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The behavior of the momentum distribution function is discussed theoretically in the small-signal regime of
the free-electron laser (FEL). The distribution function is derived analytically following a series of
approximations that reduce this problem to the Klein-Gordon equation. The distribution function changes in
nontrivial ways that may play an important role in the efficiency of the FEL.

I. INTRODUCTION

Free-electron lasers have recently' been pro-
posed as an alternative to more conventional laser
devices in applications where a high tunability
range and a high power are desired. One of them
is presently being developed at Stanford, and Elias
et al."have observed gain at 10.6 p, m. It is now
known that free-electron lasers (FEI,) are purely
classical devices, '~ and that the gain is due to a
bunching of the electron distribution, rather than
to the (quantum-mechanical) Compton recoil, as
was originally suggested. "Indeed, quantum-
mechanical and classical theories give the same
small-signal gain to within numerical factors,
which can be attributed to the vastly different ap-
proximations used by various authors.

In order to achieve appreciable efficiency in the
FEL, it has been suggested that one should recycle
the electron beam from one shot to the next. v In a
description of the problem taking into account the
electron recoil only, as it is sometimes done in
"ad hoc" quantum-mechanical theories, this would
appear to be straightforward, since one could
simply replace the energy lost through recoil in
each cycle of the accelerator. With the description
of the problem in terms of the coupled Maxwell-
Boltzmann equations, ' however, we have been
able to compute the development of the electron
distribution in detail, and we find that the picture .

is basically quite different. We show in this paper
that the effects that lead to small-signal gain in a
FEL are small compared to other effects which
occur together with them.

These other effects have the consequence of
spreading out the electron distribution in momen-
tum space, and, for large fields, cause the momen-
tum distribution to split into two parts. This pre-
sents no difficulty on a single-shot basis. It may,
however, present difficulties in a recycling con-
figuration, since it increases the emittance of the
electron beam.

This article is divided into four sections. Sec-
tion II is a formal development which leads from

the coupled Maxwell-Boltzmann equations, which
form the basis of the classical discussion devel-
oped earlier, to another more convenient descrip-
tion of the problem in terms of a set of generalized
Bloch equations. Section III is the main part of this
paper, and deals with the evolution of the electron
momentum distribution function. By dropping from
the generalized Bloch equations the small term
which gives rise to gain, we obtain a Klein-Gordon
equation which can be solved exactly, and which
gives the modification of the electron distribution.
The spread and eventual breakup of this distribu-
tion into two parts appears explicitly, and is shown
to be the dominant process in the small-signal
regime. This is compared to a numerical solu-
tion of the generalized Bloch equations to confirm.
that the Klein-Gordon equation indeed describes
the large effects that occur in the distribution func-
tion. Section IV is a conclusion and summary.

A.,=A., /4y (2.I)

and can be tuned continuously by changing the en-
ergy of the incident electron beam (i.e., by chang-
ing y). We find it convenient to study this problem

II. GENERALIZED BLOCH EQUATIONS

In a FEI, a beam of relativistic electrons of
energy E =ymc' is passed through a helictical
magnetic field and produces stimulated emission
of radiation. ' In the highly relativistic limit of the
FEL, the Weizsacker-Williams approximation is
used, in which the static magnetic field of period
X, is simulated by a fictitious incident EM field of
wavelength A, = (1 +v/c) x, propagating in the op-
posite direction of the electron beam. ' In the elec-
tron rest frame, the problem can be understood as
that of stimulated Thomson scattering. The rele-
vant part of the emitted radiation is in the direc-
tion of the electron beam (backscattering), since
the Doppler up shift is maximum under this con-
figuration. In the laboratory frame the wavelength
X, of the backscattered radiation is given for y»1
by
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directly in the laboratory frame, and to stay in a
space-time representation. The FEL is then de-
scribed classically by the coupling of the relativis-
tic Boltzmann equation to Maxwell's equations.

We take the vector potential to be of the form

A(z t) —c [A c ((QJ( t+ kg z)

g(z, p„t) =n(z, p„t) ++(ig„e'"( ' '+c.c.),
tn=1

(2.6)

where

(2.7)

+A (t) c i(&u-& t-0& z) ] + e c (2.2)

Bh p, Bh e A Bh
+

t ~r ~& ~y 2 ~P, ' (2 3)

where the z axis is taken along the electron beam.
We take A,. to be constant (i.e. , we neglect the de-
pletion of the static magnetic field), and A, to be
a function of time.

In Ref. 3, we showed that if one takes a field of
this type, and if one neglects the transverse vel-
ocity spread in the electron beam, the coupled
Maxwell-Boltzmann equations can be separated
exactly into a transverse and a longitudinal set of
equations. The transverse equations can be solved
trivially, and the longitudinal Maxwell-Boltzmann
equations give

(d =(d —(0~ ~ (2.8)

BRg aR3
2 gP (2.9a)

This later expansion presents several advantages
over the perturbative one. First, each term in

(2.6} contains the saturation to all orders in the

field, and we do not encounter the divergence prob-
lems associated with the power expansion. Second,
a computer analysis~ shows that the expansion (2.6)
can be truncated at rn = 1 without introducing notice-
able corrections in the small signal regime of the
FEL. Finally, with this truncation the Boltzmann
equation (2.3) can be reexpressed at steady state
(s,n =a, g, =0) in terms of the following set of equa-
tion s4

9R2
1-PR =0 (2.9b)

(2.4)

pg(z, p„t) is the longitudinal part of the Boltzmann
distribution function. It is normalized to the num-
ber of electrons N(t) inside the cavity by

N(t) =ma' J dp, dzh(z, p„t) . (2.5)

ma' is the area of the electron beam, I the length
of the cavity, p, =ymv, is the z component of the
electron (kinetic) momentum, co the dielectric con-
stant of vacuum (MES units), and the filling factor
I' is the ratio of the section of the electron beam to
the section of the cavity. We note that for highly
relativistic electrons (y»1) the laboratory fields,
we can neglect the mass-shift' (eA/mc)' of the
electrons, and thus

8R3 BR g

8$ BP
(2.9c)

These equations contain, in addition, a perturba-
tion expansion in P which will be explained later.
The boundary conditions are

R,(0, P) =R,(O, P) =0,

R,(O, J )
(2.10)

R, = (m cd/4n, pP,y, ) (g, +g,*},
R, = i(mcW2-/4n, oP,y, )(g, -g,*),

R, = (m c/2 n, p P,y, )n,
where

(2.11)

prescribed by the initial electron momentum dis-
tribution. The R, (g, P) are dimensionless functions
related to n and g, through

y -=1/(1- p')' '=[1+(p, /mc)']' '.
g' = mc/4 &2y,'P,'e'A, A, . (2.12)

We know of no manner in which the set of equa-
tions (2.4) and (2.5) can be solved exactly. If one
wishes to find the small-signal gain, it is suf-
ficient to

expands�

(z,p„ t) in power of
~ A,.A., ~ and,

following the procedure used by Lamb" for the
laser, solve (2.4) and (2.5) self-consistently. " An
alternative procedure that we used to analyze the
saturation consists in expressing /g (z,p„ t) as the
harmonic expansion

P. = [1-1/y:]"=A /«. -
g is the dimensionless length

r =z/I,

where the scale length l is

(2.13)

(2.14)

The value of P, is defined as the velocity at which
there is neither gain nor loss (center of the gain
line)
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I =(mc) /2vYKoe'A;A, , (2.15) L/l
5P=— dg dPR, f, P

in terms of which the saturation condition is given
as /-L, . The dimensionless energy P is measured
relative to the zero gain condition such that

dPP [R,(L,/I, P) R,-(0,P)] . (2.21)

(2.16)

2' +p, Q +~2K ] (2.17)

where

p = ~~/v, -K =ac(P. —P)/P, (2.18)

is a measure of the detuning between the cavity
and the electron beam, we can expand" p, about

p, = mc p,r, and find that P is given by

P=-p. l . (2.19)

It is consistent with this approximation to let

dP dPr
dp

=r.
dp

=»r.'P. ~

Z 8

on the RHS of Maxwell's equation. We then obtain

-S'n, c'Z'L, 'f A;['[A,['

x — dg dPR~ &, P ~ 2.20

The double integral on the BHS of Eq. (2.20} can
be reexpressed in a way that shows explicitly that
the gain is due to the recoil of the electrons. " In-
tegrating by parts and using the fact that R,(g, -~)
=R,(g, +~) =0 we find, using Eqs. (2.9) that

The set of equations (2.9) presents a striking
resemblance to the usual optical Bloch equations,
where R, would be the population inversion and R,
the polarization. However, it differs from them in
two respects. First, the signs on the RHS of Eqs.
(2.9a) and (2.9e) are opposite in the usual Bloch
equations, and second, the RHS of these equations
-contains derivatives of R, and R „respectively.
The difference lies in the fact that in a free-elec-

-"tron laser, the gain is not proportional to the elec-
tron distribution function. Rather, it is its slope
in momentum space which plays the role of an
inversion. "

To complete this formal development, we still
have to express Maxwell's equation (2.4) in terms
of the new variables R;. We first observe that
since the small signal gain is finite only in the
region'

Since R, and R, contribute in a rapidly varying
time-dependent fashion to the electron distribution
function, the RHS of Eq. (2.21) can be understood
as the time average of the difference between the
average fina, l energy and the average initial energy
of the electrons. This recoil is computed for the
small-signal regime of a FEL and in the small-
cavity limit in Appendix A. In the next sections,
we shall see that, although it is responsible for
the gain, the electron recoil is a small effect when
compared to other effects which occur simultane-
ously with it, namely a broadening and eventual
splitting of the electron distribution into two parts.

III. DYNAMICS OF THE ELECTRON DISTRIBUTION

~ Rg &'Rg P2R 0
~(2 ~P2 o ($.2)

whose solution is well known. " With the boundary
conditions in (2.10), we obtain

In the previous section, we developed the dy-
namics of the FEL in terms of a set of generalized
Bloch equations. In this section, we develop an
approximate analytic solution for the functions
R; (i =1,2, 3) in Eq. (2.9) in the so-called "small-
cavity" limit' of this problem. This limit, which
is the optimum configuration for the FEL and the
one used experimentally, is discussed extensively
in other publications. ' For our purposes this
limit can be described as follows: We take P, to
be the center of the initial distribution function
[i.e., the center of R,(g =O, P)]. In the small-
cavity limit, the range over which one ean vary P,
and still obtain finite gain or loss at a fixed wave-
length A., is rich wider than the initial width of the
distribution function. This corresponds to the
"homogeneously broadened" limit of the FEL and

enables us to take the initial "inhomogeneous"
distribution to be 5 function

R,(0,P) =6(P-P, ) .
The amount by which the distribution spreads out
depends upon the magnitude of the field. In the
small-signal regime, the spread due to the field is
small compared to P» so that the domain of inter-
est in P remains extremely small. This suggests
that it might be interesting to replace P by Po in
terms of Eq. (2.9} that do not contain derivatives.
When that is done, Eq. (2.9) leads directly to the
Klein-Gordon equation



16 ELECTRON DYNAMICS IN A FREE-E LECTRON LASER 669

R (f, P) = -H—(g, P} J (Po[f —(P -Po) ]'~ ]
8

—-'(& I&+(P -Po}] &—[C —(P -P, )]),

R.(C, P) = .'-H-(t, P)

one can get a reasonable qualitative picture of the

distribution function by ignoring all contributions
from the terms containing Bessel functions. In

light of remark (iii), this amounts to considering
only the two 5 functions in R,(g, P).

To quantify this remark we define the energy
spread ~P as the root of the second moment of the

electron distribution function

xj ([x2 P2 (P P )2]2~2]
—Z/2

( ~P( = dP(P -P,)'R, (3.6)

+-,'P,H(g, P)

R3(f, P) =
2 POH(f& P)

PpC
x dx Z ([x P(P --P ) ]'~2)

[ Pp(,P Pp)l

where

+l(~ k+(P -P.)]+~[f (P -P-.)]],
(3.3)

( P)
I I P -Po I &K

0, IP —P l&g,
(3.4)

-( )
jH(gyP) p P&Poj

-H(g, P), P&P„
(3.5)

Jp is the zeroth-order Bessel function.
There are four points worth noting immediately

about these solutions: (i) We have compared these
directly to the numerical solutions of (2.9) and

found that they agree almost exactly in the small
signal regime. (ii) The disagreement involves the
terms which give the gain. These are smaller than
the ones given here by (S/S„,)'~'. (iii) SinceR, and

R, contribute in a time-dependent fashion to the
distribution function (giving a time-average con-
tribution of zero), the most interesting term turns

, out to be R,(P, P). (iv) As we shall show presently,

where, as in the. case of the recoil, we neglect
the contribution from the rapidly varying terms
R, and R,. The 5 functions alone give hP = g. In

Appendix B, we compute the spread exactly and

find

LP = (2/Po) sin2P, g. (3.V)

This spread reduces to the g-function contribution
for small g. The contribution from the background
can be readily determined from the difference be-
hveen the exact answer and the 5-function con-
tribution. The point of maximum gain corresponds
to the maximum of the sine function (i.e. , PoL/2l
= —,'n), in which case the exact spread at the output
is given by

&P = (2/~) (LII) . (3.8)

This is about 35% smaller than the spread obtained
from the 5 function alone. Thus the main part of
R,(g, P) is still the two 5 functions, and the Bessel
function contribution can be omitted if one is in-
terested in the qualitative behavior of the free-
electron laser only.

The splitting of R,(f,P) is independent of the
initial distribution, which is in complete agree-
ment with the numerical results (in the numerical
calculations the initial distribution has a finite
width E). In the case of finite widths, if aE &E,
the output width is E +LE, and if E &DE, two peaks
result, each with a width E.

In Table I, we have summarized the results of
the previous discussion by giving the spread ~P
(b,E) in scaling (P} and real (E) units. The real

&ABLE I. Summary of key parameters and results expressed in terms of optical fluxes
(physical units) and scale lengths.

Genter of initial electron
distribution, relative to
the zero gain condition

Electron recoil

Electron spread

Recoil to spread ratio

Physical units

&0 =y'mc'(A. ,/2L, )

6E'= (A, /L) y'm c2(s/s~~

4E=(1/ 2) p,,/L)&3mc (s/s$gg)

~E
——~2 (S/S eat)

Scaled units

6P= (4/7(3) (L/f)'
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units are written in terms of S/S„, , which is found
from the ratio L/l in Eq. (19) in Ref. 4. All of the
quantities are evaluated at the output (z =L), and
for P, (E,) evaluated at the point of maximum gain
(see Appendix A). The last row shows the ratio
of recoil to spread, and one sees that for S&S, t lt
is the spread which is dominant. The numerical
calculations show that the effects are comparable
for S-S„„sothat the ratio is valid for large sig-
nals. In the small-signal regime, the dominant
effect on the distribution function will be the spread.

In light of this, it is important to note that a re-
duction in gain can occur either from saturation
(i.e., recoil) when 5E-E» or from reaching the
"large-cavity" limit when the total spread LE„,

Qp If in order to increase the eff iciency of the
FEL, one adopts a recycling configuration of the
electron beam, one needs not only to replace the
energy lost by recoil, but also to compensate for
the spread effect. While the first requirement is
rather easy to achieve, the second one involves
subtle considerations on the physics of a storage
ring. In view of our present discussion, this is
the dominant problem, and it will have to be ad-
dressed in detail.

IV. CONCLUSIONS

In this paper, we have shown that the effects that
lead to the gain in the FEL play a relatively minor
role compared to other effects. Thus, unlike con-
ventional lasers, it is incorrect in principle to
identify the small-signal regime of the FEL with
an unchanging population distribution. Instead,
there is a substantial spreading, or, for large
fields, a splitting, of the distribution function.
Here, we develop a theory which allows us to com-
pute analytically the development of the distribution
function. The chief features of this theory are that
it is nonperturbative (i.e., it does not involve an

expansion in powers of the field), and that it leads
to equations that are somewhat similar to the Bloch
equations, with solutions that resemble those found
in optical nutation and free induction decay.

The features of the small-signal solution turn out
to be characterized by the same ratio of flux to
saturation flux [in particular, (S/S„, )' '] found in
the large-signal regime. The ratio of energy re-
coil, which characterizes the gain effects, to en-
ergy spread which we describe here, is given by
this ratio. The spread may limit the number of
times this can be done before the electrons can no
longer contribute to the gain.

APPENDIX A

In this Appendix, we compute the electron recoil
5p of the electrons in the small-signal regime and
small cavity limit. Since the small-signal gain can
be obtained in the frame of a standard perturbation
theory, it is sufficient here to take R,(g, P) to be
unperturbed by the field, i.e.,

R3(f, P) =R3(0,P) =5(P —Po), (Al)

where the last term of the equality can be under-
stood as the definition of the small-cavity limit.
Under this approximation, the set of Bloch equa-
tions (2.9) can be solved exactly, and we find

(A2)

The recoil is given by Eq. (2.21). This integral
gives, with (A2) and after some minor algebra,

L, '
g sing

(A3)

where

x =PL/2l =-2p, L. — (A4)

The last term of this equality comes from the Tay-
lor expansion (2.19). We know from Ref. 3 and Eq.
(2.20), that the gain will be maximum if x=-,'m is
maximum, i.e., if the initial energy P, is chosen
such that

P =&1/L .
The corresponding recoil is

» = -(4/~') (L/~)'. (A6)

APPENDIX 8

g
oo OO

dP(P -P ) R =2 dP(P P)R, .-
Bf

(B2)

The first and second Bloch equations (2.9) can be
combined to give

Here we compute the spread AP of the electron
distribution. It is given by the second moment of
the electron distribution defined in Eq. (3.6).
Multiplying the third Bloch equation (2.9c) by
(P P, )', integrat-ing the RHSby parts, and using

R (g+ )=0, i=i, 2, 3,
we obtain
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where
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R =—R ~+iR2.

Multiplying (B3) by (P —P, ) and integrating by
parts gives

vo . oo

J dP(P -P o)R iP-O dP(P-Po)R =1,

(B5)

which is an immediate consequence of the third
Bloch equation and the boundary condition (Bl), to
obtain the RHS; Eq. (B5) can be readily integrated
to obtain f dP(P P-, )R, and, combining the re-
sult with Eq. (B2), we find

OO

Bf r
~i Po

dP(P -P, )3R3 = -2Re . . (B7)
ZPO

where we have also used the fact that

8$
dPR 3(K i P) = 0 i (B6)

Finally, integrating with respect to g gives the
energy spread

~
gp ~' =(4/P', ) sin'(P, g/2) . (B8)
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