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Triple-differential cross sections for electron-impact ionization of helium are calculated in the distorted-
wave approximation. A general. distorted-wave formalism for ionization is presented for two coordinate
systems —one with the z axis parallel to the direction of the incident electron and one with the z axis
parallel to the momentum-transfer direction. Cross sections in the scattering plane are compared with
experimental results and with other theoretical calculations. Cross sections out of the scattering plane are
presented and spatial symmetries are discussed.

I. INTRODUCTION

The problem of atomic charged particle scatter-
ing has been studied experimentally and theoreti-
cally since the 1920's. Until recently, the experi-
mental cross sections have been analyzed using
elementary first-order theories such as the plane-
wave Born approximation (PWBA). However,
with improved experimental techniques, more de-
tailed ionization cross sections have been mea-
sured which cannot be explained using these the-,
ories. Recently Erhardt et al. , ' ' Hood et al. ,

'
and Wiegold' have measured triple-differential
cross sections for electron-impact ionization.
The study of triple-differential cross sections for
ionization represents a fundamental testing ground
for different theoretical approaches, since the
collision dynamics are completely specified. Var-
ious theoretical calculations for electron-impact
ionization of helium have been performed in the
PWBA, ' "the Coulomb-projected Born approxi-
mation (CPBA), "and the many-body Green's
function approach. "

In this paper, we report the results of a distor-
ted-wave calculation. This work represents an
extension to the ionization problem of previous
distorted-wave calculations for excitation. " " A
general distorted-wave approximation (DWA)
theory for ionization is outlined in Sec. II. Specific
results are given for two-coordinate systems of
particular interest: (i) z axis parallel to the di-
rection of the incident electron, and (ii) z axis
parallel to the momentum-transfer direction.
The latter system is of particular interest
since the PWBA predicts an azimuthal sym-
metry about this direction. In Sec. III, the results
of the calculation in the scattering plane are com-
pared with experimental data and previous theor-
etical calculations. The DWA results off the scat-

tering plane are also presented and symmetries
are discussed.

The distorted-wave formalism developed in Sec.
II is more complex than is needed to treat ioniza-
tion of the helium atom. However, it is sufficient-
ly general to treat a wide variety of systems, and
will preclude the necessity of introducing a new
formalism for more complex systems.

II. THEORY

The triply differential cross section for ioniza-
tion is given in atomic units by

do (2v)'

de dQ, dE E; ave

where E& is the energy of the incident electron,
Qz (0,) is the solid angle of observation for the
fast (slow) final-state continuum electron, dE is
the energy interval for one of the final-state en-
ergy-normalized continuum elet. trons, and the
summation and average imply summing over fi-
nal, and averaging over initial, indistinguishable
states. In the distorted-wave approximation, the
T matrix for electron-impact ionization including
exchange is given by

T~, = (j)~~
~ (1)(j)(,(2, . . . , N+ 1)

(2)

where g, is the properly antisymmetrized wave
function for the atom in its initial state, it(, is the
properly antisymmetrized wave function for the
final-state ion plus slow electron, P, is the inci-
dent-electron distorted wave, Q& is the distorted
wave representing the fast electron, and P;, is
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the operator that interchanges electrons i and j.
The distorted waves Q, and Qz are calculated as
eigenfunctions of the Hamiltonian

Hi) = T —2Z/r + V&,

where T is the kinetic energy operator of the in-
cident electron and Z is the charge on the atomic
nucleus. The potential V& is the spherical average
of the interaction between the incident electron
and the atomic electrons; a. first approximation
to this potential may be obtained from a Hartree-
Fock bound-state calculation. Note that we em-
ploy the prior form of the interaction due to the
relative simplicity of the initial state of the sys-
tem. The plane-wave Born approximation
(PWBA))8 is obtained if the last two terms of (3)
are set equal to zero and the exchange terms are
dropped.

Each of the N interchange terms gives an identi-
cal contribution to (2) due to the fact that particles
2 through N+1 contribute to the matrix element in
a completely symmetric fashion. Using this fact,
the T matrix becomes

N+ I

T, (g'q ')) )g, ).2=, . . . , N ) ) I P „
—V, (1) I

y'". (1)y.(2, . . . , N+1))
N+I

-N &e' (I)e~(2, .",N+1) lg +t1

—Vy(1) I 4". (2)4. (1, 3, ",N+1)) (4)

Within the single-electron picture, g, (P~) is com-
posed of a properly antisymmetrized combination
of single-particle orbitals such as a Slater deter-
minant or some linear combination of Slater deter-
minants; )I), is composed entirely of bound states
while P, contains one continuum state. If one
adopts the viewpoint that the slow electron is scat-
tered primarily by the atomic field, the bound and
continuum wave functions would be eigenfunctions
of an effective (Hartree-Fock) potential for the
atom.

A first approximation to the effective (Hartree-
Fock) one-electron potential for the active elec-
tron may be obtained from the charge distribution
of the (frozen) ionic core. The electronic contri-
bution V, to this potential differs from Vf in that;

V& results from the charge distribution of N elec-
trons and V, from N-1 electrons. If all the
single-particle wave functions comprising g, ()I),)
are calculated as eigenfunctions of the same ef-
fective potential, they are all orthogonal. As a
result of this orthogonality, the V& term in the
first matrix element (direct-scattering} of (4)
vanishes. To illustrate the various different types
of terms in the T matrix, we have evaluated the
amplitudes for the specific case in which g, (g,}
is represented by a single Slater determinant":

bo Q~ ex

where Td„and T,„are the direct and exchange T
matrices, respectively, and where

T~ =N
& Q~~ ~(1.)p, (2, . . . , N+1) 12/ri214~". (1)0.(2, . . . , N+1))

T..=&a',-'(I) I v&(1) I x (1)& & e' (2) ly". (2)&

N-x

+2 &x, (2) I@". (2)&&y,'-'(I)q' (2) I 2/r»ll x&(1)x~(2) -x~(2)xN(1)] &

J=i
N-y

+Q (0'.'(2)
I
y'". (3))&yg' '(l)x;(2) I 2/r, .I l.x;(2)x~(1) —xg(1)x (2) I &

9=1

+&a', '(l)e' (2) I 2/r„lx, (1)e'". (2)&.

Here, the single-particle wave functions X and Q,
are eigenfunetions of the Hamiltonian

H„=T —2Z/r + V, .
The terms of (7) correspond to various modes of
exchange. The first term is produced by the elec-
tronic potential Vf and corresponds to exchange be-
tween the incident electron (defined as the elec-
tron initially in the state P~,'1) and the active elec-
tron (defined as the electron initially in the state

X„, which is left vacant by the collision}. The re-
maining terms originate from the two-particle op-
erator, and may be given simple interpretations.
The second term of (7) is the "electron-capture"
term in which the initial electron is absorbed and
remains as a constituent of the residual ion
through replacement of a spectator electron, which
must then be ejected. The two contributions to
this term arise from the two possible ways in
which this spectator electron and the, active elec-
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tron may be ejected into the two continuum states.
In the third term of (7) the incident electron be-
comes the slow final-state continuum electron.
The two contributions to this term arise from the
two possible ways in which the fast final-state
continuum electron may be produced —either by
ejection of the active electron in the presence cf
a spectator, or by ejection of the spectator elec-
tron itself, the resultant vacancy in this latter
case being filled by the active electron. Note that
there is a sum over all possible spectator-elec-
tron states y, in the above two terms. In the last
term of (7) the incident electron becomes the slow
final-state continuum electron, while the active

electron is ejected and becomes the fast final-
state continuum electron.

It is this last term that is normally referred to
as the exchange term. It is to be noted, however,
that the first three terms will vanish only if the
bound and continuum wave functions are ortho-
gonal to (t), . This ortliogonality is not satisfied in
the PWBA, since plane waves are not orthogonal
to realistic atomic wave functions. This ortho-
gonality is possible in the DWA and is imposed to
make the calculation simpler.

Assuming this orthogonality, the exchange T
matrix for arbitrary atomic wave functions be-
comes

T..= N(e' (1)V.(2, .",N+1) l2/~, .I e". (2)V.(I, 2, "., N+1)&,

which has a structure similar to that of the direct term (6).
To evaluate the direct and exchange T matrices, we make a fractional parentage expansion of the

initial atomic wave function:

ls.(2, .",N 1)&=
npSpL p, a 1

( nS~L)„n, l, l jnLS&

C (Lp l, L; M), mo ML )C (Sq S, S;M, i).,M, )

x ln~L~M~, S~M, (2, . . . , N+1)& ln, l,m„S,p, (2)&. (10)

Here C(l, l, l„'M,M,M, ) is a. Clebsch-Gordan coef-
ficient; the coefficient of fractional parentage" is
(n~S~L~, n, l, l }nIS &; L and S are the quantum num-
bers of the initial atomic state; L~ and S~ are the
total orbital and spin angular momentum of the
parent; /, is the orbital angular momentum of the
active electron; n~, e„and n are any additional
quantum numbers necessary to describe the par-
ticular states completely; ln~L~M~, S~M, & repre-
sents the antisymmetrized wave function for the
parent state; and ln, l, m„S,g, & is the single-
particle wave function for the active electron. In

the same spirit, . the final-state wave function is
expressed as an antisymmetrized product of the-
residual core and slow-electron wave functions:

x
I n. L M„S,M, (2, . . . , N+ 1)& .

T = N 'I' (n, S, I.„n, l, l jn LS& C (L, l, L; M, m, M~ )

xC(S, S,S;M, p,M, )

(12)

where m, (m, ) is the initial (final) spin projection
of the projectile electron, p. , (m, ) is the spin pro-
jection for the active electron, and

f = &0'y'(I)
I &0 ', '(2) I2f&,.l

4'". (I)& ln. i.m. (2)&

(»)

g = &+' (I) 1
&+' (2)12i...l

e(". (I)& ln. i.m. (2)&.
(14)

The matrix elements f and g are of similar
forms since both wave functions on the left-hand
side represent continuum electrons. This result
is equivalent to that obtained by Rudge. "

The cross section for m unpolarized beam in-
cident on an unpolarized target is thus found to
be

If .these expansions are inserted into the T matrix,
it is seen that

N(n, S,L„n, l, l }n I.S&'
do (2)) )',

dQ& dQ, dE

(lfl'+ lg I'-Ref *g} . (16)
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A. Evaluation of amplitude

To cast the direct and exchange amplitudes into
a form suitable for evaluation, it is convenient to
mike a partial-wave decomposition of the ampli-
tude. We can evaluate both the direct and ex-
change amplitudes at the same time if we look at
a general amplitude of the form

where Y, is a spherical harmonic, a caret indi-
cates the solid angle specifying the direction of a
vector, and where

p,(k, r) „=„e"'sin(kr —,
'—t~+ 6,)

if the particle is asymptotically in a field-free
region, or

t =(u, (k, r, ) ~(u, (k„, r, ) ~2/r„

x
~
pi,'i (k;, r, ))

~
a, l,m, ( r, )), (16)

p (k, ~)

=„e"&'&' sin[kr —k ' In(2kr} ——,'&p+ g, + 6, ]
where u, and u, are arbitrary continuum waves
normalized to the proper boundary conditions im-
plied by the wave number k. The following conven-
tion is used for the wave numbers: k, corresponds
to the incident electron, while k, (k,) corresponds
to the fast (slow) final-state electron. If m = 1 and
n= 2, (16) represents the direct amplitude, while
an interchange of these values yields the exchange
amplitude. The appropriate energy-normalized
expansion for the continuum waves is

u "(k, r ) = (k~) ' 'r ' p i ' p, (k, x) Y*,„(k)Y, (r),

(17)

~

&z, I,m, ( r )) = i "r ' U,,(x) Y,,„,(r) . (20)

When these expansions along with the multipole
expansion for the Coulombic interaction are in-
serted into (16}, it may be shown after some an-
gular momentum algebra that the amplitude re-
duces to

if the particle is asymptotically in a Coulombic
field. Here 0., is the Coulomb phase shift" and 5,
is the ordinary phase shift. The initial bound-
state wave function is expressed as

t=2(p'k, k k ) '~'
l& m& l2 m2 l& m& lm

1

[(2l,. + 1)(2l, + I)(2l,+ 1)(2t+ 1) '(2l, + 1) ']' '

x i 'o"& " "I~~ ~@~~, C(l &l,l; m;m, m) C(l,ll, ; m, mm, )C(l;/, I; 0)C(l,t l, ; 0)

x Y f,„,(k„)Y,,„,(k„)Y f,„,(k, ) . (21)

We have used the notation C(l, l,l, ; 0) to mean
C(l, t,t„000). The radial integral in (21) is

I', ~',-,';„= p'„(k„., ft)p', (k,.p)Zp~» (fi)d. rt,
0

y' ~n„(p) =
2p

(22)

(23)

1. z axis along k,.

For the choice of the z axis along k;, we chose
the y axis along k,. & k, . With this choice of refer-
ence frame, it may be shown after some angular
momentum algebra that the triple-differential di-
rect amplitude is given by

Here p', is the radial component of the 1th partial
wave for the incident projectile, p', ( p', ) is the
radial component for the lthpartial wave associated
with u,' ' (u,' ') and r& is the lesser of ~ or R. The
amplitude (21) can be further simplified depending
upon the choice of coordinate axis. The two most
common choices place the z axis (a) along the di-
rection of the incident electron, or (b) along the
momentum transfer g=k,. —k, (k, and k, define the
scattering plane). With the latter choice, PWBA
cross sections exhibit a particularly simple be-
havior. We shall examine the cross sections in
both reference frames.

f=(41r') '(k, k k ) ' '

x g D, ' '(8&)P, ' (0,) exp(im, Q,),
l 2m2

where

with

(24)

(25)
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G ' ' =(2I +1)(2l +1)(2l +1)'/2(2l+1) 'i '
(2m2 m 'imll+Im I+Iml'm2 mOI )/2

xC(l;I, l;0)C(l, ll2;m„rn2 —m„m2)C(l, ll2; 0)B, ' It, 'It, ' (28)

while the exchange amplitude is given by

g= (42/3) '(/2, k, k2)
'/'

P EI,'„,'(g/)P, '
(g, ) exp(im, P,),

r,m,

where

l2ll

and where

(27)

(28)

(29)

!

D =D and E =E (30)l 2m2 l2-m2 l lml l 1 ml '

If this fact is used in (24) and (27), one sees that
the amplitudes for +Q, are the same, reflecting the
expected mirror symmetry about the scattering
plane for ionization of s shells.

Since t;he PWBA continues to provide a popular
reference for this type of calculation, we have ex-
amined the direct amplitudes for the case in which
the wave functions for the incident elec'tron and
fast final-state continuum electron are plane
waves. With this simplification, the direct ampli-
tude in the PWBA reduces to

fB ron
(y y / -1)l/2(4+3q2)-1 gQ 0 (+0)plml (g )e

l

These formulas exhibit some simple properties
for electrons ejected from an s shell (I,=m, =0).
For this case, it can be seen that where

(31)

/i, o"o(o) =Q (2l, + I)' '(2K+I) (-1) ' ' i '

aft, ft~ oH~'2, C(l, zf;m„m —132„m)C(l /1l; 0)P1 ' (o), (32)

and where

A2C

+l)tl0 p,
' (I2„3)j,(q2)U, (2.) d2. .

Here q'=~k; —k, ~', o. is the angle between k, and

q, and j 1(q3') is a, spherical Bessel function.

2. s axisalong q

For the choice of the z axis along q, the y axis
remains along k,. x k, . This situation represents a
rotation of our previous results about the y axis.
This rotation makes the DWA formulas more com-
plicated and the PWBA formulas simpler. The
DWA direct amplitude may be shown to be given by

(24), where

omo(g ) G m1m2 I 1
I 1m' f lol't /1 l2 lol t l I l2

l 2m2 l l t
2

Here y is the angle between k, and q. In the limit
of o. =0, (34) and (35) reduce to (25) and (28). The
amplitudes (34) and (35) satisfy the symmetry rela-
tionship (30).

It can be shown that the PWBA direct amplitude
may be expressed in this coordinate system by (31)
with m =m, and n =0. For scattering from an s
shell, this amplitude has no P, dependence. As a
result, the PWBA predicts that the triply differen-

'tial cross sections will have azimuthal symmetry
about the q axis. The DWA amplitudes do not for-
mally exhibit t;his symmetry.

o o(g ) g G™l2 I i 1 2
l2f/t2 f lol t ll l2 90l t l ] l

l ~ml lt l

The DWA excharge amplitude is given by (27),
where

B. Numerical procedure

The primary numerical problem associated with
finding the amplitudes lies in evaluating the radial
overlap integrals (22). The hvo major problem
areas are large radii and large / values. Fortu-
nately, the direct amplitude in these two regions
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can be reduced to analytic expressions. For radii
larger than the ex'tent of the atomic w'ave function
and potential (R,), the form factor (23) can be
written

02 l+s
l!l ( )R&B l 1l (36)

where

Bo

0
(37)

P, (kr) = krj, (kr)+ c,[krj, (kr)+ ikr y, (kr)], (38)

where j, (y, ) is a regular (irregular) spherical
Bessel function, and c, gives the effect of the

For high-energy projectiles, the incident and fast
electrons will asymptotically be moving in a field-
free region. In this region, the distorted waves
will be phase-shifted spherical Bessel functions.
As a result both P' and P' in the direct amplitude
can be expressed in the region r &R, as

atomic potential on the distorted wave. For scat-
tering from a zero potential (PWBA), c, = 0. If
these expressions are inserted into (22), the con-
tribution to the radial overlap integrals for R &R,
can be expressed in terms of sine and cosine in-
tegrals by making the standard sine and cosine
expansions of the spherical Bessel functions. The
algebra and results are straightforward but tedious
and mill not be presented here. For this calcula-
tion, R, was taken to be about 36a,.

The radial overlap integral may also be simply
evaluated for large angular momenta. The cen-
trifugal barrier provides a region around the nu-
cleus into which the electron effectively may not
penetrate. The range of this barrier increases
with increasing angular momenta. For high an-
gular momenta, the effective range of the barrier
becomes larger than the effective range of the
atomic potential. Under these cir cumstances,
c, = 0 and (22) may be evaluated analytically for
all radii. Under these circumstances, the radial
overlap integral becomes

I

II'r 1~2 =~ 2
w2 l lk1-ly-lkl, +1 I'(2(l, + l, —l+2)}

I'(I, +1-') I'(—'(l;+ l- l, +1))
x E(—,'(l, + I; —1+2), p(f, —l; —1+1);l, + lay (k~/k;) ), (39)

where I' is the gamma function and I is' a hyper-
geometric function. It should be noted that this is
the limit in which the DWA amplitude goes over
to the corresponding PWBA amplitude. For the
present calculation, the DWA direct amplitude
approached the PWBA amplitude for E values in
the neighborhood of 30. Obviously, this procedure
cannot be used for the exchange amplitude since
the electron roles are interchanged.

For the results presented here, the atomic po-
tentials were obtained using the Ekartree-Fock
program of Froese-Fischer. " The asymptotically
neutral Hartree-Fock potential was used to cal-
culate the continuum eigenfunctions for the fast
electron. The ionic potential was obtained by re-
moving one electron from neutral helium while
leaving the remaining bound-state wave function
unchanged. To insure orthogonality between the
bound-state wave function and the slow continuum
electron wave function, both wave functions were
calculated as eigenfunctions of the ionic potential.

Previous calculations have been made for this
process using the DWA method. The dissertation
of Baluja22 (directed by one of us, W.N. S.) dealt
only with incident electron energies of 256 eV and
qsed only two partial waves for the ejected elec-
tron, even for ejected electron energies as high
as 50 eV. Two partial waves are inadequate; we
use seven in the present work. This calculation
neglected exchange.

More recently, an improvement on the disserta-
tion of Baluja has been published by Baluja and
Taylor" from the point of view of a first-order
approximation to the many-body theory. In this
calculation, three partial waves were used for
the slow electron at energies of 3 eV or less, five
partial waves were used at higher ejection ener-
gies, and numerical integrations were performed
up to a radius of 10a,. In the work reported in the
present paper, the following parameters have been
used: (i) direct calculation: slow electron, 7 par-
tial waves; incident electron, 100 partial waves;
and numerical integration to infinity using the
analytic method discussed earlier; (ii) exchange
calculation; fast electron, 25 partial waves; in-
cident electron, 40 partial waves; and numerical
integration to 72a,. We have compared the pre-
sent parameters with the parameters used by Ba-
luja and Taylor. The parameters used in the pre-
sent calculation gave direct and exchange cross
sections that had converged better. Interestingly,
use of the less-well-converged parameters gave
cross sections of different magnitude but similar
shape. We could not make a quantitative com-
parison with the work of Baluja and Taylor since
their paper does not give the magnitudes of the
angular distributions. We have attempted to make
a comparison by normalizing their cross sections
to our values at the forward peak. This procedure
reveals that the shape of their cross sections is
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almost identical to ours for 256-eV incident elec-
trons.

The computer code developed for this calculation
can be used to perform a PWBA, CPBA, or DWA
calculation, depending upon the input parameters.
This versatility provided several options for check-
ing the code. The code was checked in the follow-
ing ways: (i) PWBA ionization of hydrogen was
calculated and compared with an analytic expres-
sion given by Landau and Lifshitz"; (ii) PWBA
ionization of helium was compared with a corre-
sponding calculation performed using a separate
independent code"; and (iii) CPBA calculations
were compared with the correspondiog calcula-
tions performed by Qeltman. " In each case, ex-
cellent agreement was found.

III. RESULTS

The results of the calculation for the scattering
plane are compared with the experimental data of
Ehrhardt et al. ,"' and with previous theoretical
calculations of Qeltman" and Robb et a/. ' in the
first four figures. The calculation of Geltman

was performed in the CPBA and the calculation by
Hobb et al. , was performed in the PWBA. In that
PWBA calculation, the incident and scattered elec-
tron wave functions were represented as plane
waves, while configuration-interaction wave func-
tions were used to describe the initial-bound-tar-
get state and close-coupling wave functions were
used to describe the final-continuum-target state.
Exchange was neglected. The present Born curves
in the figures were obtained using the distorted-
wave code by setting the potential seen by the in-
cident and faster final-state continuum electron
equal to zero and by setting the exchange amplitude
equal to zero.

Since the experimental data are unnormalized,
we have arbitrarily normalized the experimental
data to the distorted-wave curve at the forward
peak. From the first two figures, it is seen that
for a 256.5-ep incident electron, the DWA calcu-
lation is in fairly good agreement with the experi-
mental data. The largest deviation between the
data and the DWA calculation is seen for the higher
energy transferred and for larger angles of ob-
servation for the fast electron. Under these cir-
cumstances, the forward lobe in the experimental

i 90' ', 90

90~ , 90
)

I80

0

I80

IeO

"I.
Iso

90', ~90~ ~9O

"2 90
)

', 90

I80 I80

"0

FIG. 1. Triple-differential cross sections for 256.6-eV
electron-impact ionization of helium in units of ao/sr Ry.
The experimental data are those of Khrhardt et al .,
the solid curves are the present DWA calculations in-
cluding exchange, .and the dashed curves are the present
PEA calculations. The angle of observation for the
faster electron 8& and the energy of the slower electron
E, are as follows: (a) 0& =4 and E~ =1.5 eV; (b) Bf 7
E, =1.5 eV, and the dot-dashed curve is the CPBA cal-
culation of Geltman; (c) (9& =4', E =3 eV, and the dot-
dashed curve is the PWBA calculation of Robb et a~.
The DWA and PWBA calculations are the same within
plotting accuracy at the backward lobe; {d) 8&

=6' and
E =3 eV.

'0.
I 80 leo

FIG. 2. Triple-differential cross sections for
256.5-eV electron-impact ionization of helium. in units
of ao/sr Ry. The experimental data are those of
Ehrhardt et al ., the solid curves are the present DWA
calculations including exchange, the dotted curves are
the DWA results without exchange, the dashed curves
are the present PWBA results, and the dot-dashed curves
are the CPBA calculations of Geltman. The angle of
observation for the faster electron 8& and energy of the
slow electron &~ are as follows: (a) 0& =4 and E~
=6 eV; (b) 6~ =8' and E, =6 eV; (c) 8&

=8' and E
=35 eV; (d) 6& =8 and E =50 eV.
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0

90~ 90,' 90
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data seems to be rotated to larger angles. On
curves c and-d of Fig. 2, the DWA cross section
that would be obtained by setting the exchange
term equal to zero is also plotted. It is interesting
to note that the exchange term rotates the DW lobe
towards the data. This observation supports the
idea that correlation effects are responsible for the
shift of the lobe.""

Of special interest is the Born approximation
calculation by Robb et al. , shown in Fig. 1(c). In
this calculation, the bound and continuum wave
functions for the slow electron are superior to the
corresponding wave functions used in the present
calculation. The important difference between the
two calculations lies in the treatment of the inci-
dent electron —a plane wave for a PWBA calcula-
tion and an elastic scattering wave function in a
DWA calculation. These results indicate that it is
not useful to treat one aspect of the scattering
problem (electron ejection) highly accurately while
treating another aspect (incident electron) in an
elementary fashion. Comparison of the DWA
curves with the present Born curves provides a

direct comparison of the effect of distortion on the
incident electron, since the slow-electron wave
functions were the same in both calculations.

Figures 3 and 4 provide similar comparisons
for incident electrons of 80.5 eV and 50 eV. The
agreement with data is significantly worse at these
lower energies. As one would expect and as may
be seen from the figures, the effects of exchange
are more significant at these parameters. At
these lower energies, the energy difference be-
tween the fast and slow electron can become small.
This situation brings into question the basic model
of the process used here where the fast electron
"sees" an effective neutral atom in both the initial
and final channels and the slow electr on "sees" a
final-state ion. Various proposals have been made
to combat this problem ranging from time argu-
ments" to effective charges. " We will explore
this problem in more depth in a later publication.

Figures 5-'7 present three-dimensional surface
plots for the DWA cross sections to illustrate the
behavior of the cross sections off the scattering
plane. The horizontal axis corresponds to the
scattering angle 8, measured relative to the direc-
tion of the incident beam while the oblique axis
corresponds to the azimuthal angle P,. The half
of the scattering plane containing the scattered
fast electron corresponds to $, =0 and the other
half of the scattering plane corresponds to Q,
= 180 . As was pointed out earlier, cross sections
for P between 180' and 860' are mirror symme-
trical about those shown in the figures.

From Figs. 5 and 6, one can see an evolution of
the cross section for 256.5-eV incident electrons
as the energy of the slower electron is increased.
With increasing energy for the slower electron,

90 'Cf 90 ' 90

0

I80 I BO

90

"0

90 90

FIG. 3. Triple-differential cross sections for 80.5-eV
electron-impact ionization of helium in units of
go/sr Ry. The experimental data are those of Ehrhardt
et al. , the solid curves are the present DWA results
including exchange, and the dotted curves are the DWA
results without exchange. The angle of observation for
the faster electron 8& and energy of the slower electron
E~ are as follows: (a) 8y =7, E~ =2.5 eV, the dot-
dashed curve is the CPBA calculation of Geltman, and
the dashed curve is the present PWBA; (b) 8& =15',
E~ =2.5 eV, and the dot-dashed curve is the present
PWBA; (c) 8&=7', E, =15.5 eV, and the dot-dashed
curve is the present PWBA; (d) 8& =15', E~ =15.5 eV,
and the dot-dashed curve is the present PWBA.

I80 I 80

FIG. 4. Triple-differential cross sections for 50-eV
electron-impact ionization of helium in units of
ao2/sr2 Ry. The experimental data are those of Ehrhardt
et al ., the solid curves are the present DWA results
including exchange, the dotted curves are the DWA

results without exchange, and the dashed curves are the
present PWBA. The angle of observation for the faster
electron 8& and energy of the slower electron E, are as
follows: (a) 8& =15' and E, =5.5 eV; (b) 8& =15' and

Es =10.5 eV.
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FIG. 5. Three-dimensional DWA triple-differential
cross sections for 256.5-eV electron-impact ionization
of helium in units of ao/sr Ry. The angle of observation
for the faster electron 8f =4' and the energy of the slower
electron E~ =1.5 eV. The horizontal axis corresponds
to the polar scattering angle 0~ in degrees and the oblique
axis corresponds to the azimuthal scattering angle P~.

FIG. 7. Same as Fig. 5 except here the energy of the
incident electron is 80.5 eV, 8f =15', and E, =2.5 eV.

the backward lobe diminishes with increasing &f&

and the forward lobe starts to build up until the
cross sections begin to take on the shape one
would expect for a classical binary collision (Fig.
6). Figure 7 illustrates typical results for 80.5-eV
incident electrons. At lower energies, the relative
effect of the backward lobe is generally more pro-
nounced.

Figures 8-10 illustrate the D%'A cross sections
expressed relative to a coordinate system whose
z axis is along the momentum-transfer direction.
As discussed previously, the cross sections in the
Born approximation are azimuthally symmetric
about this axis. In these figures, the angle 8 is
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FIG. 6. Same as Fig. 5 except here 0f =8 and E,
=50 eV.

FIG. 8. Distorted-wave triple-differential cross sec-
tions for 256.5-eV electron-impact ionization of helium
in units of ao/sr Ry expressed relative to the q di-
rection. The horizontal axis corresponds to the polar
scattering angle 8~, the solid curve corresponds to the
azimuthal angle 8~ =0, the dotted curve represents the
polar angle p~ =90, the dot-dashed curve represents
@~ =180', and the dashed curve is the present PWBA
results. The angle of observation for the faster electron
Bf =4' and the energy of the slower electron E~ = 3 eV.
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FIG. 9. Same as Fig. 8 excepthere 0& =8' and E,
=20 eV.

FIG. 10. Same as Fig. 8 excepthere 8f =8' and E,
=50 eV.

measured relative to the z axis and the half of the
scattering plane containing the faster electron
again corresponds to $,=0 . The Born curve was
calculated using the DWA code. In each figure,
DWA cross sections are presented for the scatter-
ing plane (P, = 0 and 180 ) and for a plane perpen-
dicular to the scattering plane.

It is not surprising that these figures show that
the DWA approximation does not exhibit the azi-
muthal symmetry exhibited by the Born approxi-
mation. More interesting is the fact that while the
DWA calculation gives results significantly differ-
ent from the Born calculation, the DWA results do
indicate a tendency for this symmetry except for
angles near the minimum in the cross section.
This symmetry becomes less visible for larger
scattering angles of the faster electron and for
higher energy transferred. The calculations
represented in Figs. 8—10 do not include exchange.

In conclusion, we have calculated triple-differen-
tial cross sections for electron-impact ionization

of helium in the distorted-wave approximation.
These cross sections were in better agreement
with the 256.5-eV data than were the corresponding
Born or Coulomb-projected Born cross sections.
Since these different approaches can give cross
sections of greatly varying magnitudes, absolute
measurements would be extremely valuable. The
DWA cross sections do not exhibit azimuthal sym-
metry about the momentum-transfer direction, and
the lack of symmetry is most pronounced near the
minimum in the cross section or for higher-energy
transfer s.
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