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A high-intensity single-mode gas laser is analyzed by several mathematical methods. Exact numerical results

are best obtained by solving for the coeAicients of a Fourier series solution by using a backward recurrence
scheme or a successive convergents method for evaluating a continued fraction. Numerical integration

techniques can also be used to convert the periodic boundary conditions to initial conditions and then solve

the resulting initial-value problem. Direct analytic integration leads to exact solutions in terms of Bessel
functions for the special case of zero detuning, equal decay rates, and neglecting of collision broadening.
For general single-mode operation, an improved analytic approximation [the second recursion relation

approximation (2RCRA)] is obtained by taking an additional term in the recursion relations for the Fourier
coefficients. This approximation predicts the existence of one of the secondary resonances in graphs of the

spatially averaged population inversion and quadrature polarization coeAicient densities and matches the exact
solution from the position of the first resonance and outward independent of the intensity. The 2RCRA also

matches the exact detuning curve except at small -detunings. The first-order ("rate equation" ) approximation,

by comparison, does not predict any secondary resonances and does not match the exact solution at higher

intensities. A physical interpretation for the appearance of the secondary resonances is presented in terms of
multiphoton interactions and a prediction for the positions of the resonances for the special case discussed

above is obtained. As predicted by Greenstein the exact detuning curves show quantitatively that the Lamb

dip decreases and disappears as the intensity increases for high excitations.

I. INTRODUCTION

One of the most successful theories of the laser,
which also provides a basic understanding of the
interaction between matter and radiation, was
presented by Lamb' in 1964. In this semiclassical
theory, classical electromagnetic fields are as-
sumed to interact with quantum-mechanical atoms,
inducing a polarization which in turn supports the
field. Self -consistency arguments lead to equa-
tions which determine the amplitude and frequency
of the field as functions of the induced polariza-
tion. A quantum-mechanical analysis of the inter-
action produces a set of coupled differential equa-
tions describing a velocity ensemble averaged
density matrix. This density matrix determines
the transition-level populations and the polariza-
tion. The polarization can then be used to obtain
the field amplitude and frequency.

Lamb's perturbation solution explains most of
the features of laser operation including the de-
pendence of output intensity on cavity tuning for
a single-mode laser (e.g. , Lamb dip) and mode
competition effects (e.g. , mode locking) for the
multimode laser. The drawback is that it is only
valid for very small field intensities near thres-
hold. Thus for understanding practical laser
operation more exact solutions are necessary.

One attempt at such a solution has involved a
rate equation or "hole-burning" approximation' '
(REA) in which temporal and spatial variations
(pulsations) in the population inversion density

have been neglected. For the single-mode laser
this provides much useful information' ' (including
the characteristic "hole" or depletion resonance
in the population inversion density for atoms whose
Doppler-shifted frequency matches the cavity fre-
quency) and is valid at higher intensities than the
perturbation solution. However, for the multimode
laser it cannot describe mode competition phen-
omena because it neglects temporal variations.

A theory valid at high intensities has been de-
veloped for the single-mode laser by several au-
thors. ' ' Their method consisted of substituting
a spatial Fourier series for the density matrix
elements and solving the recursion relations for
the coefficients by continued fractions. The re-
sults have shown that at high intensities additional
resonances appear in graphs of the spatially av-
eraged population inversion density superimposed
on the major "hole-burned" depletion resonance.
Kuroda and Ogura' have proven the convergence
of the continued fraction for arbitrary intensities,
and the problem of roundoff errors in the numeri-
cal evaluation of the continued fraction has been
eliminated by using the method of successive con-
ver gents. '

The Fourier series method has also been used
to develop theories for the high-intensity single-
mode ring laser, "multimode unidirectional
traveling-wave laser, " and saturated absorption
spectroscopy. ' "'" For the multimode standing-
wave laser this method leads to a multiple (spa-
tial and temporal) Fourier series, and a multiple

j.6
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continued fraction, which have not been evaluated.
Thus the multimode standing-wave laser has still
not been treated in a high-intensity formulation.

The purpose of this research has been to develop
new methods and improve and expand on the pre-
vious methods for solving the high-intensity single-
mode laser problem. New physical interpretations
for the results, which contribute to the under-
standing of the laser processes, are also pre-
sented. It is to be expected that the additional
methods and physical insight will also contribute
to related research areas including high-intensity
multimode standing-wave laser theory and satur-
ated absorption spectroscopy.

Section II contains a discussion of the physical
system and formulates the laser equations as a
matrix differential equation with a periodic co-
efficient matrix. The methods which are used to
solve this equation subject to periodic boundary
conditions are discussed in Sec. III and presented
in Secs. IV-VIII. For a special case of single-
mode operation, i.e., when the cavity is tuned to
the atomic frequency, the transition-level decay
rate are equal, and we neglect collision broaden-
ing, an analytic solution is obtained in Secs. IV
and V. This case has previously been solved'" "
by various methods and the present research
serves to relate these methods and expand upon
them. One of the results obtained also allows for
the prediction of the secondary resonance posi-
tions in graphs of the population inversion density
(and polarization) as functions of atomic velocity.
Section VI presents an integral equation solution
for general single-mode operation which is simi-
lar to the integral equation representation of
Mathieu functions. In addition, a method for
solving the differential equation directly through
numerical methods is discussed in Sec. VII. Al-
though this method is not the best for obtaining
solutions for the general single-mode laser it
should prove useful in other applications, such as
the multimode standing-wave laser, which have
still not been solved. Section VIII presents a new
backward recurrence scheme for evaluating the
coefficients in a Fourier series solution. This
method and the successive convergents evaluation
of the continued fraction provide the best means
for obtaining numerical results. Also by trun-
cating the Fourier series and solving for the co-
efficients analytically we obtain analytic approxi-
mations to the solution. In Sec. IX the numerical
results are presented and comparisons are made
to the analytic approximations. It is shown that
the second-order (recursion relation) approxi-
mation (2RCRA) is greatly superior to the first-
order (rate-equation) approximation (REA). As
discussed in the physical interpretation of the re-

suits (Sec. X), the second-order approximation
includes some of the dynamic coupling between
the traveling waves which compose the standing
wave whereas the REA treats them as separate
waves.

Finally in Sec. XI we discuss the relationship
between the relative excitation, field intensity,
and cavity tuning. Numerical results are pre-
sented and compared to the analytic approxima-
tions. A more detailed discussion of this research
including listings of the computer programs which
obtain the numerical results can be found in Ref.
17.

II. PHYSICAL SYSTEM
I

The semiclassical treatment of the laser' relates
the classical laser electromagnetic field with the
quantum-mechanical polarization of the active
medium.

Following the development of Refs. 1, 5, and 6 we

consider the steady-state operation of a laser in a
single longitudinal mode. The electric f ield at
time t and axial position z is assumed to be given
by (all fields are taken to be polarized in the x
direction)

E(z, t) = E, sin kz cos vt, (2 l)
where E, is the amplitude, v is the angular fre-
quency, and k =mr/L (m is a very large integer)
is the wave number. This field induces a polariza-
tion

P(z, t) =O'I C(z) cosvt+S(z) sinvt], (2.2)

Eo = —(Q/eo)S (2.4a)

( v —Q)E, = —(v/e, )C,
where

(2.4b)

((

&S)

(C(z)i
dz sinaz

I

ES(z) )
(2.5)

where C(z) and S(z) are in phase and quadrature
coefficients and 6' =e(a ixib) is the electric dipole
moment between excited states a and b. In the
presence of the field the atoms experience an in-
teraction perturbation

(2 2)

which induces stimulated emission and absorption
transitions between states a and b.

By taking the spatial Fourier projection of the
wave equation on the cavity mode' (integrating with
the factor 2L 'fo dz sinkz) and equating coeffici-
ents of sinvt and cosvt, one obtains the amplitude
and frequency determining equations for steady-
state operation
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X„(v)=A„W(v), o.=a, b (2.6)

where A„ is constant and W(v) is assumed to be
the normalized Maxwellian velocity distribution

are the spatial Fourier projections of the in phase
C(z) and quadrature S(z) polarization coefficients,
e, is the dielectric constant, and Q is the cavity
mode "Q" value. The field frequency v will be
slightly shifted from the cavity frequency 0 =ck
because of dispersion effects in the medium.

Before Eqs. (2.4} can be used to determine the
amplitude and frequency, we first have to obtain
C and S as functions of the field through a quantum-
mechanical analysis of the interaction between the
excited laser atoms and the field.

First we assume that the laser transition lev'els
a and 5 (with energies W, &W,) are pumped at the
rate

(
z.(v) 0

)0 X,(v).

and the decay matrix

=(: '„)

(2.11b)

(2.11c)

For steady-state operation the time dependence
can be removed from the problem by taking out
the optical frequency oscillations through the s.ub-
stitution'

p„(v, z, t) = p, (v, z)e '"' (2.12)

and neglecting terms with the rapid time variation
exp(+2ivt) (rotating-wave approximation). Writing
out the elements of (2.11}[noting that p„(v, z, t)
= p*„(v, z, t)] we obtain

[vs/Sz+f {e—v)+y, ~] p, (v, z)

W(v) =(u4~ )-'e-" ~", (2.7) = j V(z, t)[p„(v, z) —p»(v, z)], (2.13a)

where u is the most probable speed. This pumping
rate density gives the density of atoms with axial
velocity v that are excited to state n per unit time.
These energy levels are assumed to decay to low-
er states with the constant rates y, and yb. Thus
in the absence of the laser electromagnetic field
the pumping results in a population inversion
density

At, (v) = ~,(v)/y. —~,(v)/y,

and a total active atom density

M, (v) = A, (v)/ro. +~ (v)/r

(2.8)

(2.9)

W, liV(v, t))jI(z, t) =
hV(z, t ) Wt,

(2.11a)

In the presence of the laser field interaction-in-
duced transitions change the relative populations
of the active states a and b. This interaction is
analyzed by using a classical ensemble averaged
density ma.trix';

( p„(v, z) p„(v, z, t) )
p(v, z, t)=

i i, (2.10)
(p~ (v z t} p»(v, z) j

which describes an ensemble of atoms at z moving
with axial velocity v. This density matrix satis-
fies the equation of motion

(
8 8

+ v —p(v, z, t) = A.(v) —ih '[H(z, f), p(v, z, t)1

——,
'- J I", p(v, z, t)}, (2.11)

where [ ] denotes the commutator and ( }denotes
the anticommutator. The other quantities are the
8amiltonian

yab Yab Yab + +yah (2.14a)

(2.14b)

where the velocity dependence of the modifications
hy, b and A~ has been neglected.

Solving Eq. (2.13) for the density matrix p(v, z}
enables us to determine the polarization and the
transition-level populations as functions of the
electric field. First we note that the contribution
to the polarization due to each velocity ensemble

. is given by

P(v, z, t ) =5'[p,~(v, z, f) +p„(v, z, t)], (2.15)

which, in analogy with Eq. (2.2), can be written as

P(v, z, t) =(P[C(v, z)cos vt+S(v, z)sinvt], (2.16)

where [using Eq (2.12)].
C (v, z) = 2Re[p, (v, z)] (2.17a)

(vs/az + y, )p„(v, z)

= A.,(v ) +i V(z)[p, (v, z) —p,* (v, z)], (2.13b)

(vs/sz+y&)P~, (v, z)

= ~b(v) —i V(z)[pl(v, z) P*, (v, z—)], (2 13c)

where V(z) =(O'Z, /2h) sinkz, 7„=-,'(y, +y, ), and
&u =(W, —W~)/k.

The presence of collisions cause a broadening and
shift of the atomic line shape which, in the sim-
plest case, may be taken into account by the re-
placements" [in Eq. (2.13a)]

the pumping matrix S(v, z) = 21m[p, (v, z)] . (2.17b)
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These coefficients are related to the polarization
coefficients C(z) and S(z) defined in (2.2) by

(C(z)1
„dvII'(v)

I
)

(218)
(8(z)1 "

ES(v, z) j
The spatially averaged cavity mode projections
C and S, for use in the amplitude and frequency
determining Eqs. (2.4), are then obtained by using
Eq. (2.5).

The population inversion density and total active
atom density in the presence of the field for a
velocity ensemble with velocity v at the point z
are given by

C(y, K)

S(y, K)
N. M(y, K)

N(y, K)

the nonhomogeneous part

M„/N, + rg

1+Y„Mo/N~

(2.23a)

(2.23b)

N(v, z) =p (v, z) —pbb(v, z) (2.19a)
and the coefficient matrix

M(v, z) =p,.(v, z)+p„(v, z), (2.19b)

respectively. In the absence of the field (e.g. , be-
low threshold) the population densities are given
by (2.8) and (2.9).

Rather than solve Eq. (2.13) for the density ma-
trix elements and then determine the desired
quantities in (2.17) and (2.19), we transform Eq.
(2.13) into a set of dimensionless differential
equations which directly determine the desired pop-
ulations and polarization coeff icients. This is
accomplished by introducing the dimensionless
variable

(2.20)

and the following dimensionless parameters:

I"(y) =

0 -(2I )'I'r, siny r„

0

(2I)' 'r, siny

+d

(2.23c)

Upon solving (2.22) for Z(y, K) the polarization
and populations of an ensemble of atoms at axial
position y with velocity K are obtained in terms
of the field intensity, cavity detuning, decay rate
ratio, and collision parameters. Similar infor-
mation can also be obtained for the spatially av-
eraged population densities and cavity mode pro-
jections of the polarization for each velocity en-
semble by writing

K —= kv/r, b,

the velocity parameter;

5 -=(e —v)/r. b,

the detuning parameter;

rc rab/rab 1 ++Yah/rab &

the collision parameter;

Y. rb 1 r.—/rb-
Yd r. + rb 1+r./rb

(2.21a)

(2.21b)

(2.21c)

(2.21d)

C(K)

S (K)
Z(K) -=-

M(K)

N (K)

2siny C(y, K)

2 siny S (y, K)
dp

M(y, K)

N(y, K)

(2.24)

the level-decay-rate ratio parameters; and

I=6"E,'/(2 h'r, r,-),

(2.21e)

(2.2lf)

With a knowledge of the polarization coefficients
in (2.24) the coefficients C and S for use in the
amplitude and frequency determining Eqs. (2.4) are
obtained by integrating over all velocity en-
sembles, i.e. ,

the intensity or satur ation parameter.
In terms of these dimensionless quantities Eq.

(2.13) is transformed into the matrix differential
equation

Z=(Kvw) '

in analogy with Eq. (2.18).

dk e ~ +~ Z(K), K=ku/r„(2. 25)

[Kd/dy + I'(y) j a (y,K) = A,
where the desired unknowns are

(2.22)
III. METHODS OF SOLUTION

The solution of the laser equation (2.22) for
steady-state single-mode operation can be accom-
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E(y+m) = —E(y) . (3.1)

We thus expect that the polarization, which is in-
duced by this field, will have the same periodic
behavior. The population densities which depend
on the field intensity will have the same periodic
behavior as the intensity (i.e. , the electric field

plished by several methods. Some of the methods
to be discussed will serve to relate previous laser
theories and other new methods will provide im-
proved analytic approximations and numerical
solutions. It is to be expected that the new meth-
ods will also prove useful in related research
areas including high-intensity multimode laser
theory.

The boundary condition satisfied by physically
acceptable solutions is obtained by some physical
insight. Our assumed electric field (2.1) is basic-
ally periodic" with period 2z and

squared) which is periodic with period v.
The periodic boundary condition satisfied by

Z(y, K) can thus be written as

Z(y+ 2((', K) = &(y, K)

and

Z(y+v, K)=

0

0

(3.2a)

~(y, K) =Z,Z(y, K).

(3.2b)

(3.3)

with the solution

First we see that for a stationary atom laser,
e.g. , a solid-state laser, Eq. (2.22) reduces (by
setting K= 0) to the algebraic equation

r(y)Z(y, o)= Z

—5y, (21)'i 2siny

-y y i2l&'~gsjny
Z(y, o) = r '(y)Z=

1+ 2Ip~cC sin y (1+ 2Iy, R sin'y)(M, /N, + yd) -y„

(3.4)

where

Z=(y'+5') ' (3.5)

d d n

K exp 1' dy/K——=K—g —, r dy /K
dy „pn~

= I'exp I"dy K

is a dimensionless I orentzian and the collision
parameter y, [Eq. (2.21c)] now represents spin-
lattice relaxation broadening. " The solution (3.4)
clearly satisfies the periodic boundary condition
(3.2). The spatially averaged quantities Z(K= 0)
defined in Eq. (2.24) are obtained by direct inte-
gration [Ref. 21, Eq. (3.681) and Ref. 22, Eq.
(15.1.14)] to give

=exp I'dy K I' (3.7)

r(y), r(y) dy = o. (3.8)

Thus the general solution of Eq. (2.22) can be
written as" "

if and only if 1"(y) commutes with its integral,
~.e. ,

6(K=0) =

2$y y &(2I) i/2[1 (l + 2Iy Q) &/2]

2y (2I) &/2[1 (1+ 2Iy g) "i/ ]

M, /N, + y„[1—(1+ 2ly, S) '/']

(1+ 2Iy g)-x/2

(3.6)

e(p, lC)=exp(- f Pdp/lC)

&& c+ dy' exp l" dy' K & K
Vp

(3.9)

When the motion of the atoms cannot be neglec-
ted the complete differential equation (2.22) has
to be solved. There are several methods which
can accomplish this solution.

First, we note that
Z(p, d)=exp(- ) Pdp/X) e (3.10)

if and only if" Eq. (3.8) is satisfied. Here c is a
constant vector of integration and y, is an arbi-
trary lower integration limit. The quantity
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is the initial value of &(y, K) at y=y, . However,
since we do not a Priori know the value of &(y, K)
at any point, we will choose y, to be an arbitrary
convenient point and determine c from the periodic
boundary condition Eq. (3.2).

For I'(y) defined in (2.23c), condition (3.8) will
be satisfied and (3.9) will be the desired solution
when (aside from the trivial case I=0)

6=0, y„=0, and y, =1, (3.11)

i.e. , for zero detuning, equal level decay rates,
and neglecting collision broadening.

The evaluation of (3.9) for the special case (3.11)
in Secs. IV and V results in a definite integral
solution which can be integrated analytically in
terms of Bessel functions. The results also serve
to relate previous exact solutions for this special
case '""

For general single-mode operation, when 1 (y)
does not commute with its integral we can get a
formal solution similar to (3.9) by separating
&(y) into two parts,

I'(y) = I', + I', (3.12)

P I

~~()~e«c+J e"~(J~,~~ /rc)
0

(3.14)

This formal matrix integral equation solution can
be evaluated by successive iterations to obtain the
Neumann series solution. " This series is slowly
converging for high intensities but improved ap-
proximations can be obtained by taking the Pade
approximants"'" to the Neumann series. How-
ever, as we will discuss below, we have much
better methods for obtaining numerical results and
analytic approximations for general single-mode
operation. Thus the primary usefulness of (3.14)
is in the insight that may be obtained from the
integral equations which are similar to the integral
equations that represent Mathieu functions. ~

A related approach is to diagonalize the coeffi-
cient matrix through a similarity transformation
of Eq. (2.22), i.e. ,

where I", commutes with its integral. Since every
constant matrix corn. mutes with its integral a con-
venient choice would be to let I', contain the con-
stant elements of I'(y), and I', the y-dependent
elements. Equation (2.32) can then be written as

(Kd/dy+ I' )Z(y, K) = A —I' Z(y, K) (3.13)

with the solution

where &= U&' and U 'I'U is diagonal; a solution
in the form of Eq. (3.9) can then be obtained if the
term KU 'dU/dy is diagonal or can be neglected.
It turns out that I' can be diagonalized by a con-
stant matrix U, and hence KU 'dU/dy =0, only for
the special case of Eq. (3.11). For the general
case it does not lead to an exact solution but can
lead to different approximations by neglecting the
KU 'dU/dy term. Another approximation can be
obtained by neglecting the noncommutivity of I' and
writing Eq. (3.9) as the solution. These additional
methods do not lead to especially useful results in
the present research.

We can also solve the differential equation (2.22)
directly by numerical methods. The most advan-
tageous methods for the direct numerical solution
of differential equations" are the forward integra-
tion methods such as Runga-Kutta and predictor-
corrector techniques. However, these methods
are designed for solving initial-value problems
(i.e. , they require the knowledge of the solution
at an initial value in the order to be able to start
the forward integration routine). Since we do not
a Priori know the value of &(y, K) at any y, we
first have to use the periodic boundary condition
(3.2) to obtain an initial value Z(y„K) at a con-
venient y =y,. This is accomplished by the meth-
od of Goodman and Lance, "which enables one to
numerically convert two point boundary-value
problems to initial-value problems. This method
will be discussed in more detail in Sec. VII.

The best means for obtaining exact numerical
results and analytic approximations is to expand
the solution in a Fourier series and solve the re-
sulting recursion relations for the coefficients.
These recursion relations have previously been
solved' ' by using a continued fraction whose con-
vergence properties have been proven analytically. '
The problem of round-off errors in the direct
evaluation of the continued fraction is eliminated
by using the method of successive convergents. ""
However, backward recurrence techniques gen-
erally have better convergence properties in nu-
merical evaluation than continued fractions" as
has also recently been found in the development
of a multimode unidirectional traveling-wave laser
theory. " Thus in Sec. VIII we develop a backward
recurrence scheme for solving the recursion re-
lations for the Fourier series coefficients, and
also find that the best analytic approximations are
obtained by analytically evaluating the coefficients
in truncated Fourier series solutions.

IV. EXACT INTEGRAL SOLUTION FOR SPECIAL CASE

+ ZU-' +U-'rU ~'=U-'W (3.15)
As discussed in Sec. III, an exact integral solu-

tion can be obtained when condition (3.8) is satis-
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and

C(y, K) =0

M(y, K) =M,.

(4.1a)

(4.1b)

The coupled equations for S(y, K) and N(y, K) be-
come

[Kd/dy+ I' (y)]Z,(y, K) = Z, (4.2)

fied; i.e., when the detuning is zero, the level
decay rates are equal, and we neglect collision
broadening [Eq. (3.11)]. In this section we obtain
this solution as presented by previous authors, '4 "
and, through the reduction of the integration
limits and other manipulations, integrate the
solution analytically in terms of Bessel functions.
The results thus obtained are equivalent to the
Bessel function solution obtained by Feldman and
Feld' for this special case through the analytic
evaluation of the recursion relations for the Fou-
rier coefficients.

In addition we will obtain a solution in the form
of a series of Bessel functions of integer order
which provides a method for predicting the posi-
tions of the secondary resonance in graphs of
N(K) vs K. The first term in this series is the
result obtained by Hautian and Sobelman" for this
case.

We wiQ thus relate the different approaches
to the solution and add some additional insight to
the problem.

When 5= 0, y~= 0, and y, = 1 the differential equa-
tions for C(y, K) and M(y, K) in Eq. (2.22) become
decoupled and directly integrable. The solution,
subject to the boundary condition (3.2), is

the matrix J I',dy/K is to use the Cayley-Hamilton
theorem" "which enables one to write. any function
of an n &&n-order matrix as an (n —1)-degree poly-
nomial in the matrix. For the 2 && 2 matrix I', this
gives

exp I', dy K =+ +x I',d (4.5)

where E is the identity matrix. The eigenvalues
of the matrix satisfy the same functional relation-
ship as the matrix or

(4.6)e"=~,+ ~,u,

where the eigenvalues u = [y +i(2I)'~'cosy]/K.
Evaluating (4.6) for the coefficients n, and a, and
substituting in (4.5) we obtain

(eos(y cosy) —sin(y cosy) ))

exp I', dy/K =e'~»
I

), sin(yeosy) cos(ycosy) f '

where
(4.7a)

X =(2f)'"K ', (4.7b)

and where exp(- J I', dy/K) is obtained by substi-
tuting -K for K in (4.7).

The determination of the constant of integration
c in (4.4) for an arbitrary choice of lower integra-
tion limit y0 requires the use of the periodic bound-
ary condition (3.2).

By choosing y, = -~ and substituting (4.4) in (3.2a)
(making the change of variable y" =y' —2» in the
right-hand side we obtain c = 0. The solution (4.4)
then becomes

where

(4.3a)

(4.3b)

f' sing (cosy —cos[ y —y])])
Jo (cosg(cosy —cos[ y —y])]')

(4.8)

I'.(y) =!~ 1

( —(2I)' ~' siny

(2I)' ~' siny ) (4.3c)

&&c+ dy'exp I' y' K A, K .

Since I', commutes with its integral the solution of
(4.2) is

,(r,s)= sr( f r,s /s)

when

2'
&-2ss)-z & st~(f) df-

0
(4.9a)

where y =y -y'. This is equivalent to the results
obtained by Hefs. 14-16.

However by noting that (4.8) is the Laplace
transform of a periodic function (of period 2» in
y) it can be put into a much more suitable form
for evaluation. The property of such a transform
[Ref. 22, Eq. (29.2.16)] is

f(s)= f e "r(t)st
0

(4.4)
Z(f+ 2~) = Z(f). (4.9b)

A useful method for determining the exponential of Hence the solution (4.8b) reduces immediately to
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1
K(1 —e-'-)

x
'

dy e~&~
I

t'sing (cosy —cos[ y —y])))
(cos g (cosy —cos[ y —y])]'/

'

Hence the solution (4.4) becomes

(4.11)

e,(y, ee)=—xy( Jl r. dy/re)

2l'

x e" —1 ' dy'+ dy'
0 0

(4.10)

The reduced integration region simplifies the
numerical integration of this solution and enables
one to integrate this solution analytically in terms
of Bessel functions (see Sec. V).

Another solution is obtained by choosing y, = 0
as the arbitrary lower integration limit in (4.4).
Imposing the periodic boundary condition (3.2a) on
the solution we obtain

( —»n(X cosy') l
d '

K(e" —1), & cos(ycosy') j'

the integral at each incrementally spaced y in the
period. When y reaches 2n we automatically ob-
tain f 'dy' and the integration is completed. In
contrast the integration of (4.10) requires a sepa-
rate integration from 0 to 2n' for each value of y
because when y is changed the integrand is
changed.

After the integrals in (4.12) are evaluated to
obtain Z,(y, K) at incrementally spaced y, the
spatially averaged quantities S(K) and N(K) de-
fined in (2.4) are obtained by integrating &,(y, K)
using trapezoidal or Simpson's method.

A listing of the computer program which inte-
grates (4.12) is given in Appendix B of Ref. 17.
The time required to calculate N(y, K} and S(y,K)
for 100 increments in y and then N(K) and S(K) was
about 0.2 sec. By contrast the integration of (4.1),
where the integrand depends on y, required about
2.5 sec for each K.

Before ending this section it should be pointed
out that (4.12) can be reduced to (4.10) directly by
algebraic manipulations. Multiplying the integrand
in (4.12) by the coefficient matrix exp(fI;dy/K),
combining the two integrals by writing

(e""—{)' f dy' + dy'
0 0

2r
= {{—e" )' dy'+ e" dy') (d {y)

0

( —sin(xcosy'))
xe"& !

k cos(xcosy') ) ' (4.12) and substituting y'= y —y in the first integral and
y'= y —y+2m in the second integral, the solution
(4.12) reduces to (4.10}.

where exp(- fI',dy/K) is obtained from Eq. (4.7).
As discussed below this form of the solution is
more suitable than (4.10) for numerical integra-
tion. Equation (4.12) will also be used in Sec. V
to obtain a Bessel function series solution which
provides a method for predicting the position of
depletion resonances in the spatially averaged
population inversion density.

The solution (4.12) is more suitable than (4.10)
for numerical integration using trapezoidal or
Simpson's method because the integrand does not
depend on y. This means that (4.12) only has to
be integrated once —from 0 toy, increasing y incre-
mentally from 0 to 27t, and adding the incremental
integral to the previous value —to get the value of

V. ANALYTIC EVALUATION OF EXACT SOLUTION

cosy —cos(y —g) =2siny'sin(y —y'), (5.1)

where y'=2y, the integrand can be expanded in
terms of Bessel functions of complex order [Ref.
22, (9.1.42) and (9.1.43)], to give

We will now analytically integrate. the exact in-
tegral solutions of Sec. IV for the special case
5 =0, y, = y(„and y, = 1 to give exact analytic solu-
tions in terms of Bessel functions.

By writing the cosine terms in the integrand of
(4.10) as

Z, (y, K)=2K-'(I-e '"Sr)
m=o

» &)( (-e, +)d, ~, ,(2ysiny')sin[(2m+1)(y-y')]
e,„J', (2ysiny') cos[2 m(y- y')] /)

(5.2a)

= —csch — Re e'' ''
~2m+1 i/K x ~i/K' x

im[e'"'Z...g ();g;g~()t)l
(5.2b)
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where e„-=(1, for n =0; 2, for n~l) is Neumann's
factor, "X =(2I)'/'K ', and where we used J„i,(X)
= [J.(X,)1*

The spatially averaged quantities S(K) and N(K)
are obtained by integrating (5.2b) [Ref. 21, Eqs.
(3.891)] to give

Z, (K) =- ecch (
—
)
(-1) (X/2)' (2m)!

, (m!)'r(m+1+ i/K)r(m+1- i/K)

—2m+ 1 2I
(m+1)[1+(m+1)'K']

1

(5.5a)

—2lm[Ji-i/z(X }Ji/z(X }j

(w/K) cs ch(v/K)

(X) [-2 1 + (2I)1/21m iiK/(X-
J-i/z (X}

By expanding the product of Bessel functions in

(5.3) [Ref. 22, Eq. (9.1.14)j we can also obtain the
series solution

(5.4)

This result is equivalent to the result obtained by
Feldman and Feld' [Eq. (88)] who were able to
sum the recursion relations analytically for this
special case. The equivalence is obtained by using
the Wronskian and recursion relations for Bessel
functions [Ref. 22, Eqs. (9.1.15) and (9.1.27)] to
obtain

(-I/2) (2m)!
0 (m! )~(1 +K )(1 + 2 K ~ ~ ~ (1 +m2K2)

X
I

—(2 m+ 1)(2I)'/'
' (m+1)[1+(m+1)'Kq 5.5b

where the gamma functions in (5.5a) were ex-.
panded using Ref. 22, Eqs. (6.1.15) and (6.1.31).
This last expansion for N(K) is the one obtained
by Stenholm" [Eq. 43]. For K& 0 it converges for
all I-rapidly for large K, slowly for small K.
When K =0 it reduces to the expansion of the exact
solution (3.6) for I& 0.5 and diverges for larger I.

Another Bessel function solution is obtained from
solution (4.12). As before, if the integrand in

(4.12) is expanded in terms of Bessel functions
[Ref. 22, Eqs. (9.1,44-45)] it canbe integrated to give

(-e,„„J,„„(X) 5g,„„(cos[( 2n+1)yj+(2n+1)K sin[(2n+1)y] }l~ (5.6)

where the Lorentzian SR„=(1+n'K'} ', and

exp(-f r~ dy/K) is given by (4.7).
The spatially averaged quantities are obtained

by direct integration using (Ref. 19, Appendix B)

1
2m

(5.7a)
(-1)"/'J„(z), n even

cos(zcosy}cosny dy =
6 odd

(-1)" ' 'J (z), n odd
sin(zcosy)cosny dy =

2' n even

tion obtained by Rautian and Sobelman. " It is
clear from Fig. 1, [and implicit in Eq. (5.8)], that,
as the intensityI becomes very large, the exact
solution approaches J',(x). For smaller intensi-
ties the additional terms have to be added to get
the correct magnitude of N(K). However, an in-
teresting result is the fact that the depletion
resonances in N(K) occur near the zeros of J,(X}
for I~1 because the higher-order terms do not
shift the position of the resonances appreciably in
that case. A good approximation for the zeros of

J,(X) (accurate to two significant digits") which
serves as a prediction for the resonance position
ls

1
sin(zcosy)sin ny dy = 0,

217 p

1
cos(zcosy)sin ny dy = 0 .

2 lT p

(5.7b)

K = (2I)'" [-,'~(4m —1)]-',
where m is an integer.

(5.9)

The result is VI. INTEGRAL EQUATION SOLUTION FOR GENERAL CASE

1 SK 0 J„x -2rPK g

(5.8)

The first term in this series, J,(X), is the solu-

As was shown in Sec. III we cannot obtain an ex-
act analytic solution for the general single-mode
gas laser. However, a solution in the form of an
integral equation can be obtained by separating
the coefficient matrix into two parts, one of which
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slower and more cumbersome than the methods to
be presented in Secs. VII and VIII. However, the
integral equation solution is similar to the inte-
gr al equation representations of Mathieu functions
which provide insight into the properties of
Mathieu functions. In addition, in a "dressed
atom" approach" we are able to obtain predic-
tions for the depletion resonance positions through
a similar division of the coefficient matrix and
analysis of the eigenvalues of the commuting ma-
trix. %e wQl therefore briefly present the in-
tegral equation solution for the general single-
mode gas laser.

If we separate I into constant and y-dependent
parts, i.e. , I'(y ) = I', + I",(y) then the integral
equation solution (3.14) becomes

n. (y, K) =s 'i"/»

x c+ dy'e i~ ~~ A- I' ' 6 ', K K
Vp

(6.1)
where y, is arbitrary, c is evaluated from the
boundary condition (3.2), and where

FIG. 1. Graphs of the population inversion density
N(E) as a function of atomic velocity & for the special
case of zero detuning, equal level decay rates, and ne-
glecting collision broadening comparing the exact solu-
tion and the approximation obtained by taking the first,
~, first and second, +, and first three terms, &, in
the Bessel. series solution, Eq. (5.8). It becomes ap-
parent that the depletion resonances in N(E) occur at
the zeros of the first term Jo[(21) /K].

with

(er&aa/«0

0 ryan/« i

cos 5y K -sin 5y E
er taa/«y &/«

~

sin 5y K cos Oy Z

(6.2)

commutes with its integral. The resulting integral
equation correctly includes the parameters in the
commuting matrix and provides an iterated series
for the parameters in the noncommuting part.

For obtaining exact numerical results and an-
alytic approximations for the single-mode laser,
the iteration of the integral equation is much

(6.3a)

and
cosh y~y K sinh y„y K

ebb&/&—
(s inh(ya y/K) cosh(ya y/K)

(6.3b)

The integral equation solution can thus be given by

or

0

Z(y, tc)= i —" ' f ds'sisy'

s-&a(' ' i/» sin[6(y —y')/K] N(y', K)

cos[6(y —y')/K] N( y', K)

«sinh[ya(y —y')/K] S(y', K)

cosh[y (y -y')/K]S(y', K)

e~a" «sin(6y'/K)N(y', K)

(6.4a)

Z(y, K) = +&'
(si,/N) N,

e i je ' E, -Ej y + y siny-r a/« ~ ria/»& g) i d I d ', —e"" cos(6y'/K)N(y'i )

e' / sinh(y y'/K)S(y', K)

cosh(ya y'/K)S(y', K)

(6.4b)
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where E is the identity matrix and E, is defined in
(3.2b).

We note that Eqs. (6.4) contain a set of coupled
integral equations for N(y, K) and S(y, K) which
are decoupled from the equations for C(y, K) and

M(y, K). Thus even in the general case of single-
mode operation we only have to solve the integral
equations for N(y, K) and S(y, K) with C(y, K) and

M(y, K) being obtained by integrating over the
solutions for N(y, K) and S(y, K), respectively.

Another point which becomes apparent from (6.4)
is that C, S, and sonly depend on N„ the pumped
population inversion density, and are independent
of the pumped total active atom density M, .

VII. DIRECT NUMERICAL SOLUTION

An exact numerical solution for general single-
mode operation can be obtained by solving Eq.
!2.22) directly using numerical methods (Sec. III).
Before forward integration techniques such as
Runga-Kutta and predictor- corrector methods can
be used to solve the differentia, l equation, we have
to convert the periodic boundary problem [Eq.
(3.2)] to an initial-value problem. This is accom-
plished by using the method of Goodman and
Lance" as discussed below.

We set up a matrix differential equation adjoint
to Eq. (2.22) by writing

[Kd/dy —I"t(y)]C (y) = 0, (7.1)

where I ~(y) is the adjoint, or conjugate transpose,
of 1(y) and where C(y) is a matrix of order 4 x 4
that satisfies the initial condition

C'(0) =E, (7.2)

C'(w)n, (v, K) —C'(0)Z(O, K) =K "
dy Ct(&)A-,

0

(7.4)
which reduces to

[Ct(n)E, —E]Z(O, K) =K ' dy C(y)X
0

(7.5)

with the use of the initial condition (7.1) for C(0)
and the periodic boundary condition (3.2b) for
T(y, K).

Thus in order to obtain a numerical solution for
Eq. (2.22) we solve the adjoint matrix differential
equation (7.1) as an initial-value problem (7.2)
using Runga-Kutta and predictor-eorrector teeh-

where E is the identity matrix. Using (7.1) and
(2.22) it is seen that

K(d/dy)[C t(y)Z(y, K))= C (-I'b. +A) + (I'tC)t = 4tX.

(7 3)

Integrating (7.3) from 0 to m we obtain

niques. With a knowledge of C(y) at incrementally
spaced values of 0 &y ~ m me can evaluate the inte-
gral in (7.5) using standard trapezoidal or Simpson
methods and solve the resulting algebraic matrix
equation for the initial value Z(O, K). Finally Eq.
(2.22) Can then be solved numerically as an initial-
value problem.

A listing of the computer program which accomp-
lishes the above integration is given in Appendix
D of Ref. 17. The subroutines which numerically
convert two-point boundary problems to initial-
value problems and solve the differential equation
are from the IBM Scientific Subroutine Package
Library at the EBDA Computing Center at New
York University.

The computing time required to solve for Z(y, K)
in the region 0 & y & v and then find Z(K) by numer-
ical integration was about 0.2 sec for each value
of K. As me, wi11 see in Sec. VIII the evaluation of
the Fourier series solution is about 40 times faster
in calculating Z(K). However, the direct numeri-
cal solution may prove useful and applicable in
obtaining solutions for other problems such as the
high- intensity multimode laser.

VIII. FOURIER SERIES METHOD

As discussed in Sec. III the Fourier series
method has been used' ' to obtain approximations
and exact numerical solutions for the general
single-mode laser. In this method we substitute a
Fourier series for the desired quantities and ob-
tain a recursion relation between the coefficients.
These recursion relations have been solved by
previous authors' ' using continued fraction meth-
ods. Kuroda and Ogura' have proven the conver-
gence of the continued fraction but did not con-
sider the roundoff errors introduced by the repeat-
ed divisions in the direct evaluation of the contin-
ued fraction. In this section we will develop a
backward recurrence scheme for solving the re-
cursion relations similar to the method" which
has proved so successful in the evaluation of Bes-
sel functions. This method uses additions and sub-
tractions to evaluate the recursion relation, which
is faster and less prone to roundoff errors than the
direct evaluation of the continued fraction. How-
ever, evaluating the continued fraction by using re-
currence relations for successive convergents' '
eliminates the time consumption and roundoff
problem. It turns out that the method of successive
convergents and the backward recurrence scheme
are the best (fastest and most accurate) means for
obtaining numerical results for the general single-
mode standing-wave laser.

The desired quantities S(y, K) and N(y, K) are
expanded in a spatial Fourier series by mriting"
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S(y, K) =No g s„,e'"', n' an odd integer

(8.1a)

N(y, K) =No g d„„e'""', n" an even integer

where, since S(y, K) and N(y, K) are real,

s „,=s„*, , d „„=d„*„,d, real.

(8.1b)

(8.2)

Substituting (8.1) into the coupled integral equa-
tions~8 (6.4a) for S(y,K) and N(y, K), integrating,
and equating coefficients of e'"' we obtain the re-
cursion relations

can best be evaluated"" by iterating "convergents"
of truncated continued fractions. Recently it has
been found" in solving the multimode unidirection-
al traveling-wave laser problem that the continued
fraction method is not applicable and recurrence
techniques have to be used. It is to be expected
that the backward recurrence technique presented
here will also prove useful in other related re-
search areas.

The backward recurrence scheme for determin-
ing the coefficients d„„,0 & n" &n (n is some cut-
off value), is based on the backward recurrence
scheme of Goldstein and Thaler. " In this method
we first assume that

d,2
=0

(8.8)

s„,= -i(I/8)'I'y, (L„', + L„)(d„„,—d„, ,) (8.3a) d =a,

d„. =f(I/8)'"y, (M„;,+m-„„)(s„„., s„„—,)+ ~„„„
(8.3b)

where

L„;=[y,+i(n'Kt &)] ', L'„.=L„',*, (8.4a)

M+„=[1+y,+In"K] '=y., [y.+In"Ku] '
8.4bM„= [1 —y~ in+"K] '= y,~ [ye+in"Ke]

are complex Lorentzians. The fact that S(y, K)
contains only odd harmonics and N(y, K) has only
even harmonics" can be seen from the differential
equation (2.22) or the integral equation (6.4a),
whereby the constant term in N(y, K) couples re-
cursively to produce odd harmonics in the polari-
zation and even harmonics in the populations.

A recursion relation for the d„alone" is obtained
by substituting (8.3a) into (8.3b) to give

d normalized
IO

d unnormalized
0

(8.9)

where m &n and a is an arbitrary constant. Sub-
stituting this assumption in Eq. (8.5) we recur
backward iteratively to obtain all the coefficients
d„„ for 0 &n" &ri in terms of a. In general the re-
cursion relation has two solutions but solving only
for the d„„with n" & n &m assures that we will ob-
tain the solution satisfying the boundary condition
d„„-0as n"- . '"

The coefficient values thus obtained are not
normalized because they depend on our choice of
a; however, the ratios between the coefficients ap-
proach the exact value as m gets much larger than
n. To obtain the normalization for the coefficients
we use Eq. (8.6) to determine the value of d, from
the ratio d, /d, . The correct values for all the co-
efficients are then obtained by using the normali-
zation factor

L„'-~g+ L„i~+,+ 8[Iyo(M„'-+ M,=-)]

n" -1 n" -j.

~f1"+1+ I'g" +g
+ + y m fill +2
tf" -1 n" -1

for n" ~ 2 with d „„=d„*„, and

(8.5)

to write

d normalized = Qf d, unnormalized
n» pit (8.10)

Having obtained the d„„coefficients we can get the
s„, by using Eq. (8.3a). If we are also interested
in evaluating C(y, K) and M(y, K), we write

d, =(1+,' Iy,(Z;+ 2,) —2 IR—e[(L;+L,)d, /d, ]]',
(8.6)

where

&x=['8+(K+ &)'] '= ILll'=l(Ll+L', )/&. . (8 7)

By solving for d„alone we get faster convergence
than solving for d„and s„ together because we
only have to calculate every second coefficient.

The recursion relations (8.3) have previously
been solved by using a continued fraction' which

and

I
C(y, K) =No g c„,e'"', n' an odd integer

(8.11a)

M(y, K) =No g m„„e~""~,

n" an even integer, (8.11b)
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and use the differential equation (2.22) or the in-
tegral equation (6.4a) to obtain the relationships

(8.12a)

m „=(Mo/No+@~)& „,—y~(1+in"K) 'd „.
(8.12b)

The spatially averaged quantities b(K) defined in

(2.24} are given by

'l(ci —Ci )

i(s, —s,*)

mo

d0

all the desired quantities. A listing of the comput-
er program which evaluates N(K) and S(K) using
the backward recurrence scheme is giveg, in Ap-
pendix F of Ref. 17. The program chooses suc-
cessively higher cutoff values until the desired ac-
curacy is obtained. The computation time is very
fast with about 0.5 sec required to calculate N(K}
and S(K) for 100 values of K for about I=100 and
increasing slightly for larger I.

In addition. to the exact solution discussed above
the recursion relations (8.5) and (8.6) can also be
used to obtain improved analytic approximations.
These are obtained by terminating the Fourier
series at successively higher harmonics and solv-
ing for coefficients analytically.

For the first approximation we assume that
d„„=0 for n" ~ 2, and obtain [from (8.6)]

N(K) =N(y, k) =d, = [1+ 2',(Z;+8,}] '

6(I/2)' ~'yo Re[(L;+L,)(d, —do)/(1+ iK)]

-(2/I)'~'y, (1-d, )

Mo/No+ y~(1 —do)

which is the rate-equation approximation (REA).' '
The next (second recursion relation) approxima-
tion is obtained by setting d„i. = 0 for n"~ 4. Equa-
tion (8.5) then gives

d, /d, =(L;+L„)/IL;+L, +L;+L, +8[Iy', (M;+M, )j 'j,
(8.18)

Thus if we are interested in Z(K) we only have to
determine d, (from the ratio d, /do) and d, to obtain which substituted in (8.6) results in

(8.15)

N(K)/N, = d, = [1+ ,' Iy~(Z;+ 7, ) —-,IRe((L,'+—L,)'/(L;+ L, + L,'+ L, + 8[iy', (M;+M, )] '))] ' . (8.16)

S(K) = —(2/I)' ~'yo[NO —N(K) j (8.17)

and a similar equation for S and N integrated over
all velocity ensembles [Eq. (2.25)].

The results and discussions presented in the
next three sections will show that the second re-
cursion relation approximation (2RCRA) is greatly
superior to the REA. Physically it includes coup-
ling effects between the traveling waves which
compose the standing-wave field whereas the REA
treats them as separate uncoupled waves. This
should be especially useful in multimode theory
because coupling effects such as mode locking can
be obtained using the 2RCRA but not with the REA.

IX. NUMERICAL RESULTS

We will now present the exact numerical results
and the analytic approximations to these results
obtained by the methods discussed in Sec. III-VIII.

The evaluation of N(K) and S(K) is best accom-

For either approximation [from Eq. (8.18)] we have plished by the backward recurrence scheme (Sec.
Vill) or the method of successive continued frac-
tion convergents. '" These methods are about
40 times faster than the direct numerical solu-
tion of the differential equation discussed in Sec.
VII [requiring about 0.5 sec to evaluate N(K) and
S(K) for 100 values of K compared to 20 sec using
the differential equation method]. The backward
recurrence and successive convergents methods
are also valid for arbitrary intensities, detuning,
and atomic velocities without experiencing the
convergence and roundoff error problems at high
intensities (for small velocities and detunings)
that manifest themselves with other methods.

Figures 2 and 3 depict the exact numerical re-
sults for the spatially averaged population inver-
sion density N(K)/N, and quadrature polarization
coefficient S(K)/N, for two different intensities
and several detunings. A comparison between the
exact results, the REA [Eq. (8.14)], and the
2RCRA [Eq. (8.16)] is presented in Figs. 4 and 5.
In all cases the graphs are symmetric about the
E=O axles.
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FIG. 3. Graphs of &(+ and S(+ for an intensity of
I=100 and two detunings. The shift in the position of the
major depletion resonance and the appearance of the
secondary resonances increases with increased intensity.
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FIG. 2. Graphs of the population inversion density
N(E) and quadrature polarization coefficient density S(E)
for the general single-mode standing-wave gas laser for
an intensity I=10 and for several values of the detuning.
Note the shift in the position of the major'resonance
from the K=6 position and the appearance of the second-
ary resonances which are especially significant for
small de tunings.

N(K)
N.

O. I

As seen from Eq. (8.17), the resonance positions
in N(K) and S(K) as functions of K coincide. The
exact solution shows a shift in the major depletion
resonance to the right of the K= 5 position pre-
dicted by the HEA. This shift is most pronounced
for small detunings and increases with high inten-
sities, and can best be interpreted as an AC Stark
shift of the atomic transition frequency. The BEA
treats the problem by considering the standing
wave as being composed of uncoupled oppositely

0
I .

2
I

6

FIG. 4. Comparison of the exact solution for &(+
with the results obtained by the rate-equation (REA) and
second recursion relation (2RCRA) approximations.
Whereas the BEA does not match the exact solution un-
til outside the major resonance (see insert) the 2RCRA
matches from the first resonance and outward thus
giving the correct shift of the major resonance. The
2RCBA also predicts the existence of one of the second-
ary resonances.
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can be obtained from the zeros of the Bessel
function J,(x) [Eq. (5.9)]. For general values of
the detuning a very good prediction for the reso-
nance positions can be obtained by using a "dressed
atom" approach, "which treats the atoms as
being Stark shifted by part of the field and then
considers interactions between these atoms and
the remaining field. In Sec. X a physical inter-
pretation of the results in terms of multiphoton
interactions and AC Stark shifts will be presented.

0.3.

02.

O. l
"

2
K=kv/y

FIG. 5. Comparison between exact, REA, and 2RCRA
for &(E) for I=10 and several detunings. Again note the
greater accuracy of the 2RCRA compared to the REA.

directed traveling waves except insofar as they
share, and interact with, the same ensemble of
atoms when the detuning is smaller than the atomic
linewidth. Thus the REA only predicts a reso-
nance when the Doppler shift and cavity detuning
coincide (%= +5), and does not match the exact
solution at high intensities except outside the
major depletion region. The 2RCRA includes some
of the interactive coupling between the two travel-
ing waves thereby exhibiting a Stark-shifted reso-
nance and giving a very close approximation from
the position of the first resonance and outward.

Another feature of the exact solution is the ap-
pearance of a series of smaller secondary reso-.
nances superimposed on the major depletion.
These secondary resonances were first predicted
by Refs. 5 and 6 for the centrally tuned laser and
discussed by Ref. 12 for the saturated absorption
problem in terms of two- and three-photon inter-
actions and AC Stark shifts. The number and mag-
nitude of these secondary resonances increases
with increased intensity and decreased detuning.
The REA which does not include any interactive
coupling does not predict any of these secondary
resonances. However, the 2BCBA does predict
the existence of a secondary resonance. For the
case of zero detuning (and equal decay rates and
neglecting collision broadening) we have seen in
Sec. V that the positions of all the resonances

= v +kv, (1O.la)

(d-v=+kv or 5=~, (10.1b)

where the minus sign is for the traveling wave in
the direction of the atom's motion and the plus

i IL

( )
oo o o+ky vtk

(b)

FIG. 6. Illustration of single-photon absorption (up-
ward transition) and stimulated emission (downward
transition) with each of the oppositely directed. traveling
waves which compose the standing wave. The resonance
condition for these interactions is ~= v+ ~. (The mag-
nitude of ~ is greatly exaggerated with respect to the
magnitude of v and in the illustration for clarity. )

(a) Single-photon interactions with wave running antipar-
allel to the atom's motion (resonance condition:
~= v+kU). (b) Single-photon interactions with wave
running parallel to the atom's motion (resonance condi-
tion: ~= v- kv).

X. PHYSICAL INTERPRETATION OF THE RESULTS-

To analyze the numerical results presented in
Sec. IX we will discuss the interactions between
the active atoms and the standing-wave laser field.

For the two-level atom, which is our model
for the active medium (Sec. II), the interactions
between the atoms and the field can be separated
into odd- and even-number photon interactions.
The odd-photon processes result in a transition
between the two energy levels and the even-photon
processes leave the atom in the same energy
level. Both types of interactions act to couple the
two trave'ling waves which compose the standing
wave.

The simplest type of interaction to discuss is
single-photon absorption and stimulated emission.
As shown in Fig. 6 the resonance condition for
these processes is
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FIG. 7. Illustration of three-photon Raman transitions
whereby two photons are absorbed (emitted) from one of
the traveling waves and reemitted (reabsorbed) into the
other oppositely directed traveling wave. The resonance
condition for these interactions is ~= v+3~. (The
magnitude of k& with respect to + and v is greatly exag-
gerated in the illustration for clarity. ) (a) Raman ab-
sorption and Raman emission when field frequency v is
smaller than atomic transition frequency (d [resonance
condition: 2(v+~) —(v- kU) = u]. (b) Raman absorption
and Raman emission when field frequency v is larger
than atomic transition frequency [resonance condition:
2(v —kv) —(v+kv) = cu] .

sign for the oppositely directed traveling wave.
The other odd-multiphoton processes can be

illustrated by the three-photon Raman transition.
As shown in Fig. 7 this results when the atom
absorbs (emits) two photons from one of the tra-
veling waves and reemits (reabsorbs) one photon
into the opposite traveling wave. These interac-
tions thus lead to a coupling between the two tra-
veling waves. The resonance condition for the
Raman transition is

FIG. 8. Illustration of Rayleigh scattering whereby
one photon is absorbed (emitted) from one of the travel-
ing waves and another photon is reemitted (reabsorbed)
into the oppositely directed traveling wave. The reson-
ance condition for these interactions is ~ =0 (again the
magnitude of kU is greatly exaggerated for clarity). (a)
Two-photon Rayleigh scattering with atom in the lower
state b (resonance condition: v+~ = v —kU). (b) Two-
photon Rayleigh scattering with atom in upper state a
(resonance condition: v+kv = v- kv).

L~ + L~ = [y, + i(5+ n'K)] '+ [y, + z(5 —n'K] ',
n' an odd integer. (10.4)

The sum is due to the fact that the atoms are
interacting with both oppositely directed traveling
waves.

The even-photon processes are illustrated (Fig.
8) by two-photon Rayleigh scattering. In this inter-
action one photon is absorbed (emitted) from one
traveling wave and another photon reemitted (re-
absorbed) into the opposite traveling wave. The
resonance condition for the two-photon Rayleigh
process is

(3 = 2(v+ kv) —(v w kv), (1O.2a) (10.6a)

l.e. )

~ —v=+3kv or 5=+3%, (10.2b) (10.6b)

~ = n(v + kv) —(n —1)(v+ kv), (1O.8a)

where the plus and minus signs are interpreted as
before. The resonance condition for general odd-
photon transition interactions, whereby the atom
absorbs (emits) n photons from one traveling
wave and reemits (reabsorbs) n —1 photons into
the other traveling wave, is

For the general even-photon interactions, a num-
ber of photons are absorbed (emitted) from one of
the traveling waves and an equal number of photons
are emitted (absorbed) into the other traveling
wave. The atom is thus left in the same state it
was before the transition. The resonance condi-
tion for the general even-photon interactions is

l.e
8 —v=+(2n —1)kv or 5=+(2n —1)K, (10.8b)

or

n(v+ kv) = n(v + kv) (10.7a)

where 2n —1 (n a positive integer) is the number
of photons involved in the interaction. These in-
teractions give rise to the complex Lorentzians
of Eg. (8.4a) which appear in the recursion rela-
tions and in the resulting solution with the com-
bination

kv=K=0, (10.7b)

where 2n is the number of photons involved in the
interaction. Thus all the even-photon interactions
have their resonances at %=0. These interac-
tions give rise to the I orentzians of Eq. (8.4b)
which appear in the combination
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M'„. + M „;= [1+y, + in "K] '+ [1 —y, +in"K] ',
n" an even integer. (10.8)

When only single-photon interactions are con-
sidered we obtain the rate-equation approximation
(REA). The only coupling between the two travel-
ing waves considered in this approximation is that
for small detunings (& y,~) both waves will interact
with and share the same set of atoms. For larger
detunings each wave will interact with a separate
ensemble of atoms related by the resonance con-
dition K= a6 [Eq. (10.1b)]. A distinguishing char-
acteristic of this approximation is the "burning"
of depletion resonances or "holes" in the graphs
of N(K} vs K at the resonance positions K= +6

(Figs. 4 and 5). For small intensities the REA
is a good approximation, but for higher intensities
the contributions due to multiphoton interactions
have to be considered.

The 2RCRA [Eq. (8.16)] contains Lorentzians
describing one-, two-, and three-photon inter-
actions with resonances at K= +5, 0, + 35, respec-
tively. The superposition of these three reso-
nances leads to a very good approximation for the
first resonance and to the prediction of one sec-
ondary resonance (see Figs. 4 and 5).

The superposition of all the odd-number-photon
interaction resonances (K= m'6) and even-number-
photon interaction resonances (K= 0) results in the
structure given by the exact solution. The effects
of the superposition become most apparent for the
case of central tuning when all the multiphoton
(emission and absorption) interactions have their
resonances at K = 0, but their superposition gives
the series of depletion resonances shown in Fig.
4. The appearance of resonances at KW0 results
from the superposition of emission and absorption
resonances (at K= 0) of different widths and ampli-
tudes.

The above discussion, however, does not pro-
vide a simple means for the prediction of the
resonance positions when the superposition be-
comes important. A related "dressed atom" ap-
proach"' does provide an extremely good approx-
imation for the resonance positions. In this ap-
proach we consider the atoms as being Stark shift-
ed by the HEA field, i.e., a field consisting of two
oppositely directed traveling waves which are
uncoupled except insofar as they share the same
active atoms when the detuning is small. The
consideration of multiphoton interactions with
these "dressed atoms" that have Stark-shifted
transition frequencies leads to a very good pre-
diction for the resonance positions. This approach
is presented in more detail in Ref. 36(b).
For the cise of central tuning we have already
discussed the prediction for the resonance posi-

tions obtained from the Bessel series solution
[Eq. (5.8)].

XI. RELATION BETWEEN EXCITATION, DETUNING,
AND INTENSITY

ol

N, = -( y~P/6"Q)y, (2r)'"(S/N, } (11.2)

where, using (2.25),

dKWK
No No (».3)

= (Kvm) ' dK -(rial&' S(K)
00 No

It is convenient to express the excitation in terms
of the relative excitation ratio

3r =No/Nr, — (11.4)

where N~ is the excitation at threshold, i.e., at
the onset of oscillation when the detuning is zero.
Thus we write

(~) "
Nr= —,&0

(P Q
— /No - r=o. e=o

(11.5)

(2r) r'/(S/N, )
[(2r)'"/(s/N. )],...

Since S/N, is a function of the intensity and the
detuning, Eq. (11.6) provides a means for relating
these quantities to the relative excitation.

The first ease we will look at is the stationary-
atom laser of Sec. III. In this ease all the atoms
have zero velocity and hence the integration over
velocities in (11.3) is not necessary. Thus we
take the exact solution for S(0)/N, in Eq. (3.6) and
substitute in (11.5) to obtain

N = (y„eP/d"Q)y, .

This is the expected result that the threshold
excitation is proportional to the losses (1/Q)
and the collision-broadened linewidth (y,,= y„y,),

Having analyzed the population inversion den-
sity and polarization coefficients as functions of
axial position and atomic velocities, we now turn
to an analysis of the relationship between pumped
excitation N„detuning 5, and output intensity I.
These relationships are obtained by substituting
the macroscopic quadrature polarization coeffi-
cient defined by Eq. (2.5) into the amplitude ele-
termining Eq. (2.4a) to give

(2ry, y, )'"rr/s =-z, - -Qd s/c,

Q6'/co-(s/No)No
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and inversely proportional to the square of the
dipole-moment matrix element (4"). Also from
(11.6) we get

exact for smaQ intensities. Substituting the BRA
value for S(K)/N, [Eqs (8.14) and (8.17)] into (11.3),
we have

= (Kvm ) dKe "[-(I/2)' 'y y (Z++ g-)]
0 IRIOO

= —[1 —(1+2ly 2) '~'] '
C

(11.8a) x [1+2iy, (&;+ &;)]-~ (11.Sa)

or

I = 5fy, —[1+(1+ 8Ãy, R)'~']/4Z. (11.8b)

yoy dK -(E/E)2
KWm

x2;[1 +,'Iy (Z—,+, +2;)] ', (ll gb)

These equations relate the detuning, relative
excitation, and output intensity in the stationary-
atom laser. As discussed by Stenholm and Lamb'
and implicit in Eqs. (11.8), the intensity is very
close to being directly proportional to the excita-
tion.

Experimentally, absolute values of the relative
excitation are difficult to measure because the
excitation level achieved in the laser medium is
not a simple function of the pump energy. Thus
for comparison to experiments it is useful to ob-
tain a "detuning curve" which gives the output in-
tensity as a function of the detuning for fixed exci-
tation values. The detuning curve in Fig. 9 was
obtained by using Eq. (11.8b). It has a character-
istic Lorentzian shape with a maximum intensity
at zero detuning and a sharply decreasing intensity
as the detuning increases until it reaches zero
when the detuning is too large to sustain oscilla-
tions at the given excitation.

For the case of moving atoms, the threshold
excitation can be obtained by using the rate equa-
tion approximation because the BEA is essentially

loo—

which, when substituted in (11.5), gives

ab P dK -(&lK)2( 2 2)-(e y, +K
yc

(11.10)

Using Ref. 25, Eq. (3.4666-1) we get

N, = (y,~P /6"q) (IC/W~)e-'" ""[1—e(y, /K)],

(11.11)
where the error function 4 is defined by [Ref. 21, ,
(Eq. 8.250-1)]

~, /~

C(y, /K}=2m-'"
0

This result is equivalent to the result obtained by
Lamb' [Eq. (60)] using the perturbation solution if
we note that the imaginary part of the plasma
dispersion function is

Z((0+i/K) = v& [1 —C (1/K)]e' x'. (11.13)

Comparing (11.11) to the threshold excitation for
the stationary-atom laser, Eq. (11.7), one finds
that whereas for stationary atoms N~ is propor-
tional to the collision-broadened homogeneous
linewidth y„=y„y„ for moving atoms N~ is pro-
portional to the Doppler broadening kM = y„K and
to a factor which depends on the homogeneous
to inhomogeneous linewidth ratio y„/ku = y, /K.

The relative excitation X is obtained by substi-
tuting (11.11) into (11.4) to get

(21)1/2
Ot= —(y ~'"IK)[1-O(y ~K]e'"'~" ' '

0 C S/No

(11.14)

S

-)0 IO

FIG. 9. Detuning curves for the stationary-atom laser
showing the variation of the intensity as a function of
the detuning. Note the Lorentzian shape with a maximum
at ~=0.

This provides a relationship between the relative
excitation X, intensity I, and detuning 0, when we
substitute a solution for S/No. This solution could
be the velocity integral over any of the exact or
approximate solutions for S(K)/N, which were dis-
cussed in previous sections. Because the velocity
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integral of the solutions for moving atoms, even
of the analytic approximations, can be done exact-
ly only by numerical methods, Eq. ( 11.14) cannot
be solved analytically for I as a function of 8 and
X as was possible for the stationary-atom laser
[Eq. (11.8b)j. We thus cannot directly obtain a
"detuning curve" for the moving-atom laser. Such
curves are obtained by indirect means as dis-
cussed below.

Stenholm and Lamb' have described a graphical
method for obtaining a detuning curve. In this
method several graphs are first drawn using Eq.
(11.14) to graph the relative excitation as a func-
tion of the intensity for several values of the de-
tuning. By drawing a straight line through the
graphs at the desired value of X we can read off
the value of I at each value of the detuning for
which a curve has been drawn. The values of I
as a function of 5 for the fixed X are then used
to draw the detuning curve. This method, how-
ever, can be inaccurate and time consuming be-
cause the accuracy depends on how many graphs

are drawn and how accurately they are read, and
the computation of many extra values of X(5,I) are
required than are actually used to draw the de-
tuning curve.

The method we have used to obtain detuning
curves for the moving-atom laser is to calculate
'X(5,I) for several values about the desired X.
Starting with a given detuning (e.g„5=0) and
choosing an appropriate starting value for the
intensity I we calculate X(5,I). Then increasing
or decreasing I depending on whether the cal-
culated X is lower or higher, respectively, than
the desired X, we calculate a new X(5,I). This
process is repeated until the desired X is between
two calculated values of X. The results are then
interpolated to obtain the 1 associated with the
desired 2 at the given 5. By increasing 5 incre-
mentally and repeating the process using the last
value of I as the appropriate starting value for the
intensity, we obtain a series of (5,I) pairs associa-
ted with the desired X. These pairs are then used
to draw the detuning curve.
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FIG. 10. Detuning curves for the moving-atom laser
with a Doppler width of »/y~& =25 for several relative
excitations X. , Note the decrease and disappearance of
the Lamb dip as the excitation increases.

FIG. 11. Comparison between the exact detuning curve
and those obtained by the RKA and 2RCRA. Whereas the
REA does not match the exact solution except at the
wings, the 2RCRA matches the exact curve except at
small detunings. Both of these approximations do not
show the decrease in the depth of the Lamb dip with in-
creased excitation which appears in the exact curve.
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FIG. 12. Comparison between the exact, REA, and
2RCRA detuning curves. Note that for 8 =150 the Lamb
dip in the REA, although increasing in magnitude, is de-
creasing as a percentage of the total curve.

The exact detuning curves given in Figs. 10-12
were obtained by using the backward recurrence
scheme or the successive convergents continued
fraction method (Sec. IX) to obtain exact solutions
for S(K)/N, and then integrating over a Maxwellian
velocity distribution using trapezoidal integration
to obtain S/N, . Substituting these values for S/N,
in Eq. (11.14) gives us values of K(5,I) which are
then interpolated numerically for (5,I) pairs as-
sociated with the desired X as discussed above.
The time required to calculate each 51(5,I) to an
error of & 10 ' in S(K)/N0 and integrating over
velocities until S (K)/N, & 10 ' depends on the value
of I, 5, and Z but averaged about 0.8 sec for the
values tested The num. ber of values of X(5,I) that
have to be calculated in order to be able to inter-
polate the (5,I) pair associated with the desired
X depends on the stepsize in 5 and I, and on the
slope of the detuning curve at the 5 being calcula-
ted. The BEA and 2BCHA detuning curves are
.obtained by using the same integration and inter-
polation method except that the analytic expres-

sions for S(K)/Ã, given by these approximations
are used to obtain the values of S/N, .

One of the outstanding features of the standing-
wave gas-laser detuning curves is the existence
of the Lamb dip, i.e., the increase in intensity
as the detuning is increased. The appearance of
the Lamb dip is related to the standing-wave char-
acter of the field and the inhomogeneous Doppler-
broadened linewidths of the moving atoms. The dip
does not appear in the stationary-atom standing-
wave laser (see Fig. 9) because all the atoms have
their resonance at zero detuning. The dip also
does not appear in a unidirectional traveling-wave
laser even with moving atoms. For such a laser
if we assume a flat velocity distribution, then the
intensity at a given excitation will be the same
for all values of the detuning. This is because at
each value of the detuning there will be the same
number of atoms with the resonant K= 5 velocity
to support the field. For a Maxwellian distribu-
tion the maximum intensity will result when 5 = 0
because there are more atoms at K=0 to support
the field than at any other velocity.

In the standing-wave moving-atom laser with a
flat velocity distribution the intensity increases
as the detuning is increased —approaching an as-
ymptotic value as 5-~.' This is related to the
fact that as the detuning increases the velocity
of the atoms which interact resonantly increases
and they begin to interact resonantly with only one
of the traveling waves which compose the standing
wave, i.e. , with only part of the total field. These
faster-moving velocity ensembles are thus satu-
rated by only a part of the field and therefore can
support a larger total field than slower-velocity
ensembles with the same number of atoms which
are saturated by the entire field. Thus for a flat,
velocity distribution, graphs of the population in-
version density as a function of atomic velocity,
N(K), would show that the area of the two "holes"
burned at K= +5 always increases as 5 increases;
i.e. , the riumber of atoms supporting the field in-
creases with larger detuning and is a minimum
when the two holes merge into a single hole at
5 = 0. Consequently the detuning curve for a flat
velocity distribution shows a minimum intensity
at 5= 0. (In the REA the intensity at 5= 0 is one
half the asymptotic value as 5- ~.') For a Max-
wellian distribution, with a reduced number of
available atoms in the faster-moving ensembles,
as the detuning increases the intensity first in-
creases as for a flat distribution and then decrea-
ses because of the reduced number of atoms re-
sulting in the Lamb dip (Figs. 10-12). Graphs of
the population inversion density (Figs. 2-5) show
that the area of the holes increases and then de-
creases as 5 is increased.
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Secondary resonances such as those which ap-
pear in graphs of N(K) and S(K) (see Sec. IX) do
not manifest themselves in the detuning curves.
This is due to the fact that although S(K),has a
series of secondary resonances as a function of K,
the area under the curve (integral over K) always
increases as a function of 5 for a flat velocity dis-
tribution. For a Maxwellian distribution the area
increases and than decreases as discussed above
producing a single Lamb dip.

Although there is always a dip in the detu:-ing
curve for an infinite flat velocity distribution, for
a Maxwellian distribution the Lamb dip does not
appear until'

3I & (1-2+K)-~. (11.15)

It does not appear at smaller X because the Max-
wellian (by reducing the number of available
atoms) suppresses the increase in intensity which
would appear for a flat velocity distribution. As
the excitation is increased the depth of the Lamb
dip increases. "However for large excitations,
as shown in Figs. 10 and 11, the depth of the Lamb
dip starts decreasing as the excitation increases
until it disappears. This decrease and disappear-
ance of the Lamb dip for very high intensities was
predicted by Greenstein' using the REA. This de-
crease occurs because as the intensity increases
the essentially homogeneous power-broadening
increases. When the power broadening becomes
comparable to the inhomogeneous Doppler broad-
ening. then all the avaQable velocity ensembles
begin to interact with and are saturated by both
oppositely directed traveling waves. The satura-
tion of the population inversion thus begins to re-
semble the saturation in the stationary-atom laser
which results in a maximum intensity at zero de-
tuning and a continually decreasing intensity as the
detuning increases. This is apparent in Fig. 10
where the detuning curve changes from a Gaussian
to Lorentzian shape as the excitation increases
(compare to Fig. 9).

Figures 11 and 12 compare the detaining curves
obtained by the exact solution (continued fraction
or backward recurrence), the REA, and the
2RCRA. It is apparent that the 2RCRA is a much
better approximation than the REA —converging
rapidly to the exact solution whereas the REA is
close but does not converge to the exact solution
for higher intensities except near the wings of the
detuning curve. Both of these approximations do
not show the decrease and disappeareance of the
Lamb dip in the region (1 & X(300) that was tested.
These approximations showed the Lamb dip always
getting deeper as the excitation increases. How-
ever the depth of the Lamb dip divided by the in-
tensity at 5=0 (fractional depth) decreases in the

REA as the excitation increases, and in the 2RCRA
the fractional depth decreases until about X= 150
and then increases. Although Greenstein' predicted
the decrease and disappearance of the Lamb dip by
using the REA in the limit of I-~ his quantitative
prediction for when this occurs ('X= 1.7) is based
on a strongly inhomogeneous approximation to the
REA and thus does not match the numerical results
depicted in the graphs (Figs. 11 and 12).

XII. SUMMARY

This research has resulted in the development
of new mathematical methods for the study of the
high-intensity gas laser. These methods have
been used to obtain exact numerical solutions,
analytic approximations, and in special cases
exact analytic solutions. In addition we have ob-
tained some new physical results and presented
new physical interpretations for some of the pre-
viously well-known results.

The fastest and most accurate methods for ob-
taining exact numerical results for the population
inversion and polarization densities is to solve
the recursion relations for the coefficients in a
Fourier series solution by using the backward
recurrence scheme or the successive convergents
method for evaluating the continued fraction solu-
tion (Sec. VIII) to the recursion relations.

The laser equations were also formulated as a
matrix differential equation with periodic boundary
conditions and then solved by various additional
methods. These include using numerical methods
to convert theperiodic boundary conditions to
initial conditions and then solving the resulting
initial-value problem (Sec. VII). Also directly
integrating the matrix differential equation leads
to integral equations for the general single-mode
laser and to a definite integral which can be inte-
grated analytically in terms of Bessel functions
for the special case of zero detuning, equal decay
rates, and neglecting collision broadening (Secs.
IV-VI).

One of the Bessel function solutions also pro-
vides a prediction for the occurence of the secon-
dary resonances in N(K) at the zeros of
~,((&)"~K)

Terminating the Fourier series and solving for
the remaining coefficients analytically gives the
best analytic approximations, the REA and 2RCRA,
to the solution (Sec. VIII). The 2RCRA, in partic-
ular, is a very good approximation —matching the
exact solution for N(K) and S(K) from the first
secondary resonance and outward and matching
the exact detuning curve except at small detunings.

One of the physical results obtained by the
exact solution is the decrease and disappearance
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of the Lamb dip at high intensities which was first
predicted by Greenstein. ' The depth starts de-
creasing for intensities above I= 600 for a Max-
wellian distribution with ku/y„= 25. These inten-
sities are not unusual in present day lasers since
(for typical decay rates of 10 MHz and dipole mo-
ment of 10 "cm) the power output in a 1-mm-diam
beam is about 10 4I W [I= 10 '

&& power density/
(W/m')]. This decrease in the Lamb dip occurs
when the homogeneous power broadening becomes
comparable to the inhomogeneous Doppler broad-
ening. When this occurs the detuning curve also
begins to take on a Lorentzian rather than a Max-
wellian shape (Sec. XI). This should have impor-
tant implications in the Lamb dip stabilization of
lasers by noting that the maximum stability can
be achieved at intermediate intensity levels.

The physical interpretation of the resonances

in S(K) and N(K) includes a discussion of multi-
photon interactions between the atoms and the
field. These interactions include odd-number-
photon transitions such as single-photon absorp-
tion and emission and three-photon Raman transi-
tions, and the even-number-photon scattering
interactions such as two-photon Rayleigh scatter-
ing (Sec. X).

The mathematical methods presented in this re-
search should also be useful in related areas of
multimode" and ring laser theory and saturated ab-
sorption spectroscopy. The stationary-atom multi-
mode laser is mathematically equivalent to the
steady state single-mode moving-atom laser except
that instead of spatial harmonics we have temporal
harmonics. The physical results however will be
different since they will include mode competition,
frequency pulling, etc.
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