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Subthreshold operation of a one-dimensional laser having output coupling is analyzed quantum mechanically
‘under the assumption of constant population inversion. The conventional quantum Langevin theory of the
laser is improved in that the spatial behavior of the field is treated exactly by use of a multimode
formulation of the field of the universe. This formulation allows the thermal noise to be derived
automatically without introducing any artificial damping mechanism for the field; this noise comes from the
statistical nature of the initial state of the field. The analysis shows that the cavity quasimodes are excited, -
that the linewidth formula differs from that of a conventional theory by a factor determined by the field
distribution excited in the cavity, and that, outside the cavity, the quantum-mechanical coherence function is

propagated with the velocity of light.

I. INTRODUCTION

This paper is a continuation of previous pa-
pers,'™ wherein the quantum theory of a one-di-
mensional optical cavity having output coupling
and linear semiclassical and nonlinear semiclas-
sical theories of a laser incorporating such a cav-
ity, were developed on the basis of a multimode
expansion of the field of the universe. We present
here a linear quantum-mechanical theory of a laser
having output coupling. The purpose of this series
of papers is to establish a method to determine the
field distribution inside and outside of the laser
cavity, and to give a more rigorous foundation for
the quasimode theories, i.e., those that assume
well-defined cavity modes (as an idealization of
the actual quasimodes) and treat the coupling loss
phenomenologically.*®

Closely related to our work are those papers by
Lang et al., who gave a semiclassical multimode
theory of the laser’ taking into account the many
modes of the universe and derived the thermal
noise from the initial condition of the field.® Qur
semiclassical analyses®® improved their results,
making it possible to determine the spatial beha-
vior of the laser field. Their derivation of the
thermal noise is revived in this paper in a more
rigorous way. The advantage of our formulation
over that by Lang et al. lies in that we use the
exact mode functions of the universe, which allows
us to determine the spatial (as well as temporal)
dependence of the field. This advantage is effec-
tive also in the quantum theory presented here.

In this paper, we extend the linear semiclassical
analysis in Ref. 2 (hereafter referred to as II) to

J

include noise and develop a fully quantum-mechan-
ical theory of the laser having output coupling. We
assume again a constant population inversion (li-
near theory) for the two-level atoms located in the
optical cavity analyzed in Ref. 1, and consider the
subthreshold operation. We treat the atomic fluc-
tuation by means of the quantum Langevin meth-
od**9% we introduce a phenomenological damping
term (as in II) and a fluctuating term for the atomic

_polarization. In contrast, we introduce no damping

term for the field, yet the coupling loss and the
thermal noise are shown to be derived automati-
cally. Except for the inclusion of noise terms the
present calculation is completely parallel to that in
II.

II. LASER EQUATION OF MOTION AND THE LANGEVIN
FORCES

Our optical cavity has the cavity resonant modes
(quasimodes) given by!

up(2) = sin <Qk E—;—‘Z> -d<z<0, (1a)
. d .z

=gsin (Qk ;,‘T) exp (le F) , 0<z, (1p)

Qk:wck“i'yc; (23.)

Wep=(2k+ )7 (c'/2d), £=0,1,2,..., (2b)

Y.=(c*/2d) In(1/7) , (2¢)

where Eq. (1a) is for inside the cavity and Eq. (1b)
for outside. The normal modes of our universe
used in the following formulation are introduced by
setting an imaginary boundary at z=L:

) <2 1 >1/2 {sinkﬁ.(z+d), -d<z<0, (3a)

Uf2)= 1 ——rs) X

’ e'L 1-Ksin’kjd (c°/c‘)cosk§ds'mk‘}z+sink}dcosk‘}z, 0<z<L. (3b)
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Here, the superscripts 1 and O refer to the inside and the outside of the cavity, respectively. The letter
7 denotes the amplitude reflectivity at the coupling surface at z=0, &, is equal to w,-/ c (where w; is the
frequency of the jth mode of the universe), and K=1—¢°/¢!. Other letters have their usual meanings.

In Appendix A are shown our starting equations which are subject to the dipole and rotating-wave approxima-
tions. We added a fluctuating term for the atomic polarization in accordance with the quantum Langevin
method.*51% Assuming that the coherent interaction between the field and the atoms begins at =0 and
using the slowly varying amplitude approximation, we get the following equation for the electric field op-

erator [cf., Eq. (29) of II]:

+ pm 2l/an'm ! iw (t’-¢) ¢ ; ” ’ + ” n g4
E(z,t)=;J——|——-2h,w fo 2; U (&)U (2,)e* fo exp (v, + ¥, )(t” = 1')] EX2,, ") dt” dt' + F (2, 1),

(4)
where ,
F(z,8)=F(z,t)+ Fy(2,8) + Fy(z,1), (5)
1/2
Fe,n= X i(%) v 00, (62)
Fy(z,t)= ; % (al,a,,,)(0) jo't Z,: U (2)U(2,,) exp[iw(t’ = t) = (iv,,+ v,)t'] dt’ , (6b)
. t .

Fy(z,0= 3 ’—'iﬂzfﬁ fo Z,: U (&) expliaft! = 1) = @t 7)) fo Cemtr myarrar. (6¢)

The quantity w is the assumed center frequency of
oscillationand q; is the annihilation operator for
the jth mode of the universe. The letter m refers
to the mth atom; p, is the component of the elec-
tric dipole matrix element along the polarization of
the field (e.g., in the x direction), v, is the reso-
nance frequency, o, is the population inversion,
¥Ym iS the damping constant for the polarization
(at.a,,), and z,, is the location. T, is the fluctua-
tion for the polarization amplitude.

Later, we consider the statistical properties of
the resultant field, when those of the fluctuating
terms appearing in Eq. (6) are required. In this
regard, we assume the existence of an initial ra-
diation field which is in thermal equilibrium with
the passive cavity and with the imaginary boundary
at z=L. For the fluctuation of the polarization of
each atom we follow the treatment due to the quan-
tum Langevin method.*5 Thus we assume the fol-
lowing equations to hold'’:

{a;(0))=0, (Ta)
{(al,a,,)(0))=0, (o)
(T, ()=0, (Tc)
(al(0)a;(0))=8,;7,0), (8a)
{(al,a,)(0)(a},1a,,,)(0)) = 5, ,{(al,,a,,,)(0))
=36,(1+0,), (8b)
(THET ()= 8,7, (1+0,)0(t' = 1), (8¢)

where the angular brackets denote the ensemble

average with respect to the initial field and to the
heat baths responsible for the pumping and damping
of the atoms. The quantity »,®©) is the Planck dis-
tribution for the jth mode of the universe at the
initial temperature ©.'2 Note that we are assum-
ing that the modes of the universe are statistically
independent of each other at =0 and so are the
atoms’ heat baths at any time.

With the above specification, F,(z,?), the free
oscillation of the field in the absence of the atoms,
describes the thermal noise. Note that this fluc-
tuating term appears without introducing any heat
bath for the field. F,(z,¢) accounts for the quantum
noise. The second fluctuating term, F,(z,¢), de-
scribes a switching-on effect which is insignificant
for large ¢.

III. SOLUTION OF THE LASER EQUATION OF MOTION

Hereafter, we limit our consideration to atoms
with identical properties and write v,, p,, 0, and
y instead of v,,, p,., 0,, and ¥,, respectively, as
in II. However, we preserve the statistical inde-
pendence of the atomic fluctuations (i.e., of the
heat baths) and write (a},a,,)(0) and T, (¢) as in
Sec. II. We solve Eq. (4) following the pro-
cedure described in II. In doing this, we replace
6*(z,,) in Eq. (C1)*® of Il by V*(z,, s) which are the
Laplace transforms of the portions of
F(z,t) exp(iwt) propagated to the positive (+) and
to the negative (-) z direction, respectively. The
explicit forms of V*z,, s) are given in Appendix
B. After some algebra, we have for the principal
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part of the laser field that is characterized by a small decay constant s,,"*

R D e — [ 2 e [ e emplis, - )= Mar+ Thge T

+i(Vy+ wgp — 2w)

x((ahuap @) s [T (met expl(s, - i)t -mar) |,

0

1 . 1 t
Ee,n= T 2D [ 5% ic, 0,0 [ e exl(s, - it 2/ - (e 2/ )

+ ; Vé’f;“ Uer(Z ) ((afn,a,,,z)(o) exp (s, — iw)(¢ - 2/c*)H(t - 2/c°)

+ f ‘ T, (T)e ™" exp[(s, — iw)(t — 2/c® = T)|H(t - 2/c° - T) d-r)] , 0<z, (%)

/ . .
=i nw; 1 . >1 2 GN(c')? exp(zwckd/cl)?osh[('yc—zwj)d/cl] , (9¢)
ki €'L 1-Ksin’kid d Ye+i(w,—w,)
G=|p, [Pv,20/2nwe et (94)

where N is the number of atoms per unit distance in the z direction (which is assumed to be independent of
z). In Eq. (9a) Heaviside functions of the form H(¢ - 7,), where 7, is of the order of the cavity round-trip
time 2d/c!, are omitted and in Eq. (9b) factors of the same order are omitted in the arguments of the
Heaviside functions. The complex decay constant s, is given by

VYot (Vg — ) (@ — w ) = GNc* — iy (w— w )+ v (w - v,)}

S, = — -
Y+ Yo+ i(Vp+ Wy — 2w)

0

(10)

which agrees, formally, with that of a quasimode theory [see below Egs. (18)].

The appearance of the quasimode functions, Eq. (1a), in Egs. (9a) and (9b) implies that the cavity quasi-
modes are excited. The second terms in the square brackets in Egs. (9a) and (9b), i.e., the terms of the
initial polarization, vanish for large f. The other terms due to thermal noise and quantum noise are
lasting, being convolutions of the noisy driving functions and the decaying function obtained by the semi-
classical theory in II. This is to be expected since we are working with linearized differential equations
and since the result obtained in II is the response of the laser to a perturbation which is a & function of
time.

IV. QUANTUM-MECHANICAL COHERENCE FUNCTION AND THE LINEWIDTH

Using the statistical properties of the driving forces given by Egs. (7) and (8), we can calculate the quan-
tum-mechanical coherence function.’® For a single quasimode (e.g., the kth mode) of the cavity, we have

e(so-iw)(t—t ')’ >t ,
(B2, VB a, D) = Rat ("W 2) {

e(sé"ﬂw)(t’-t)’ t<t', (113)
-d<z'<s0, -d<z<0
. | z , 2 z z'
(1+7)? eXp{(s°'zw)[<t‘ F) - <t B ?ﬂ} <t_ Ea) g <t' - _°->
+7 :

(E*(2', t')E"(z, 1)) = Rx

C
Iy exp{(sg‘+iw)[<t'— i—f,) —(t— C—i)]} (t— %) <<t’— %) (11b)

0<z’, 0<z

B 27wy B,/ Y, o2 > N,
T dd(y+ v )L -0/0y) [( 0n0 5 n(©)+ N(’tn] ’ (11c)
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where ’
=3 (1+0)N, ‘ (12)

ct 1-72
Be=355 —5, * (13)

The threshold population inversion o,, and its value
at zero detuning ¢, are given by

2e'm vy, '
Tn= Nlip 7;2:) {1+6%, o%=0wleo> (14a)
a
82 =[(v, = wee) /(¥+7.) 2. (14b)

In deriving Egs. (11), we ignored terms that van-
ish for large ¢ or ¢/, replaced the summation over
z, by an integration, and used Egs. (2b) and (2c)
repeatedly. Also, we made the approximation

Suyn) SR L oni0) 25 o,
(15)

where L/cr is the density of modes of the field
of the universe' and »(®) is the average Planck
distribution around w. Equation (15) is valid!®
only for time differences greater than the recipro-
cal cavity half-width 1/y,. Further, we made the
approximation

W= (YW o+ ¥oVo) /(v +7,) (16)
for comparison with the results of Haken.!” This
is by no means the unique expression for w as was
discussed in II.

The linewidth (half-width at half-maximum) is
given by the absolute value of the real part of the
decay constant s, in the coherence function. In or-
der to express it in terms of power output, we cal-
culate the latter from the power flow outside the
cavity or from the energy stored in the cavity mul-
tiplied by 2v, using Eq. (11b) or (11a), respectively.
(These give the same output power, showing that
the decay constant y, appearing in the quasimode
analysis gives a correct damping factor also in
the multimode analysis as far as the linear theory
is concerned.) Denoting the linewidth and the
power output by Aw and by P, respectively, we have

_ (r+ v )[yr(1+6%) - GNc']

(Y+ 7P+ 8% (y = 7. (172)
_kw 2y2g2 o? N,
TP (r+ Y+ (v =7, ) [<0th0%h> nO)+ oth]
X (1+62). (17b)

If we replace g, by v, and the factor before n(0) by
unity, Eq. (17b) reduces to the result of Haken,"

J

2

derived assuming three-level atoms. As will be
shown later, the factor before n(©) should indeed
be close to unity within the range of validity of our
analysis.

V. DISCUSSION

In Secs. I-1IV, we have analyzed a laser having out-
put coupling incorporating homogeneously broad-
ened two-level atoms which have a constant popu-
lation inversion. The present multimode (of the
universe) analysis has several advantages over
conventional quasimode theories. First, the
present theory directly yields the field outside of
the cavity which we can observe. In particular,
the quantum-mechanical coherence function, Eq.
(11b), is seen to be propagated with the velocity
of light, which is a special case of the propaga-
tion of the mutual coherence function of partially
coherent light.'® Also our theory yields the line-
width in %2 space, which can easily be shown to be
equal to Aw/c®. Second, the thermal noise was
derived without intreducing any heat bath for the
field»®'%; it was derived directly from the initial
thermal radiation field. Note that the thermal
driving function,

Z Chrj aj(o) exp(- tw; ),

in Eqs. (9) is Markoffian only on a time scale
greater than the reciprocal cavity half-width ;!
as was discussed below Eq. (15), whereas in a_
quasimode Langevin theory corresponding driving
force, e.g., the F (¢) in Eq. (18a) below, is usually
assumed to be “exactly” Markoffian. (Thus a
quasimode theory leads to an exorbitant range of
validity.) Third, the linewidth formula, Eq. (17b),
gives a correction® to that of a quasimode theory
by a factor (B,/7,)%

Here, we briefly discuss on the origin of the last
correction. For direct comparison of our theory
with the quasimode-Langevin theory, we consider
a one-dimensional laser within the framework of
the quasimode theory?' rather than the generalized
model of Haken.!” We use a model which is identi-
cal to the one analyzed above except that the cou-
pling surface is replaced by a perfectly conducting
wall and that a damping constant y,, (=7,.) and the
corresponding fluctuating term, F (t), for the field
are introduced. Here, the subscript ¢ denotes the
quasimode theory. For the basic equations for this
model see Appendix A. The field of such a laser
can easily be obtained, which reads

EYz,t)=-i (ﬁw) U, (2)a(0)eso it _ ¢ (h’Tw>1/2 Unel2) f exp[(s, —zw)(t-'r)][—— F/(T)+YyF (-r)] e ot dr

t
~1 3 i) Vnl@Ulen) [ expl(sy — i)t DT (m)eerar,

YeatV

(18a)
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where

Up(2)= 2/ @) 2 sin[(wu/c Nz +d)], wy =k(nc'/d), k=1,2,3,.... (18b)

Here, for simplicity, homogeneous broadening of atoms, single-mode operation and zero detuning
(w=w,,) are assumed. Also, the slowly varying amplitude approximation is made as in the derivation of
Egs. (9). The factor s, is given by Eq. (10) with y, being replaced by y.,. Comparing the terms of quantum
noise, i.e., terms of I',,, in Eqs. (9a) and (18a) and calculating the stored energies in the cavity, we have
for the ratio of the power output in our theory to that in the above model:

P _ 2y, [O]sin[Q(z+d)/c*]| Pdz 22, | sin[Q(z,,+ d)/c’

P 1P _/B\?
P, 2v, f_odSinz[w,w(z+d)/cl]dzEmsin2[wkq(zm+d) /cT] _(7—::) - (19)

Note that 2y, is the correct cavity damping factor
also in this multimode analysis as noted earlier.
This ratio is exactly the correction factor obtained
in Eq. (17b) against a conventional formula.!” Sim-
ilar arguments can be given for thermal noise
terms. Thus we conclude that the quasimode theo-
ry underestimates the power output because of the
ignorance of the correct field distribution consis-
tent with the output coupling. This is the implica-
tion of the correction obtained for the linewidth
formula. The correction factor Eq. (19) is unity

if the amplitude reflectivity # is unity, but it
amounts to 2.2 if  is 0.2. Such a small value of
7, or strong output coupling, is allowed in our
theory as long as the criteria which follow are
satisfied.

Finally, we examine the range of validity of the
results obtained in Secs. IIIand IV. Allowed values
of the linewidth Aw are limited by: (a) the slowly
varying amplitude approximation used in deriving
Egs. (9) [see Eq. (64) of II and Eq. (17a)]; (b) the
neglect of small arguments in the Heaviside func-
tions in Egs. (9); (c) the approximation made in
deriving Egs. (9) [see Eq. (48) of II] and Eq. (15);
and (d) the neglect of terms corresponding to the
essential singular point s=-9 in Eq. (C1), II.
These require that Aw <(y+7v,), Aw<Aw,,
Aw<y,, and Aw <y, respectively. Thus we should
have??

Aw<min(Aw,, ¥,, ) - (20)

Here, Aw, is the cavity (quasi)mode spacing, ¥,
the cavity decay constant, and y the atomic half-
width. By virtue of Eq. (17a) this reduces to

1- 9 o min(Awg, vo, [+ v+ 8r =7 (9y)

Oth YY(r+ 7 )(1+5°)

Here § is the relative detuning defined by Eq. (14b).
Since the quantity on the right is at most 2 (the
maximum being reached when y=7v,< Aw, and 5§=0),
the relative population inversion ¢/ 0., Should be
close to unity. (Especially, if both y, and y are
much greater than Aw,, it should be very close to
unity.) Therefore, the factor ¢2/c,, 09, before

—

7n(0) in Eq. (17b) can safely be dropped.

Our basic assumption of constant population in-
version imposes another limitation: the maximum
value of the field intensity, (E"(z,t)E*(z,t)), in the
cavity should be much smaller than the saturation
parameter, |E %, in Eq. (29), Ref. 3. Using Eq.
(11a) with £=¢’, we have

dayy, f(r)(1+0) o
Ty )Ndes, 1T o, (222)
(=) +9) . 2031+ 8%) N
f(V)—mT, a—1+m"(®)~1,
(22b)

where T on the left-hand side is the time constant
of the incoherent pumping process and the function
f(¥) takes a value of the order of unity for » = e™’.

The results of our analysis are valid under the
limitations of Egs. (21) and (22). Even if we ignore
the thermal noise as compared with the quantum
noise, these limitations cannot be relieved.

APPENDIX A: THE HEISENBERG EQUATIONS OF MOTION

The Heisenberg equations of motion leading to
Egs. (4)-(6) of the text read as follows. (For no-
tations see the text.)

d . R

a7 4T Ttwia -t Z K @y @) (A1)
d , 4 . '

E; (amlamZ) - "(7’ Vit ym)(amlamz)

+i QL ka0t T (e nt | (A2)
¢ F)

Kjm= 1V Do 1/2100 ) 2U (2,,) - (A3)

The Heisenberg equations for the conventional
model that lead to Eq. (18a) of the text read as
follows:

ar &~ —tWpe Ay~ Yo O

_i Z Kkm(a:nlamz)-" qu(t)e_iwkqt ) (A4)



d ;
E (a:uamz) = —-(1Vm+ Ym)(arnlaMZ)
8D Kfa@y0 p+ Tyt)ent, (AB)
k
K = 8V 0 (1/20 w0 20, (2,) - (AB)

Note that a damping term and a fluctuating term
are added in Eq. (A4) and that the mode functions

—J

1 /7w, 1 1/2 2+d
Vi(z,s) == E = <———1 ——— > exp(:tz(w - w) >
1 T 2\ 2 1-Ksin’k;d

WybDp (af,.lamz)(o) + A,m(s)
2¢'ct Y, +ri(w-—v,)+s

Vi(z,s)+ Vi(z,s)= Z
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U,[2), defined by Eq. (18b), are orthogonal func-
tions within the cavity.

APPENDIX B: LAPLACE TRANSFORMS
OF THE DRIVING TERMS

The Laplace transforms V(z, s) of the portions
of Fy(z,¢t)exp(iwt) (i=1,2,3) propagated to the pos-
itive and to the negative z direction read

a,0)
s+i(w; -

5 (B1)

R(s)

X [bogmexp((zw—s) z CZ >+

k-0 o]

n P (a},,8,,,)(0) + A, (s)
25 ¢t y,tilw=v,)+s

Vi(z,8)+V;(z,s)= Z

x{ <t exp((zw s)

where
L 222,
63% Zm (B4)
0, z§zm ,

)

T-R(s) exp((zw s)

Z =2,
c!

(B2)
R(s) -z
T-R(s) [exl’((w 5) 5 > _
..exp(- (fw-s) gfdj'j_r%ﬂ)]}’ (B3)
; R(s)=-7 exp[2(iw - s)d/c'], (B5)

and A,(s) is the Laplace transform of
T, () exp[i(w-v,)t]. The procedure of derivation
is similar to that of Eq. (49) in II.
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