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Calculation of transition frequencies for H2+ and its isotopes to spectroscopic accuracy
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Calculations are reported of certain low-lying infr'ared transition frequencies in H2+, D, +, HD+, HT+, and
DT+. They take account of radiative, relativistic, and nonadiabatic effects and are made to the same level of
accuracy (0.002 cm ') as the recent experimental measurements for HD+; for the (1,0-0, 1), (1,1-0,2), and

(2, 1-1,0) transitions for this molecular ion, the frequencies are 1869.135 (1869.134), 1823.534 (1823.533),
and 1856.781 (1856.778) cm ', where the experimental results are shown in parentheses. We predict that the
current values of the mass ratios m, /m and m, /md are good to +2 in the sixth significant figure. The
nonadiabatic energies are based on extremely large basis sets (up to and including 515 basis functions) and

required special techniques for solving the generalized eigenvalue equation.

I. INTRODUCTION

In this paper we report calculations of infrared
transition frequencies for H, ', D, ', HD', HT',
and DT' which include relativistic, radiative, and
nonadiabatic effects. The accuracy of the results,
of the order of 0.002 cm ', surpasses that of all
previous calculations and this is primarily due to
improvements in the calculation of the radiative
and nonadiabatic effects. With this accuracy a
meaningful comparison can now be made with the
experimental values recently determined by Wing
et a/. ' for HD', and the accuracy of the mass ra-
tios used in the calculation can be found. In fact,
the experimental and theoretical transition fre-
quencies, where comparison can be made, agree
exactly to within the error limits given.

Previously nonadiabatic energies had only been
calculated for the two lowest nonrotational levels
of these molecular ions, "this work extends these
calculations to the third nonrotational level.

The paper is divided into five parts: (a) the cal-
culation of the adiabatic energies, (b) the calcula-
tion of the relativistic and radiative (Lamb shift)
corrections, (c) the calculation of the nonadiabatic
energies, (d) the synthesis of these results to give
the transition i'requencies, and (e) a discussion of
the results.

In the calculations the following electron (e),
proton (P), deuteron (d), and triton (t) mass ra-
tios were used'. m, /m, = 0.000 544 617, m, /m~
= 0.000 272 444, and m, /m, = 0.000 181920; and the
following atomic units of energy and length':
hartree=2R = 219474.64 cm ' and 1 bohr=ao
=0.52917706 A.

II. ADIABATIC CALCULATIONS

Excluding relativistic and radiative effects the
exact Hamiltonian of a one-electron diatomic mo-

lecule AB in the center-of-mass system may be
written

H = H + H'+ H",

where, using atomic units,

HIE l
p lg ~ g

(2)

(2)

(4)

We will restrict ourselves to the electronic ground
state. Equation (6) was solved at a series of A val-
ues, 0.2, (0.1), 1.6, (0.025), 2.6, (0.1), and 10.0

In these equations V,2 is the Laplacian operator for
the electron relative to the geo~etri& center of the
nuclei, V'~ is the I,aplacian operator for one nu-
cleus relative to the other, and r~ and ~3 are the
distances of the electron from nuclei A. and B,
respectively; A is the internuclear separation,
ij. = m„ms/(m„+ms) is the reduced nuclear mass,
and g, = m„ms/(m„— m~). In the last two defin-
itions m~ and m~ are relative to the electron rest
mass (m, ) and not to the electron reduced mass
p.„Colbourn' has shown that use of the latter
causes negligible changes in spectroscopic prop-
erties. The operator in Eq. (4) only participates
for heteronuclear diatomic molecules and even
then only in nonadiabatic calculations.

The adiabatic calculation proceeds in two parts:
first the calculation of a potential energy curve
U(R) and then using this curve the solution of the
vibrational-rotational Schrodinger equation to give
the total vibronic energies.

In the adiabatic approximation U(A) is given by'

(5)

where 4~ are the Born-Oppenheimer (BO) elec-
tronic wave functions, i.e., the eigenfunctions of

H'4 = Z'(R)4



CALCULATION OF TRANSITION FREQUENCIKS FOR H~+. . . 64I

TABLE I. Adiabatic energies —E~ (in units of 10 hartrees) .

H+
2 0 +

2 HD HV+

0 0
1 0
2 0
0 1
1 1
2 1
0 2
1 2
2 2

5 971384 600
5 871 541623
5 777495 552
5 968 731251
5 869 027 946
5 775116763
5 963445 707
5 864 020 862
5 770 378 623

5 987 886 795
5 916025 8'15

5 847 113526
5 986 546 656
5 914 736 685
5 845 873 128
5 983 873 725
5 912 163613
5 843 397366

5 978 975 086
5 891806 732
5 809 019 034
5 976 976 577
5 889 899459
5807 200 224
5 972 991 518
5 886 096 439
5803 573 717

5 981 756 751
5 899 316 698
5 820 782 739
5 979 977 008
5 897 613612
5 819 154 090
5 976426 997
5894 216 587
5 815 905 632

5 991304 986
5 925445 826
5 862 053 312
5990 186 297
5 924 365 312
5 861010073
5 987 952 645
5 922 207 908
5 858 927 121

bohrs, increments inR shown in parentheses, by writ-

ing@as

as a product of a function of $ and a func-
tion of q, where $ and q are the usual elliptical
coordinates:

$ = (r„+ra)/R, q = (r„ra)/-R, (7)

and expanding these two functions in terms of
Laguerre and Legendre polynomials, respectively. '
U(R) can be written as

U(R) = Z'(R) + (e,H'e, ), (8)

and the second term (the adiabatic correction to
the BO potential-energy curve) was calculated at
the R values given above by the method used in
Hefs. 6 and V.

The second part of the adiabatic calculation is
the solution of the equation:

[-2 p,
'

VR + U ( R) + (2 p R ) 'N(N + 1) —E„]I „„(R)= 0,
(9)

where N is the rotational quantum number apart
from electron spin. The eigenvalues E „are the
adiabatic vibronic energies characterized by the N
quantum number and v, the vibrational quantum
number. Equation (9) was solved using the well-
known Numerov-Cooley method' and we used as

III. RELATIVISTIC AND RADIATIVE CORRECTIONS

The relativistic correction to the potential ener-
gy curve U(R), to the order o.', where o.
= 1/137.036 is the fine-structure constant, is given
by

AU(R) = (kaH „,4'a),
where"

(10)

input, values of U(R) spaced at 0.01 bohrs (a
smaller spacing, 0.005 bohrs, did not change the
results in the tenth significant figure), these were
found from the previous U(R) values by a seven-
point Lagrangian interpolation scheme.

Values of F-„ for N=O, 1, 2 and v=0, 1, 2 are
given in Table I and values for certain infrared
transition frequencies v„(using these &~) in col-
umn 3 of Table V. For HD' comparison can be
made with the numbers in column 3 of Table VII
of Ref. 9; the agreement is perfect. The transition
frequencies for H, ', D, ', and HD' differ from
those reported in Hefs. 6 and 7 because of the use
of the Numerov-Cooley method rather than the
Greenawalt-Dickinson' method and the use of dif-
ferent (more recent) nuclear masses. The notation
(v, N)-(v', N') is used for all transitions.

8) ', 1 6'o[(]'+q')(E' —1)(s/8$) —2)q(1-q')(8/aq)]
8 R($' —q') R'($' —q )'[(4 —n'e)($' —q') + 8n'$/R]

ln Eq. (11) e = -2[E'(R) —1/R]. The in'tegral in

Eq. (10) was evaluated numerically using a, 96x 96
crossed Gauss-Legendre quadrature; details of
this calculation have been reported previously. "
The accuracy of the aU(R) values calculated for
R over the range R =0.2-10 bohrs is believed to
be at least four significant figures (an order of
magnitude better than previous results" ).

The radiative correction to U(R) for these mo-
lecular ions, to second order in the electromag-
netic interaction, is given by the formula

nU(R) =-1.035 x 10 '(10.474 —lnE)f 2. (12)

where lnEis the well-known Bethe logarithm (E in
rydbergs)" and. is the normalized value of 4a at
the nucleus.

Though lnE is the most difficult part of Eq. (12)
to calculate it does not vary rapidly, unlike f, with
R and it is the variation with R which affects the
transition frequencies. Consequently, though we
calculated f exactly, we took lnE to be of the
form:
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TABLE D. Adiabatic-relativistic-radiative energies —&a r (in units of 10 hartrees) .

H+
2

D+
2

HD+ HT+ DT+

0 0
1 0
2 0
0 1
1 1
2 1
0 2
1 2
2 2

5 971441690
5 871 597475
5 777 550 306
5 968 788 263
5 869 083 726
5 775 171450
5 963 502 564
5 864 076498
5 770433 178

5 987 943 089
5 916082 203
5 847169080
5 986 603 910
5 914 793 035
5 845928646
5 983 930 900
5 912219888
5 843452 814

5 979 032 270
5 891862 825
5 809 074 146
5 977 033 701
5 889 955497
5807 255 284
5973 048 525
5 886 152 368
5803 628 674

5 981 813 968
5 899 372 882
5 820 837 985
5 980 034 173
5 897 669 747
5 819209291
5 976 484 057
5 894 272 623
5 815 960 740

5 991362323
5 925 502 329
5 862 109043
5 990 243 601
5 924421 784
5 861065 773
5 988 009 883
5 922 264 317
5858 982 762

lnE =2.7040+0.0481 R+0.1951 R

-0.0898 R'+ 0.0114 R' (13)

IV. NONADIABATIC CORRECTIONS

To obtain the nonadiabatic corrections one has to
return to "square one" and solve completely the
exact nonrelativistic nonradiative Schrodinger
equation i.e., the full three-particle problem:

using Fig. 2 of Gersten's paper" to determine the
coefficients. Our contention that the form of lnE
is not critical was confirmed by finding that the
first and second vibrational spacings for HD' were
the same to eight significant figures independently
of whether Eq. (13) or lnE=3.05 was used. It
might be pointed out that the Bethe logarithms for
both the hydrogen atom and the hydrogen molecule
are also about 3.0.

Equation (9) was now solved again with U(R)
corrected for these two (relativistic and radiative)
effects and the new eigenvalues E.„are given in
Table II. The changes to the transition frequencies
for these two effects combined together (b, ,) are
given in column 4 of Table V.

In general the relativistic correction to a transi-
tion frequency is of opposite sign and four times
as large as the radiative correction and the two
together are roughly proportional to the uncor-
rected frequency. The radiative corrections cal-
culated in this work are somewhat different from
those given by Qersten, "for example for the first
vibrational spacing in HD' he predicts a correc-
tion of 0.006 cm ', whereas we find 0.0081 cm ',
this discrepancy is only partly accounted for by
our more accurate values of f.

Q;;~(f„ti, R) = exp(-o. $) cosh(Pti) g'q'

&& R ' 'exp(-x'/2)H, (x), (15)

where x =y(R —5), HI, (x) are the usual Hermite
polynomials and ci, P, y, and 5 are adjustable pa-
rameters, andi, j, and k are integers. For the
homonuclear molecular ions 4 took the form:

&m. &m km

e„...= g P P c...q „,($, ti, R) .
l=O i=O, 2 k=O

Only even powers of g occur due to the mo-
lecular symmetry. For the heteronuclear molec-
ular ions 4 took the form:

~ ) 'I k'
stn Pm m

+ Q Q Qc„,y,g~(], n, R.), (IV)
j=o j=l, 3 k=o

i.e., odd powers of g are now allowed and get
mixed with the even powers through the operator
H", see Eq. (4). Since there is no rotational com-
ponent to our 4, we will be limited to the calcula-
tion of nonrotational nonadiabatic energy levels.
Consideration of rotation would mean replacing
Eq. (14) by a set of coupled differential equations. "

The linear variational parameters c;» and ener-

TABLE III. Basis sets for the nonadiabatic calcula-
tions.

been done in the past, "but in order to obtain
spectroscopic accuracy much larger basis sets
were used than before. All integrals which were
needed were found as in Ref. (3).

The basis functions used in the linear variational
expansion of 4 were of the form

H4 = F„,4, (14)

where H is the Hamiltonian of Eq. (1), 4 are wave
functions involving explicitly both nuclear and
electronic coordinates, and the eigenvalues E.,
are the nonadiabatic energy levels.

This equation was solved variationally as has

Basis set
number i j k i j

8 12 3
10 13 . 3
14 15 4

356
406
515
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TABLE IV; Nonadiabatic energies -&» (in units of 10 hartrees).

643

H+
2

D+
2

HD+ HT DT'

0 0 5 971390 625
0 5 871 556 758

2 0 5 777 518 661

5 987887820
5 916 031154
5 847 121930

5 978 979 674 5 981 761344 5991306615
5 891818 255 5 899 328 131 5 925450 137
5 809 036 794 5 820 800 248 5 862 060 118

gies F. „were determined by solving the usual sec-
ular equation but because of the size of the basis
sets and the fact that the off-diagonal elements in
the relevant matrices were not small compared to
the diagonal elements, none of the conventional
methods were applicable. Instead we used a modi-
fied version of the group-coordinate relaxation
method. This technique is described in detail else-
where. "

The nonlinear parameters n, p, y, and 5 were
chosen (using moderately large basis sets) such as
to minimize the lowest energy. With large basis
sets (i.e. , with much flexibility in the linear coef-
ficients) their values are not critical; the values
we used were o = 1.6, p= 0.75, 5= 2.1 (all ions),
and y= 3.0 (H,'), 3.6 (D,'), 3.25 (HD'), 3.45
(HT ), 3.8 (DT').

The major problem was a logica/ way to choose

the integers i, j, and k (i.e., the basis functions)
rather than blindly adding to the basis set all pos-
sibilities. This problem was resolved by discov-
ering that the sum of i, j, and k was a key factor
and that basis functions for which this sum was
greater than 15 contributed less than 1x10 "
hartrees to the energy. Consequently, for
4|„,i, j, and k„(the maximum values of i,, j,
and k) were raised in unison but with the proviso
that terms with

i+j+k&15 (18)

were excluded from the expansion. The raising of
i, j, and k was continued until the energy of a
particular level under scrutiny changed by less
than 2&& 10 ' hartrees. For the heteronuclear mo-
lecular ions the number of additional (odd) basis
functions is not very great, hence i ', j', and k'

TABLE V. Transition frequencies and corrections (in cm ).

Transition VA "total

H,' (1,0)-(0,0)
(2, 0)-(1,0)
(1 o)-(0 1)
(1,1)-(0,2)
(2 1)-(1 o)

D,' (1,G) -(0,0)
{2 o)-(1 0)
(1 o)-(o 1)
(1 1)-(0 2)
(2 1)-(1 0)

HD (1,0)-(0,0)
(2 o)-(1 0)
(1,0)-(0, 1)
(1 1)-(0 2)
(2 1)-(1 o)

HT (1,0)-(0,0)
(2, 0)-(1,0)
(1,0)-(0, 1)
(1 1)-(o.2)
(2, 1)-(1,0)

DT {1,0)-(0,0)
(2 0)-(1 0)
(1 0)-(0 1)
(1 1)-(Gi2)
(2, 1)-(1,0)

2191.3001
2064.0728
2133.06 59
2072.2304
2116.2811

1577.1443
1512.4500
1547.7536
1517.3827
1539.6 736

1913.1243
1816.9800
1869.2621
1823.6600
1856.8983

1809.3501
1723.62 14
1770.2893
1729.7539
1759.3660

1445.4415
1391.3049
1420.8892
1395.5807
1414.20 14

0.0272
0.0241
0,0254
0.0236
0,0256

0.0199
0.0183
0.0190
0.0181
0.0191

0.0240
0.0216
0.0226
0.0212
0.0227

0.0227
0.0204
0.0215
0.0203
0.0215

0.0183
0.0170
0.0175
0.0168
0.0176

-0.2000
-0.1750
—0.2000
-0.2000
-0.1750

-0.0728
—0.0672
—0.0728
-0.0728
—0.0672

—0.1522
—0.1369
-0.1522
—0.1522
—0.1369

—0.1501
-0.1334
-0.1501
—0.1501
-0.1334

—0.0588
-0.0548
-0.0588
—0.0588
-0.0548

0
0

0.0038
0.0076

-0.0038

0
0

0.0009
0.0019

-0.0009

0
0

0.0026
0.0052

—0.0026

0
0

0.0025
0.0050

-0.0025

0
0

0.0007
0.0014

-0.0007

2191.1273
2063.9219
2132.8951
20 72.06 16
2116.1279

1577.0914
1512.4011
1547.70G7
1517.3299
1539.6246

1912.9961
1816.8647
1869.1351
1823.5342
1856.7815

1809.2227
1723.5084
1770.1632
1729.6291
1759.2516

1445.4010
, 1391.2671

1420.8486
1395.5401
1414.1635
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(the maximum values of i, j, and k for these basis
functions) were raised together, as before, but no
restriction was placed on the sum of i, j, and k

for these functions. The final basis sets (num-
bered 1, 2, and 3) as used for calculations of the
lowest, second lowest, and third lowest nonrota-
tional energy levels, respectively, for the hetero-
nuclear molecular ions are given in Table III. In
this table n is the total number of basis functions,
i.e., for HD', HT', DT' for the third lowest non-
rotational energy level 515 basis functions were
used. For the homonuclear molecular ions the
same basis sets were used but without the "odd"
functions.

Values of the nonadiabatic energies (E„,) for the
five ions for the three lowest nonrotational states
are given in Table IV. Transition frequencies
were also calculated and when compared with the
corresponding adiabatic transition frequencies
gave the vibrational nonadiabatic correction (b, ,).
Values of 6, may be found in column 5 of Table V.

g, = -5.51&&10' ', + ', (N(N+ 1) N'(N'+ I)] .—, 0.29 0.56

(19)

This approximation is adequate since A, is quite
small. Values of 6, are given in column 6 and val-
ues of the total transition frequencies v„„, (includ-
ing all corrections) in the final column where

~A + & j.+ &2+&s ~ (2o)

VI. DISCUSSION

Taking into consideration the level of accuracy
at each stage of the calculation we believe that the

V. TRANSITION FREQUENCIES

In Table V a limited number of transition fre-
quencies, labeled (v, N)-(v', N'), based on the pre-
vious calculations are presented. The limitation
comes from the fact that nonadiabatic energies
were only calculated for the three lowest nonrota-
tional levels.

To obtain the additions/ nonadiabatic corrections
for those transitions involving N or N'WO, labeled
6 3 in the tabl e it was necessary to use the approxi-
mate formula'

5 (p. ') = 2 p '5 (a G)/a G, (21)

and if we allow that, for HD', the agreement be-
tween experiment and theory is less than 0.002
cm ' then for this molecular ion 5(p ') = I.GX10 '
with the implication that m, /m~ and m, /m„are the
values given in the Introduction to within -2 in the
last significant figure.

In Ref. 9 the following approximate formula is
given for the vibrational part of the nonadiabatic
correction to a given energy level:

(22)

where X and 7 are constants and the same for all
five species and T„ is the vibrationaI kinetic ener-
gy. This means that pb, „/T„should be constant
within a given species and the same for H,

' as for
D,

' (since p., '= 0). Using the values of T„ from Ta-
ble VI," the values of the ratio given in Table VII
are found. It is clear that pa„/T„ is only roughly

final column of numbers (v„„,) in Table V are good
to +0.002 cm ' (the same as the experimental ac-
curacy of Wing et al. '). They surpass in accuracy
all previous calculations. They differ as well from
some previous calculations' because of the use of
different nuclear masses, from others ' because
of the larger basis sets used in the nonadiabatic
part of the calculation, or because of the recalcula-
tion of the radiative corrections. Though correc-
tions due to finite nuclear size" and parity viola-
tion" have not been considered these are thought
to be exceedingly small when dealing with transi-
tions.

Three of the transition frequencies we have cal-
culated can be compared directly with experiment,
these are (1, 0)-(0, 1), (1, 1)-(0,2), and (2, 1)-(1,0)
for HD', the experimental frequencies are
1869.134, 1823.533, and 1856.778 cm ', respec-
tively, the corresponding theoretical values are
1869.135, 1823.534, and 1856.781 cm '. The
agreement is within the combined (theoretical and
experimental) error bars. ,

Wing et at. ' have suggested that calcul'ations such
as those reported here, when coupled with the ex-
perimental data, could lead to a refinement of the
values of the mass ratios m, /m~, m, /m„m, /m,
Since a vibrational spacing (b, G) is roughly pro-
portional to p,

' ' it is easy to show that

TABLE VI. Vibrational kinetic energies &„(in cm ). TABLE VII. Values of p~„/&„(in a.u. of mass, m,).

H 2 D2 HD HT DT+ H 2
D+

2 HD HT+ DT

0 568, 5 404, 7 493.8 466.2 370.1
1 1599.2 1160.5 1401.5 1327.3 1065.4
2 2506.1 1852.8 2215.3 2104.6 1707.5

0 0 2135 0 2015 0 2496 0 2976 0 2126
1 0,1908 0.1853 0.2209 0.2602 0.1954
2 0.1858 0.1826 0.2154 0.2513 0.1926
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constant and that use of Eq. (22) could lead to in-
accuracies in b,„of the order of 10%%uo.

Finally, using an effective Schrodinger equation
Bishop" has calculated 6, for the pure vibrational
spacings in H,

' and D,', his values for the two
lowest spacings 0.20 and 0.17 cm ' for H,

' and
0.08 and 0.07 cm ' for D,' are in good agreemeht
with the corresponding 6, values in Table V. It
should be pointed out, however, that the effective

equation contained a variable parameter (k) which
was selected such that the lowest energy level of
H,

' agreed with an earlier' rigorous nonadiabatic
calculation.
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