

0.4 0.8 1.2 1.6
number density n—

FIG. 10. Mean-free-flight time as a function of the
number density.

FIG. 12. Geometry of the boundary and of the lattice
directions.
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where C is the Cauchy principal value and F a
function to be defined. If the integration from zero
to infinity is possible, this C may be omitted. In
the particular case of the noninteger derivative of
the ~th order:

0.5- F(x) =2r(-n)x"". (4 &)
theoretical curve
experiment
velocity Ã binary
collision are not taken into
account

I

0.4 0.8 1.2
number density

1.6

easy to derive:

FIG. 13. Influence of number density on the velocity
of the fluid near the boundaries for p = 32/648.

One recovers the usual derivative as the limit of
(4.6) with (4.V) n 1 (integer).

Let us suppose that, the viscous pressure P can
be expressed by

~ F~Jx
Bx 8y

(4.8)

in place of (4.5). With the symmetry of the chosen
Couette flow J„and J, depend only on one variable,
say x. As verified in the numerical simulation,
the viscous pressure P does not depend on x and
is trivially. related to the viscous force by

f=n, (1 -n,)(1 -p) -n, (1 -n, )p
'P =f= 8 8-(F,Z„)/sx . (4.9)

+n, (1 -n,)(l-p) -n, (l -n,)p.

By using Eq. (4.1), one finds

(4.3)

(4 4)

As the velocity profiles and the (n, d) dependence
of f are known, Eq. (4.9)i is an integral Volterra
equation of the first kind. Inserting (3.2) and (4.6)
in (4.9), one finds

(4.5)

[where 8 is the viscosity that is assumed to exist,
and J= (J„,J,) is the momentumj gives a linear
profile for the fluid velocity, which is in clear con-
tradiction with our observations (Fig. 6).

We tried thus to replace the spatial derivatives
of the velocity field in (4.5) by a more general op-
eration giving as a particular case the derivatives.
The mathematical devices are used in the theory
of noninteger derivatives. Let us define, for any
function f vanishing outside of a bounded support:

s(F,f) C
'" f(x t) dt-

sx „F(gati)

= lim dt+ dI; (4.6)

This result is verified with a relative deviation
less than 10 '.

It remains to approach the main problem: how
does the viscous pressure P depends on the num-
ber density and on the momentum. Although we
cannot give any quantitative answer, we find some
results in this direction. The first point is that the
Navier-Stokes expression of P,

+1
f=8VO&&dx C dt,F(td, n)

(4.10)

where v is the normalized velocity profile.
One recovers here that f is proportional to V,.

The case of the usual Navier-Stokes equations cor-
responds to F(xd) =d'F(x) which is consistent with
(3.1). In principle the d dependence of the viscous
force f make it possible to invert (4.10) to find an
expression for F(x); unfortunately, it seems that
this problem is not well posed in the Hadamard's
sense (i.e., even if f and the velocity profile v(x)
are known very accurately, one gets very poor in-
formation about F). Nevertheless, one can guess
that the operation (4.6) has a differential nature
and, for this reason, the sign C is needed in it.

To conclude, we see that the numerical experi-
ment carried outwith this model of'classical fluid ex-
hibits two unexpected properties of transport phe-
nomena in fluids of less than two dimensions: (i) The
viscous resistance is proportional to the velocity
of the moving walls. (ii) Because of the density
dependence of F, one cannot explain our results by
means of universal (i.e., depending only on the di-
mensionality of space and on a few other qualita-
tive properties of the model) and "renormalized"
law as the one predicted by current theories. "
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