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Coherent pulse propagation: A comparison of the complete solution,
with the McCall-Hahn theory and others
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The complete solution of the Maxwell-Bloch equations by the inverse scattering transform as given by
Ablowitz, Kaup, and Newell is compared with the McCall-Hahn theory, and others. Not only it is shown that
the earlier results are contained in the complete solution, but also several new results are obtained. Among
these are an infinite set of "nonlinear moments" which evolve similar to the McCall-Hahn area, a closed-form
solution for the norilinear transmission, how one can determine absolute time delays, why the threshold area
for lossless propagation is still exactly m (even when the initial profile is off resonance but unchirped), and first-

order effects of relaxation on 2m hyperbolic-secant pulse propagation. For the last-mentioned results, we find

that in general if a 2m hyperbolic-secant pulse is initially off resonance, it will move away from resonance.
Also, we find that the McCall-Hahn result for first-order effects on the time delay must be modified for small-

amplitude 2m hyperbolic-secant pulses.

I. INTRODUCTION

With the recent advent of the "inverse scatter-
ing transform" (IST),' it has become possible to
obtain the complete solution of certain nonlinear
systems, one of which is the "Maxwell-Bloch
equation"" describing coherent pulse propagation
in a two-level system and in particular, "self-in-
duced transparency" (SIT). Although many of the
theoretical results were originally obtained by
McCall and Hahn" using more simple methods,
it was recognized earlier' ' that certain solutions
of this system (2a pulses) did indeed have soliton-
like properties. Mostly due to the work of
Lamb, ' ""the soliton part of the solution was
developed and studied, which allowed one to under-
stand the asymptotic form of the solution in the
attenuator case. In 1974, Ablowitz, Kaup, and

Newell' obtained the complete solution for the
Maxwell-Bloch (MB) equations, including the non-
soliton part (called "radiation") as well as the
soliton part. Since that time, further results have
shown a much closer connection between the
McCall-Hahn theory and the complete solution"'"
than was at first suspected.

The purpose of this paper is manyfold. First,
SIT is one of the few examples of these complete-
ly solvable nonlinear systems for which we have
experimental results to compare the theory
against, the most accurate of which are the re-

. sults of Slusher and Gibbs. " Second, almost all
of the results of the McCall-Hahn theory are to
be contrasted against those of the complete
theory, pointing out necessary modifications (as
in nonlinear transmission), and also extensions of
their results (such as nonlinear moments) which
so naturally arise from the complete solution.
Third, we can show how other results, such as

smail area limits, "'"various numerical, ""
and experimental"" phenomena, which cannot
be explained by the McCall-Hahn theory, can be
explained and understood with the complete IST
solution. And fourth, this will illustrate how

some of She more simple but powerful results can
be obtained by the IST.

In Sec. II, we briefly review the complete solu-
tion, "this time retaining all the physical con-
stants and using a notation" more familiar to
the experimentalists. For a square unchirped
pulse profile, one can obtain closed-form solu-
tions for the scattering data, and this is done
in Sec. III. Here we discuss the analogies be-
tween the IST and the linear Fourier transform,
and pointing out how the asymptotic soliton state
can be uniquely determined from the initial data.
In Sec. IV, we show how the McCall-Hahn area
theorem is contained in the complete solution, and

then how a simple extension allows one to define
a compt. ete set of "nonlinear moments" and their
equations of motion, which are discussed in more
detail in the Appendix.

In Sec. V, we look at nonlinear transmission in
terms of the scattering data, and discuss how the
amount of transmission is affected by the initial
pulse profile. This is expanded on in Sec. VI
where we consider how the eigenvalue spectrum
is affected by the initial pulse profile. In Sec.
VII, we show how to obtain the absolute time de-
lay from the initial data, and in Sec. VIII, we dis-
cuss off-resonance effects and show that even in
this case, the threshold area is still n, contrary
to the suggestion by Diels and Hahn. " In Sec. IX,
we make a few brief remarks concerning the con-
tinuous spectrum. In See. X, we consider the
first-order effects of various relaxations on 2r
hyperbolic secant (h. s.) pulse propagation, using
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a perturbation theory for the IST." Our result
for the evolution of the 2n h. s. pulse height agrees
with that of McCall and Hahn, ' but for the time de-
lay, we find that the McCall-Hahn value must be
corrected for small amplitude pulses whose
widths are close to relaxation times. In addition,
we also find that in general a 2tt' h. s. pulse off
resonance will move as@ay from resonance due to
homogeneous broadening.

&, W= --,' &uo(& *A + A*e) + —,'y„(X-W)—(X+W)/T, ,

(2.6b)

&, X= -&y„(X+W)-&y„(X-W). (2.6c)

In (2.5), n is the index of refraction, o' is the ef-
fective conductivity, the last two terms give the
corrections due to the second derivatives in Max-
well's equation, while

II. COMPLETE SOLUTION OF THE MB EQUATIONS
WITHOUT DAMPING

(A) =- g(A(o)A(A(u) tfth(u, (2.7)

It will be convenient first to give a brief de-
scription of our notation, to define our quantities,
and to point out any differences from the common
usage. We start with the applied electric field,
and define a real envelope h and phase P by

E (z, t) = S(z, t)[i cos[ut —kz+ P(z, t)]

+j sin[~t up+ |t-(z, t)]], (2.1)

W = ,h&ooN(p„—-p»),
X=2@~oN(p. ee+Pbb) s

(2.3a)

(2.3b)

where &so= (E, Eb)/ft, a-nd we shall find it useful
to define also a conzphex polarization A by

A =i PNp„e"P = (i u —v}e' 'P, (2.3c)

where u(v) is the electric dipole dispersion (ab-
sorption) component introduced by McCall and
Hahn. ' In (2.3), p&, are the components of the
atomic density matrix, N is the density of atoms,
and P is the McCall-Hahn dipole moment.

For the atomic relaxations and lifetimes, we
define y„to be the inverse time constant for de-
cay from the state a to b, and y„(y„)to be the
inverse time constant for decay from the state
a (b) to any and all other states c. Thus""

11/T, = y.b+ 2y.
„

1/T2 2 (yeb + Ye + yb }+I phase

(2.4a)

(2.4b)

where I"~h, contains any additional effects on
the relaxation of the po1.arization. " We then have

s e= (A)-—go+ —,(s A)+ (s„A),27F (0 2F 27l' 21r i
nc nc n " ' nc

(2.5)

where by retaining a possible t dependence in P,
we can consider also chirped pulses. We shall
find it useful to define a conzPlex envelope &

where

(2.2)

For the atomic quantities of the two-level atom,
we shall closely follow the notation of Slusher
and Gibbs. " We define

where g(&a)} is the inhomogeneous broadening
factor, with thou =&uo —u&. In (2.6a}, Is =2p/)f,
in these equations, we are using the coordinates
X and ~, where

X=~)
7. = t (n/c)z-.

(2.8)

(2.9)

The last two terms in (2.5) are invariably smaller
than all other effects, except for extremely short
pulses. Finally, we note that when y„404y„,
then our total population of atoms (in ievels a or
b} will decrease in time. This can be accounted
for by allowing g(A+) in (2.7} to be time dependent,
as given by

~, lng = ~, lnX, (2.10)

&„e= (2w(u/nc)(A),

9 A + 2 A(dA = i: /(d )eW,

&, W = ——,'~o(e*A+ A "c) .

(2.11a)

(2.11b)

(2.11c}

In terms of the above notation, the complete
solution was given as follows:" Consider the ZS
eigenvalue problem" '"

since X is proportional to number density per
unit frequency.

As shown by Lamb, "Eqs. (2.6) for y„,=y„=0,
T, = T, =, very naturally decompose into the
Zakharov and Shabat (ZS) eigenvalue problem.
(This decomposition is even more natural than
one might at first suspect. See McLaughlin and
Corones. ") What was even more significant was
that the 2~ h. s. pulses of SIT were exactly the
"solitons" ' of this inverse scattering theory. ' '
This was enough to indicate that the complete gen=
eral initial-value problem for coherent pulse prop-
agation could be solved. After valuable conversa-
tions with Lamb, Ablowitz, Kaup, and Newell"
were able to incorporate Eq. (2.5) (upon ignoring
the last two terms and setting o'=0) also into the
inverse scattering theory, which then yielded the
complete solution. The equations which they
solved were

S,A +i thopA+ A/T, = (~'/boo) eW, (2.6a) 9T VI + S/Vj = g KCV2 ) (2.12a}
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1
V —ZJV = — KE+ V (2. 12b)

where g is the eigenvalue. The continuous spec-
trum is described as follows. Define Q to be the
solution of (2.12), for real &, where

states will correspond to a 2m h. s. pulse.
From the solution of the inverse scattering

problem, one may reconstruct the solution for
e(T, X). First, one constructs the function'

le" asT

Then a(g, X) and b(g, X) are defined from

(a(& x}e ' ')
as T +

&b(~, x)~" i
where we are assuming

e dT&~.

(2.13a)

(2.13b)

(2.14)

G(&, X) =- g D, (X)e-"'+— ' e-*'dr. ,
"b

&, x} g,
2)1 „a(g,X'}

(2.22)
where

(2.23)
~a

Dg '—- -b, —
We note that at a = 0, then due to (2.18), b = 1/b
in (2.23). Alternately, one may also determine
D, as the normalization constant for Q(j, ), since'

It is this condition which guarantees the existence
of a and b." Similarly, define Q to be the other
linearly independent solution of (2.12} which satis-
fies

P, (C, , ~) 4), (g, , r) d T = --,' D

Next, we solve the linear integral equation

T T

L, (T, 8) + dP J dy L, (7, y)G*(y+P)G(P+ 8)

(2.24)

( 0)
( -li

then b and a are defined from

b(&, x}e "'
as T-+~.

-a(&, x}e"
It follows"" for a general complex f that

4,w(g+} )(6=
—4,*(&*)i

(2.15a)

(2. 15b)

(2.16)

=-G(r+ 9), (2.25)

for L, (T, &}, which has a unique solution"" for
e ~v'. Then e(w, X) is given by

Ke(T, x) = 4L, (T, T; x) . (2.26)

The method of solution is as follows. Take the
initial data of e(T, 0) at X= a =0, and determine
b/a for g real, and the set of bound-state parame-
ters (&, , D,), „allat X=0. Then from the X de-
pendence of this scattering data, given by"

so

a(d =a*(r*),

b(r) = b*(~*),

where for real f
aa+bb =1.

(2.17a)

(2. 17b)

(2.18)

b
(

1 b " a(»)d»
a 2H z a Q~-2g zp+ '

(~)
"u(») d»

20'z ~ Aco-2 g~

'x& =o

(2.27)

(2.28}

(2.29)

From Q and Q, one can construct W and A.."'"
0+(4142 4 1 42) l c=(DQJ) /2 t

A = (+)ff&&$,$11-g=(11~)~, ,

(2.19)

(2.20}

where the upper (lower) sign is to be taken for
the amplifier (attenuator) case.

pn addition to the continuous spectrum, (2.12)
may also have bound states which vanish exponen-
tially as T-+~. From (2.13), these occur at the
zeros of a(g) in the upper-half f plane. Assuming
these zeros to be simple (for handling the case of
multiple zeros, see Refs. 1 and 24) and designat-
ing them by (g,}.. . we have at such a zero

where

o.'(»}-=(211'~'/nc)K(ding(a(d) . (2.30)

ina(f)- g ( iC„)r", -
n=j

(2.31)

[Note that no—= u(0) is simply the inverse Beer's
length. ] One can then determine the scattering
data at any later X. Now construct G by (2.22),
and determine e(T, X) from (2.25},(2.26).

It is well known that there is an infinity of local
conservation laws"" associated with (2.11).
These are found from the asymptotic expansion of
lna(f) for lgl- ~ in the upper-half g plane. This
gsves""

0
4(g, )- I l

e"' as T-+
kb, (x}i

which defines b&(X}. Each one of these bound

(2.21) where for the first three C„'s,we have"'"

C~ = 8K &+& d&, (2.32a)
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= —g, g qE-C~qE* d~,

C, = ~~' a, c '-K'-,' e*~ ' d&.

(2.32b)

(2.32c)

b(g) = ,' x-E-e '~ "& (sink. r~)/A. ,

where

A2 g2+ &~2@2

(3.3)

(3.4)

One can also obtain the C„'sin terms of the scat-
tering data. This is given by"

Thus the continuous part of the scattering data,
b/a, (for g real) i.s simply

where

(2.33)

b
( }, sinkrp

a '
A, cosA.T~-ig sinA, 7&

'

and also

b 2

(3.5}

s„i'($)= (+) o'(2 t) I'($) . (2.35)

Note that C, is just proportional to the energy in
the pulse, K Thus

nc C*EdT
4&

(2.34)

The )t dependence of I' follows directly from (2.27)
and is given by

80 = KE7'~. (3.7)

I et us now consider (3.2) and (3.3) in the limit
of small absolute areas (~f ~&~dr'«1) and when

~f~ is much larger than the Rabi frequency zE.
Then

a(g) =1,
b(g) = ,'~Ee "&-(-sings, )/g,

(3.8a)

(3.8b)

For this model (3.1}, the initial area 80 is simply

tl; + — d ( 1 n (1 + 11),4nc 1
ng ' 4r (2.36)

or

b(C) = --,'ae(2g), (3.9)

III. EXACTLY SOLVABLE MODEL

Before entering into a comparison of the com-
plete theory with others, we shall present an ex-
actly solvable model which we shall refer to often.
Furthermore, this example will illustrate what
we mean when we refer to the inverse scattering
transform as a "nonlinear" Fourier transform.

The model we take is a simple unchirped square
pulse, where at y=0,

E if 0&7&~~
e(0, r}=

0 otherwise (3.1)

where E is the amplitude, and r.~ is the pulse
width. " Solving (2.12} for the initial values of a
and b gives

g(g) = ~e ~'n[(1-g/X}e'"'n+(1+&/A}e '"'& j, (3.2)

where q, is the imaginary part of r, (q, &0), the
bound- state eigenvalues.

Finally, we simply note that as long as the Max-
wel. l-Bloch equations are valid, then this inverse
scattering solution is valid. For example, if as
the solution evolves, one finds that the dictates of
the slowly varying envelope approximation are no
longer valid, it then follows that the Maxwell-
Bloch equations are no longer valid. The IST
simply allows one to solve the undamped MB equa-
tions exactly.

where e(k) is the Fourier transform of e(&). Note
the relation between (3.3) and (3.8b). As we go to
the fully nonlinear limit where 6)0=1, then the
qualitative structure of b(g) does not change. For
I&I larger than the Rabi frequency, (3.3) is essen-
tially the Fourier transform, while for smaller
values of ~f~, it is "stretched out. " Similarly,
a(P) only differs from unity when ~f~ is of the
order of or less than the Rabi frequency. Thus
we may consider b/a to be at least qualitatively,
a "nonlinear Fourier transform" of -&~&.

The bound states of this model are determined
from the zeros of a(f) for g in the upper-half g

plane. If we define

x:—A.Tp,

y =-i/7

then requiring a(r) to be zero gives

X +J =g80q

y = -xcotx.

(3.10a)

(3.10b)

(3.11a)

(3.11b}

These equations, (3.11), are exactly the same as
those for determining the bound states of a quan-
tum-mechanical particle in an attractive, three-
dimensional, spherical well. potential. " Although,
in general, the bound-state eigenvalues of (2.12)
need not always lie on the imaginary f axis, in
this case they must, since (3.11) also arises for
the Schrodinger equation. From the solution given
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Elgenvaluee for Squore Profile

II - —exoct

---WKB

IO-

9"

in scattering space evolve in )t from (2.27)-(2.29},
where the continuous spectrum, in general, de-
cays exponentially, "while the bound-state spec-
trum remains invariant. From a plot such as Fig.
1, for a given pulse profile and initial area &o, we
can determine the bound-state spectrum which
then remains. For example, if m&8, &3n', we have
only one bound state and from (2.22}-(2.26), the
solution will approach

4'
cosh[2q, a+in(-,'D, (X) /q, ) j

' (3.15)

I

2 Tl 4 8 && IO 12 l4
e.

18 20

FIG. 1. Eigenvalues rj vs the initial pulse area 00 for
the square-pulse profile described in the text. The solid
lines are the exact solutions while the dashed lines are
the WEB solutions (see Sec. VI).

by Schiff,"we see that every time 0, crosses a
value of (2n+ 1)r, a new bound state occurs, and

the eigenvalues of these bound states may be de-
termined either graphically or numerically. A
plot of these eigenvalues versus the area of the
initial pulse profile is shown in Fig. 1.

The last piece of scattering data required is
the values of the D s. These may be calculated
as the residue of if}/a at g= g, . To obtain these
when eo& n, we define gj by

g, =i@, (j=1,2, . . . , J), (3.12)

(3.13a)gj ='Ojrp ~

x, = (-,'e', -y', )'~', (3.13b)

as given in (3.10). Then the residues of i b/a for
each value of j are

2

eoTp ~+y (3.14)

At this point, we have decomposed the initial
pulse profile into the various independent compo-
nents in "scattering space, " like in any linear
problem where one would decompose the initial
profile into the independent components in
"Fourier space. " We know how these components

where J is the total number of bound states, and let

1 1v„.=-', v —}n 8, —'(1+},}}. (3.16)

From (3.16), it is possible to determine the abso-
lute time delay for each of those 2r h. s. pulses.
Of course, when more than one soliton is present,
there will be additional. shifts arising from the
differences of the various eigenvalues. " Equa-
tion (3.16) gives only the contribution to the time
delay from Dj for this model. A plot of T,j for
the first three branches is given in Fig. 2.

The }t dependence of D, follows from (2.28),
and if n(b») is an even function, then the spacial
dependence in (3.15) is given by"""'"

1
~e(~, )})=47},sech 2q, T T„+(~}y——

21r

o!(6&d) db &d

4q', + AuP

IV, AREA THEOREM AND EXTENSIONS

One of the most simple results of the McCall-
Hahn theory' is the "area theorem. " When P is

which is a 2v h. s. pulse. One should notice how
the propagation of the continuous and the bound-
state spectrum in scattering space has a one-to-
one correspondence to the propagation of the actual
pulse (which is a no"&linear combination of the con-
tinuous and bound-state spectrum). First, the con-
tinuous spectrum decays, which corresponds to
the initial energy loss and pulse reshaping of the
actual pulse. Meanwhile, the bound-state eigen-
values remain invariant, which corresponds to
the 2n h. s. pulses propagating losslessly. Also,
strictly speaking, a 2~ h. s. pulse is never created.
Rather, it is always present, even in the initial
data, although hidden due to the nonlinear mixing
of the continuous and bound-state spectrum. And
it is only after the decay of the continuous spec-
trum that it emerges, allowing itself then to be
obviously identified,

Returning to (3.15), we will define w» to be the
center of the pulse, propagated back to y =0.
Thus by (3.14) and (3.15),
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ishes, then from (4.5) and (4.6) we obtain

tang 8()() = (tan-,'8,)e' ()"~', (4.7)

»IOI

I

p4

I
2 1T 4

I I I I

8 Nf 10 12 14 6%
GO

I I

18 20

FIG. 2. (rpg/Tp —2} vs sp for the square profile. (The
various curves actually go to minus infinity as each one
approaches its threshold area. ) The factor of —2 is
entered since the center of the initial profile is at
7 = $T& (see text).

independent of t, McCall and Hahn showed that

—= (+)& o.,sin 8,d8
(4.1}

where the area 8 is defined by

8(X) =- x &(X, r) dr.
~ ~)o

(4.2)

1 ~ 1
V] = V1p Cos28 + V2p Sln28

v2 oy p s in z 8 + v2p c os 2 8
(4.3a)

(4.3b)

where v„and v, p are arbitrary functions of y, and

(4.4)

Thus from (2.13) and (2.17), upon setting v»= 1

and v»—- 0, b/a at / = 0 is therefore simply

Of course, the area is just the linear Fourier
transform at zero argument, so it is then not at
all surprising that the zero argument of the "non-
linear" Fourier transform, b/a, contains this
area theorem also. From (3.5), we have b/a(/=0)
= —tan(s8) for the model (3.1). This is also a gen-
eral result whenever one is on resonance
[g(4a)) symmetric] and g vanishes, so that e is
real. To show this, one may readily verify that
the general solution of (2.12) at /=0 and for e =h
18

oo

(& = 0) X}= —p«(X) T}dr
a ~ oo

g X T &&(X !dT (4.8)

Inserting (4.8) into (4.6) and upon taking g(b(d) to
be a Lorentzian as Crisp did" will then give his
result. Note that (4.8) agrees with (4.5) when 8
is small and /=0.

But this is not all. Consider the McCall-Hahn
area theorem when the pulse is real. and has posi-
tive and negative parts, such that the total area .

vanishes. Now (4.1) gives a trivial result for an
important class of pulse shapes, which includes
the 0-~ pulse. ' Yo find an analogy for this class
of pulse shapes, one needs to only reconsider the
(linear or nonlinear) Fourier transform at /=0.
Although zero area implies the vanishing of this
quantity at /=0, its slope need not vanish. And,
for the linear Fourier transform, its slope at /=0
is simply related to its first moment. For the
nonlinear Fourier transform, b/a, there is also
a corresponding quantity p. , which is like a "non-
linear first moment, " and is given by

(4 9}

which is the integrated form of the McCal1. -Hahn
area theorem, Eq. (4.1).

Consequent1y, whenever the initia1. pulse is on
resonance, is unchirped, and the inhomogeneous
broadening is symmetric, we have that the area
theorem of McCall and Hahn is contained in (4.6),
due to (4.5). One now notes that (4.6) is more gen-
eral than the simple result of McCall-Hahn, since
(4.6) is valid for any integrable initial profile
(even chirped) and for any inhomogeneous broaden-
ing, g(6(x)) (x u(b(d). Although b/a at $ =0 cannot
be simply expressed in terms of "areas" in the
general case, , nevertheless (4.6) is the natural.
generalization. For example, if we all.ow the
initial pulse to be chirped, and consider the small
area limit of Crisp, "then we can obtain his area
theorem, when the transverse relaxation vanishes.
From (2.12)-(2.15}, for small areas we find

b—($ = 0, X) =. —tan-. 8(X) .
0

Turning now to (2.27), we find at g =0 that

(4.5) where

8+ = K 8

PENT

. (4.10)

xx )nlbfa) = (*)(-',a„+
X

. x'
27rz

n(a&@), (4.6)

where I' indicates the Cauchy principle value inte-
gral. When a(6(d) is symmetric, the integral van-

1
P. , y =-2epP. ~, (4.11)

As in the case of the McCall-Hahn area theorem,
(2.27} then implies that for the attenuator case,
p y must evolve according to
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when 8=0 and the inhomogeneous broadening is
symmetric. The details of this are given in the
Appendix, where we also show how to handle the
general case of 8&9, and also the "second non-
linear moment. " Naturally, there is an infinity of
these moments, al. l of which must vanish as X-'0
for the attenuator case.

d~-—=-n, VF(8, 9', "pulse shape"),
dX

(5.1)

where the pul. se energy 1 is given by (2.39). In

this form, one could interpret I" to be just the non-
linear correction to Beer's law. But still, (5.1}
was found to be valid in general. only for reason-
ably small areas of less than about 3n'. For l.arger
areas, the deviation from Beer's law becomes so
large that an expression such as (5.1) becomes al-
most useless.

The reason for this is easily found in the com-
plete theory, where we find that the puise energy
is actual. ly composed of two parts: one which is

0 2 &4 'S 8 &&IO I2 I4 O'F I8 20
9»

FIG. 3. Incident energy, radiation energy, and energy
content of the various solitions as a function of 80 for
the square profile. The units of energy are 16'~/~T&.

V. NONLINEAR TRANSMISSION

One of the more striking features of SIT is the
dramatic deviation from Beer' s law which occurs
whenever the area of the initial pulse becomes
greater than n. By simulations, McCall and Hahn'

were the first to describe this nonlinear transmis-
sion by the empirical rate equation

transmitted losslessly (solitons} and one which is
absorbed according to Beer's law (the continuous
spectrum, or radiation). The transmission of
these two parts is so dramatically different that
an approximation based on the transmission prop-
erties of one part can never fully describe the
transmission properties of the other part, as in
the case of (5.1). If we consider the problem of
nonlinear transmission in the complete theory, we
find that indeed we do not need (5.1}, since one can
obtain a closed-form solution for g(y) in terms of
the initial scattering data.

From (2.35) and (2.36) we have

(5.2}

wher«, (~) = ~(~, }i=0) and ('},j,=, are the imagin-
ary pa~ts of the bound-state eigenvalues of (2.12),
which by (2.29) are y independent,

Before continuing on, it will be well worthwhile
to consider (5.2) in various limits, and to point
out some implications. First, we start with the
linear limit where zJ ~& ~dT«l, so that there are
no bound states (solitons), and 1,($}«1. Then in
this limit

(5.3)

which is just the Beer's limit result, as one would
expect, since now I', ($) is simply the square of
the magnitude of the linear Fourier transform of
—pKe Isee (3.8) and (3.9)] at X=O. As the initial
area is increased up to an order of unity, then
nonlinear deviatiohs from Beer's law start to
occur, as is indicated by (5.1). In terms of the
scattering data, these deviations are very simple
in that I",e' " in (5.3) is simply replaced by
ln(1+ I',e'""). When the initial area becomes
greater than n, the hound-state spectrum of (2.12)
has appeared and these then contribute to (5.2). If
we consider the case of an attenuator, then as
y-+ ~, I'($, y} vanishes in (5.2), which leaves
only the sol. iton (2rr pulse) part of the energy. On
the other hand, for the amplifier case, as X be-
comes iarge, the continuous spectrum I'($, g} be-
comes larger and will eventually dominate.

In order to understand how this decomposition
of the initial pulse energy into soliton energy and
radiation energy is related to the shape of the in-
itial pulse profile, let us consider Fig. 3 where
we have plotted the initial. energy, for the model
discussed in Sec. III, and its transmitted energy
in the attenuator case (for y ="}versus the initial
pulse area. Here, one can clearly see that as the
initial. area increases and crosses (2n+1)m, an-
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other soliton (2w pulse} appears in the spectrum.
Furthermore, one should note that as the initial
area is increasing, each soliton is increasing its
own energy content, in such a manner as to allow
as much of the initial pulse energy as practical to
be transmitted. (If we had plotted the ratio of the
transmitted energy to the incident energy instead,
we would have obtained a curve similar to Fig. 13
of Ref. 17.) Consideration of other profiles which
are also slowly varying (such as the re ' and
Gaussian profiles) gives similar results, except
that the profile in Fig. 3 for the box model tends to
have the largest amount of "radiation energy, "
due to the sharp di.scontinuities at the edges.

Of course, one can also have profiles where
the radiation part does dominate over the soliton
part, and a simple example of this would be the
amplifier solution for X large, Here, the pulse
energy is essentially all radiation, and the profile
is a sharp spike followed by decaying oscillations
(ringing). Thus from the above we can conclude
that as a general rule, when the profile is slowly
varying and has sufficient (absolute) area, one
can expect the soliton spectrum to dominate. Qn
the other hand, if the (absolute) area is small or
the profile is not slowly varying (has sharp dis-
continuities or rapid oscillations) then we can ex-
pect the radiation part to become relatively more
important.

Unfortunately, at the present there is no general
simple criteria for solitons to exist for an arbi-
trary initial profile. In general, it is felt that the
absolute area J'~jc ~d~ must be at least of order m.

Of course, for unchirped profiles with only one ex-
tremum, the Mccall-Hahn result gives the simple
criteria that 8,) a. Otherwise, the Only other gen-
eral criteria is that the total change in the phase
of a(g) from g=-~ to & =+~ must be nonzero. '

VI. SOLITON SPECTRUM

After a pulse enters an attenuating resonant
medium, it undergoes a reshaping whereby the
continuous spectrum of (2.12) is absorbed by the
medium within a few Beer's lengths, and the N
solitons and M bions are formed, which eventually
break away and propagate losslessly in the medi-
um. Thus, after this initial transition region, the
solution rapidly approaches what is known as an
N-soliton solution, which is completely specified
upon knowing the bound-state parameters
(g&, D&j&", of (2.12).

Up until 1972, this final state could only be de-
termined via computer simulations of the MB
equations. In 1972, Lamb, Scully, and Hopf'
showed how one could approximately determine
the pulse heights from the infinity of conserved

( 168,/v~)ve "~'& if 0 ( v
~e(0, ~) =

0 if 7(0
(6 1)

(iii) the Gaussian profile given by

ze(0, 7)=v2 (0,/7, )e '"' '~. (6.2)

quantities, which was later extended by Schnack
and Lamb" in 1973. This was a reasonably suc-
cessful method, and why it is, can be seen by re-
considering Fig. 3. In Fig. 3, we see for large
areas, that the energy of the pulse (which is the
first one of the infinity of conserved quantities) is
almost entirely soliton energy. Thus, without
much error, one can ignore the energy retained
by the continuous spectrum and assume that all
of the initial pulse energy is distributed only
among the solitons. Similarly with the higher
conserved quantities, one can assume that essen-
tially all of their initial values will be distributed
also among the solitons. Of course, this proce-
dure will only be void when the soliton part con-
tains the major part of these conserved quantities.
In particular, as indicated earlier, whenever the
initial profile is not slowly varying and has dis-
continuities and/or rapid oscillations (as in a
strongly chirped pulse) the soliton part can be de-
creased significantly, which causes the above
method to become much less accurate.

In 1973 and again in 1974 when Lamb"' " indi-
cated how the MB equations might be related to the
IST theory, he did not point out how one can de-
termine exactly the final pulse heights directly
from the initial pulse profile. From his eigen-
value equations, Eq. (8) of Ref. 11 and Eq. (2.10)
of Ref. 13, one had that the 2m h.s. pulse heights
mould be related to the bound-state eigenvalues of
these eigenvalues problems, as shown by his
inverse scattering analysis. Although it was clear
that these bound-state eigenvalues were X inde-
pendent in the absence of the continuous spectrum
(which was the only case for which he obtained the

}t dependence}, one could not be certain that they
were also X independent in the presence of the
continuous spectrum, until the full problem was
solved. This was finally accomplished in 1974 by
Ablowitz, Kaup, and Newell, ' who shomed that
indeed these eigenvalues were alzoays X indepen-
dent, and that they (and therefore the final 2m h. s.
pulse heights} could be determined directly from
the initial pulse profile.

These eigenvalues can always be found fairly
rapidly by numerically searching for the bound-
state eigenvalues of (2.12). (Some "tricks" are
discussed in Ref. 1.) In Fig. 4, we give the re-
sults for the following three initial pulse profiles:
(i) the model in Sec. III; (ii) the we ' profile
given explicitly by
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Zakharov and Shabat, "we then have

16

(6.4)

IO-

9

as the condition for a bound state to occur, where
7, and 7., are the two turning points. For the
square profile, (6.4) can be exactly evaluated and
gives

[& 8 2 (j &)2v2]1/2 (6.5)

6-

4-

2-

2 Ã 4 8 d% IO l2
e. ' -=

l4 d1T I8 20

FIG. 4. Comparison of the exact eigenvalues for the
square profile, the 7'e profile, and the Gaussian pro-
file.

ln (6.1) and (6.2), 80 is the initial area, and &~

has been defined such that the initial energy of all
three initial profiles will be the same, namely,

when 8, ~ (2 j —1)w. These values are compared
against the exact values in Fig. 1, where we see
excellent qualitatively agreement, with the only
quantitative disagreement being a shift upward of
the WKB solution. For the re ' and the Gaussian
profiles, comparisons of the WKB results with
the exact results are shown in Figs. 5 and 6, re-
spectively. We note that here the agreement is
much better, and is obviously due to the smoother
profiles. For the 7e ' profile, which has only a
discontinuity in the slope at v =0, the agreement
is much better than for the box profile, while for
the Gaussian profile, which has no discontinuities,
the agreement is excellent with a maximum dif-
ference of only about 0.11.

It also should be noted that the WKB method
gives the threshold condition exactly [n, =0 at.
8O=(2 j —l)v] in contrast to the method of using
the conserved quantities. ' " The latter method

l2-

nC 80
0 4++ (6.3)

As one can see in Fig. 4, there is very little dif-
ference between the we

' and the Gaussian pro-
files, while the results for the box profile does
differ quantitatively, but not qualitatively.

From such a plot as Fig. 4, one can readily see
what pulse heights would emerge for a given initial
profile and area. For example, if the initial pro-
file was the ~e ' profile with an initial area. of 12,
then from Fig. 4 we would see that the two 2m h.s.
pul. ses which would emerge would ha, ve the eigen-
values gv~ equal to 2.1 and 6.6, respectively,
which by (3.17) gives the pulse heights as being
8.4(zv~) ' and 26.4(ex~) ', respectively. Of course,
knowing the pulse heights and the inhomogeneous
broadening factor also gives us the respective ve-
locities but not the absolute time delays v0&. But
these would follow after determining the D,.'s, as
indicated in Sec. III.

When the initial pulse profile is slowly varying,
unchirped, and has only one extremum, then one
may use the WKB approximation to determine the
bound-state eigenvalues of (2.12). Following

IO-

0'-
2 Tf 4 8 & IO I2 I4 deaf

e.= l8 25

FIG. 5. Comparison of the exact and %KB eigenvalues
for the Te " profile.
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12
where L is the sample length, assumed to be
larger than several Beer's lengths. Consider now
the limit where the initial area 80 approaches g
from above so that i7&

—0' (j= 1). Then from (3.16)
we find

tv = (I/27};)[2 Ln, —In(7i/47), T~)]. (7.2)

Thus, for small pulses, the effect of 7„.is to de-
cxease the McCall-Hahn value of the time delay
by reducing the effective value of Ln0. Thi's iS
not unreasonable, since one could interpret (7.2)
as if these small pulses were not formed until
the initial pulse had penetrated a Beer distance of
2 in(~/47},.~,).

One can easily a.rgue that (7.2) is also qualita-
tively correct for a general pulse profile, since
in general, from (3.15), v, &

= (I/2'&) ln(2D, ./rt&).
As g&- 0, D,. should approach a nonzero constant
value, giving the limit of (7.1) again being of the
form of (7.2).

VIII. OFF-RESONANCE EFFECTS

2 % 4 8 RT IO I2

e.~ l4 dTf I8 20

FIG. 6. Comparison of the exact and %KB eigenvalues
for the Gaussian profile.

has its largest error when the initial area is
close to these threshold values.

VII. ABSOLUTE TIME DELAY OF 2m h.s. PULSES

As pointed out by McCall and Hahn, ' a 2m h.s.
pulse undergoes a constant delay time per unit
length as the pulse propagates through a resonant
medium. However, what is usually measured is
instead the absolute delay time, which contains the
effects of Tp& which is given for -the box profile
by (3.16). As seen in Fig. 2, this contribution can
be a significant amount when the pulse height is
small, "although for such a wide pulse, the relax-
ation effects will certainly be important also.

Deviations from the McCall-Hahn value when the
initial area is close to m are already known to
occur from computer simulations, ' where as the
initial area decreases toward w, the time delay
at first rises, reaches a maximum, then quickly
drops toward zero. We find this behavior also
present in the model of Sec. III, and will proceed
to describe it.

Considering only the one-soliton case (9,& 37i)

we have from (3.1), (3.17), and (2.9), that the
absolute pulse delay t~ for the box profile in the
attenuator case is

( p) e-i btd'r/2v (T p)

v, (v, 0) = e' 't'v, (v, 0),
then (2.12) becomes

8~ Vg+1(Vg = 2 KEV2 y

A ~ A A

B„V2—$$V2 = —p K6Vg,

where

K=K+ ~&~

(8.1a)

(8.1b)

(8.2a)

(8.2b)

(8 3)

When the central frequency of the initial profile
is not exactly matched to the central frequency of
the atomic line, the McCall-Hahn area theory is
no longer valid, ' the effective Beer's length
changes, "

2m h. s. pulses form at a slower
rate, ""'"their central frequency becomes equal
to the central frequency of the initial profile, "'"
and when one is far off resonance, one can re-
cover" the usual linear dispersion theory if the
initial areas remain sufficiently small. All of
these effects ca.n be explained with the complete
theory.

As noted by Lamb, " the off-resonant case is
equivalent to the on-resonant case upon introducing
a frequency shift. To see how this arises, take co

in (2.1) to be equal to the central frequency of the
atomic line so that g(b, id) is symmetric. If the
initial profile is unchirped but off resonance by

the amount 6&d, then at }t = 0, i' = 6&iiv, and by (2.2),
e is now complex. Turning to (2.12), one finds
that upon defining, at X = 0,

L "n(b&u) d&~
4'

„
ili2+ (a(u)' ' (7.1)

and e is real. Equation (8.2) is just (2.11) re-
written. Thus determining the scattering data in
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the off-resonance case is equivalent to the same
as in the on-resonance case, except for the eigen-
value (frequency) shift given by (8.3). From (8.1)
and (2.13), if we let a(g) and b(g) be the scattering
coefficients for (8.2), then

nitude. However, b/a for gc 0 cannot be expressed
simply in terms of areas, but (8.10) does indicate
again the slower decay rate. Also, it is known
that for off resonance, the absolute area does not
monotonically approach the values of 27tn. "'

a(g) = a(g) = a(g+ —,'5~),

b(~) = b(i) = b(r+ '5~-),

(8.4a)

(8.4b)
IX. CONTINUOUS SPECTRUM

and for the bound states
A

)~). (8.5)

First from (2.22)-(2.26) and (8.5) for a one-soli-
ton state, we have

4i) ei8je 2ikg-r

cosh [4il,. (~ —i.„.))
' (8.6)

e4 R~e 2

pygmy

and (2.28), and we have set
I

g,. = $, + ii), .

(8.7)

(8.8)

When e in (8.2) is the box profile of Sec. III, then
in (8..5) is real, which by (8.8) gives

where P& and voi are the only functions of X through

Contrary to the soliton spectrum, the continuous
spectrum is almost linear in its nature, at least
qualitatively. "'" In SIT, due to the exponentia. l
decay of the radiation, as given by (2.27), this
part of the spectrum usually dies away fairly
rapidly, "except for small blips or "precur-
sors"."'"'" The solution for thin attenuators
has been given by Burnham and Chia" and
Crisp"'" has also obtained solutions for small
areas.

When the sample length is finite, that part of
the energy or electric field which corresponds to
the continuous spectrum need not decay exponen-
tially, due to a variety of reasons. As pointed
out by Crisp, "for the Te profile given by (6.1),
the energy decays according to

(8.9) 7'(X) = &(0)e "'"I.(n. X), (9.1)

for all j values. Thus all the soliton solutions as
given by (8.6) will contain the factor e' ~"', and
thus will oscillate at the central frequency of the
initial pulse profile.

One should also note that due to (8.5), moving
a pulse off-resonance will not allow solitons to-
form for initial absolute areas less than m, con-
tra, ry to that suggested by Diels and Hahn. " In
(8.2), if the absolute area is less than ii, by the
area theorem (since e is real), no bound states
can occur.

For the radiation part of the spectrum, if b(g)
is centered at g =0, then b(g) will be centered on

g = ——,'6(d. Thus in (4.10), the radiation will decay
at a rate of n( —bi()) instead of n„and we may ex-
pect solitons to form at a slower rate. However,
due to D, =Di in (8.5. ), the value of v.„.for each
soliton will be the same as if it were on resonance.
Thus for not too large thicknesses, the time delay
will not be affected by moving off resonance. "

Finally, we note that for off-resonant profiles,
the natural generalization of the McCall-Hahn area
theorem would be the evolution in X of b/a(|;=0)
= b/a(g = ——,'5(()). From (2.27), we have

e
„

In[&/a(g = --,'5(o) j

1 "
n(&u&)=(*)(-' (-& )+ .

2wi „+a+~M

(8.10)
which has a decay rate of &n(-6(()) for the mag-

for small areas, where I,(z) is a Bessel function.
For x large, (9.1) reduces to

&(X)= &(0)/(2iin. X)'" (9.2)

which decays instead only algebraically. Briefly
stated, the reason for this is due to the radiation
in the wings of the (nonlinear) Fourier spectrum,
which is attenuated very slowly due to the small
value of g(2$) for $ large. Thus if a significant
amount of the radiation is contained in the wings
(4T,*'$' ~ 1), this will not be absorbed until X be-
comes very large.

For the profile given by (6.1) and used by
Crisp, we have

6I j 2

—,(5)=—. --'«(2k) = (9.3)

for sinall 8,. Here we see b/a= $
' as (- ~ giving

a significant amount of radiation in the wings. Of
course, this limiting form is due to the discon-
tinuity in the slope of (6.1) at i =0, and this again
illustrates how we can consider b/a like a non-
linear Fourier transform.

Anytime the linear Fourier transform of the
initial profile has significant components in the
wings, we cannot expect an exponential decay.
This will occur whenever the initial profile has
discontinuities, is chirped, or is off reso-
nance. "'"'" Although this may give the aPPeaz-
ance of transparency, it is not true SIT, since
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the propagation is not completely lossless as is
the case for solitons.

~ OO 4

4 [U) = — d7 [e„U,+ e*„U,], (lo.5)

=- —,f[y, q;g],
1 (10.1)

I[4 0' &j]4 x D (ay}&

aj' I J[e(t'j}]
j,)( ( y)2 [ v 4 ~jy]

( y)2

(10.2)

(10.3)

X. FIRST-ORDER EFFECTS ON 2m h.s. PULSE
PROPAGATION

In their second paper' McCall and Hahn derived
some of the first-order effects of relaxations on
2w h.s. pulse propagation. The same can be done
also in the inverse scattering framework, where.
one seeks to determine the deviations of the scat-
tering data from the solutions of (2.27)-(2.29).
This can be done by using a recently developed
perturbation expansion" for the Zakharov-Shabat
problem. Although this expansion was derived
for inversion about x =+~, it is a simple matter
to obtain the corresponding result for inversion
about x= -~, as is the case here. For (2.12),
we have

and for n =1 or 2,

(10.6)

In (10.1)-(10.3), |t) is the solution of (2.12) satis-
fying the boundary condition

~e'~' as 7-+~,
(IJ

which in terms of Q and Q is

g=bQ —aQ.

(10.7)

(10.8)

In (10.2) and (10.3), aj (aj) is the first (second)
derivative of a(f) with respect to g, evaluated at

Also, note that due to (10.6), 8[4'(g j)] is in
general almost the g derivative of I [g, g; f], and
it is the derivative whenever e is on compact sup-
port. However, in general the integration over 7
and the differentiation with respect to g do not
commute, so in evaluating (10.5), one must first
evaluate (10.6), and then (10.5).

From (2.6) and (2.10), one finds that

where the functionals I and J are defined by

I [u, v; g] = — d7 [e„u,v, + e*„v,u, ],2K

2
(10.4)

y ( v; (]=vf (( y')I "=- +f ))((, y) «,
where

(10.9)

(10.loa)

h((, y)= „—v v, (tv(1'/y, +yv, )(~~ V )+ ~
(y„—yv)( ~ ~ )

—j~(-A„+A)
—(vv)

(v v +v v ) (y —y ) +(2/y —y +4y ) —4y -))

(10.10b)

We shall now evaluate (10.2) and (10.3) to first
order in the perturbing terms for a single 2w h.s.
pulse. In (10.10), we therefore only need g, A,
W, X, and g to only zeroth order. In (10.9), since
f is to be evaluated only at 7=+~, we only need to
know what g will be at these limits, which to all
orders follow from (2.13), (10.7), and (10.8).
Furthermore, in (10.2) and (10.3), we shall only
need to evaluate f at 7= -~, at which point, g, A,
and W are known. [However, in the evaluation of

(10.1) for g real, it would be necessary to know
also A at v =+~ to first order. This we shall not
do here, and thus we will not discuss how these
first-order effects affect the area theorem. ]

For a 2jj h. s. pulse in zeroth order, from (2.22)
we have

(10.11)

Then solving (2.25) for L,(7, 8), one may construct
Q and P [Eqs. (4.36), (4.37), and (4.39) in Ref. 1),
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which from (10.8) gives I[4 0'0 ]=-
ncaa,

48m',

1+Z*Z

where

Z-=(D, /2g, )e "i',
a = (g g, )/(g g,*) .

(10.12)

(10.13)

(10.14) where

x —A +2A
3 1

'1 ' 'T
2 1

+ 3iyb, B1—2iB2

1
+ ay, c

1 1
T

—
T --:y-'y"

1 2

(10.18)

W Z*Za*(l —a)'
1+ —= -2

X (1+Z*Z) ~ (~ )(,
(10.15)

Also, from (2.19), (2.20), and (2.26), and since
X= —,'h+P' in zeroth order, "we have

o(a(o) da(u
— I[(&~—20,)/(2n, )]'+ I]" '

"~(»)[(&~ —2h, )/(2n, ) ]«~
].[(~ —2&,)/(4, )]"Ij"

a+ +Z+Z
A = km'(I —a)Z (10.16)

For the evaluation of J[4'(g~)], one can note that
this can be done by letting u = s = f in (10.10), then
we have

~e =8rI,Z/(I+Z*Z) .
From the above, one may then evaluate

I [/, g; (,], and find that

(10.17)

01
(10.20)

J[e (g,)]= — ', (A, —iB,) + ' r„+
32m&1 yg gg1 48mg1

1 2 1 1 1—6yb, '9,70A, —3A, T T
—2 y„+2yb, +4A3 T

—
T y ' 60'T 'A T

+
1 2 1 2 2

1 4 1 1, . 1 1+iB, T T 'y, +4yb. -4E.B, T T '-:yb. -4in, T„B,——
T --:y..+yb.

1 2 1 2 Tl 2
I

+ [2Bl&1—i(&1+B1)]— [Al&1+ Bl"I)1—'(Al&l+ Bl&l)]

1 1 1
+4g,r„A,—+ —,'y„—+ 3iy~—B,(1+2g,v, ) (10.21)

In (10.21), ro, is the central position of the 2w pulse, which is a function of y, and is given by (8.7), or

v„=—(1/4q, ) 1 n (4q', /D,*D,) . (10.22)

Also, the quantity v, h) is a "turning-on" time. When y„=0,it does not occur. But when y~, o0, the ground
state of the two-level system is unstable. Thus at some finite time in the past vog) it must have been pre-
pared, and we have assumed that it was prepared well before the pulse arrived, or

(~oi- &o)n, »I, (10.23)

when y~t 0.
Decomposing D, and f, as given in (8.7) and (8.8), and using (10.2), (10.3), and (10.14), we have from

(10.18) and (10.21),

4g]g 1 3 1 1
n —— i-

nc '
12m g, T ' T, T

—A +2 ———+2y A (10.24)

1 1
3By&, —2B~ T

———~y c a+y
1277'g1

1 2 1 1 1.. — "—,——, .— -)X 8gg1 $Qgq 1 1 2 1 2

4B,g,y, —— ~y„+y„— (A, +B,)+ (A,q, +B,(,)
1 1, 3c
1 2

(10.25)

(10.26)
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1
,+, -Sy,.y(,n, (y„—y,)+3y(, ————-'y., y&yy, .)16Wg, 24m ql

1 1, 3CBlA
3 T T

+ 3yb 4
+ +1~1++1!1)

Tl T2, 4'I'Pl(d
(10.27)

In Eqs. (10.24)-(10.27), we have the first-order
equations of motion for the parameters of the 2m

h.s. pulse, as given by (8.6). From (8.6), (2.8),
and (2.9), we see that 43!,/g is the pulse height,

p, +2 1!X/c is the phase at fixed X, &u —2(, is the
instantaneous frequency, and Yo, is the (retarded)
central position of the 2m h. s. pulse. One should
note that due to (10.19), 43&A, . Thus )7, „&0if
cr&0, and the pulse must then always decay.

Even in first order, the effect of the second
derivatives in Maxwell's equation [the last two
terms of (2.5)] is in general very small, and is
given by the last two terms in (10.26) and (10.27).
(They affect the eigenvalues only in second
order. ") These terms would need to be considered
only for pulses much shorter than those in current
usage.

We note that (10.24), upon setting n =y„=0,is
exactly the same as that obtained by McCall and
Hahn' for the decay of the pulse energy, since
9 = (4nc/vx')3), due to (2.36). From this, one can
determine the lifetime of the pulse, since. when

g, becomes zero, the 2m h.s. pulse is no longer
present, and its energy is then rapidly absorbed
by the medium.

More interesting is the implication of (10.25).
%hen y~ =0 and if q,T2*«1, we have

(, ,„-n, n'(&(, ) y
—y——-y..) ((() &())

1 2

resonance initially, it will usually slowly drift
away from resonance. This follows since (10.30}
and (2.4) shows tha. t if we want the stable case
where an off-resonance pulse will move toward
resonance for yb, =0, then y, i&y.,+2rph.. But
this requires decays from the upper level a to
all other states to dominate over decays to the
lower state b.

Finally, (10.27) gives the equation of motion of
the time delay. Although another expression has
also been given for this by McCall and Hahn, ' for
small pulse heights, ' they neglected the most
important terms. As given by them, they only
considered the first term (10.27), which is the
zeroth-order term. [In truth, one probably cannot
directly obtain these additional terms from the
MB equations, since these terms arise from the
affect of the perturbations on D~ (X = 0), a quantity
which does not occur in the McCall-Hahn theory,
but which does naturally occur in the inverse
scattering formulation. ] If we consider (10.27}
for y~, =0, neglect the terms inversely proportional
to +, and take the small pulse height limit,
g,T2*«1, then we have

(10.31)

where T, '=T, '+-,'y„,and we have used the ap-
proximation (for n & 1)

s(2n —2)!
n Il ( ~l) 4n-1[(n I)!]3 ' (10.32)

B3= 2w)71o. '(2g, ), (10.29)

for (3.(b, (d) symmetric about 6(() =0. For the atomic
rubidium system, (T, ' —T, ' ——', y„)is positive,
and for a Gaussian inhomogeneous broadening,
())'(2$,) = ),T3n3c((2$,}.—Thus we then have

x= c((2(,)[~~1T3n (T, ' —T3 —3y„)](,, (10.30)

showing that a 2m h.s. pulse off resonance will
move as@ay from resonance. One should note that
this result is only valid after the 2v h.s. pulse is
formed. The frequency shifts occurring during
the initial formation of a 2m h.s. pulse have been
discussed by Diels and Hahn. ' Since the path
lengths used by Slusher and Qibbs" were not very
long, the shifts they observed were probably most-
ly due to initial formation of the 27t h.s. pulse.
However, over longer path lengths, Eq. (10.30)
shows that if a 2m h.s. pulse is not exactly on

n1(x) = 3)1(0) —k() (211)x/T, (10.33)

where T, '= (T, '+2T, '+ 3y„).Then the solution
of (10.31) is

701(X)—T()1(0)+T, in[a, (0)/7!, (X)]

—T l 1 1

)71(X) )7, (0)

(10.34)
As shown by (10.34), the delay time will at first
rise due to the ln term, but as the pulse height
decreases, this rise will eventually stop, with
the delay time then decreasing as the pulse starts
to decay more strongly where g,T,-1. Thus

In order to integrate (10.31), we need )7,(X}, which
follows from (10.24} and (10.32), and for o =0, this
ls
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when the pulse width ~2, ' becomes of the order
of magnitude of the relaxation times, deviation
from the McCall-Hahn value of nX/(Sg, ) will
occur.

APPENDIX: NONLINEAR MOMENTS

The nonlinear moments will be defined as the
coefficients of a power series expansion of b/a
in 2ig. In the linear limit (Ref. 1, pp. 266-271),
we have

h = g h„(2g)",
n=p

(A loa)

f= Q f„(2if)",
n=p

(A10b)

then the solution for the first three terms is

hp=1, (A 1 la)

We may solve (AS) and (A9) in a Taylor series
expansion of 2ig, given by

—(&)= —— 1(S(~,x)e"(' d7. ,6 2- (A 1) fo=o (A lib)

so we will define our nonlinear moments p,„by hg = gK 7$ Sing, d7
7

(A 11c)

so that in the linear limit

(A2) j.f, =-2I( 7 h cos8+ d7 ~ (A 11(i)

(«, (x)= i «(l(«, x)«" «(«. (A3) h, = &K 8 2~h, sin8, —2v icos@, dv, A11e
T

(A4a)

First, we note that the solution (j( (Ref. 1) of
(2.12) satisfies the boundary conditions

t0) as 7-+
( Ii

f, ==,'«f g(«'+2 f«,
s' «8+2 «,(««t««o)d .«

(Aj lf)

From (A5)-(A7) and (4.2) we have

J(b
as 7- —~.

k ae'&')

Thus

To find g, and (j(„welet

(A4b)

(A 5)

b/a = -(h tan —,'8 —f)/(h+ ftan —,'8) .
From (A2), (A10), and (A12), we find

jLL, p =2tan ~6),

p, ( = —2f~/cos 2 8,

p., =4(f,h, +f', tan —,'8- f,}/cos' —,'8,

(A12)

(A13a)

(A13b)

(A 13c)

(j, =(fcos&8, -h sin-,'8,)e '(',
(j(, = (fsin-,'8, +h cos-,'8,)e'(',

where

8,—= z 5 ch. .

(A6a)

(A6b)

(A7)

where in (A13) it is understood that the f„'sand
h„'sare to be evaluated at w = —~.

From (2.27}, upon expanding the integral in a
power series of 2i&, one obtains for the equations
of motion of the first three nonlinear moments,
the following

It then follows that the functions f and h will
satisfy

f, —,'if((h sin8, s—in2$7

+h((g(sin'gv. ——,
' i cos8, sin2t r) = 0, (ASa)

1
Pp x

= —pgpQp ~

1 JLl p dAQg n'(&oo),
2w

(A14a)

(A 14b)

h, + 2thxS sinQ+ sin2$7 & (&(d ) + o V o &4 ~+(d
(A14c)

h(7, x, &) =1

f(~, x, &) =o
(AQ)

feb (sin'$7+ 2i co—s8, sin2&y) = 0, (ASb)

subject to the boundary conditions
when o. (h(d) is an even function, and where (((o
= n(0), no'= [d'n(b, (o)/dA(o']~~ -o and n'(A(o) is
the first derivative. Of course (A14a) is just
the McCall-Hahn area theorem, and when 6= 0,
(A14b) gives (4.11).
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