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Modified potentials in many-body perturbation theory: Three-body and four-body
contributions
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Three-body and four-body contributions to the third-order diagrammatic perturbative energy expansion are
evaluated for the electronic energy, using both the standard self-consistent-field potential V and a modified
potential V" ' to determine the unoccupied states. The [2/1] Pade approximants to the. energy are
constructed and first-order perturbative wave functions are inserted into the Rayleigh quotient to yield
rigorous upper bounds for the energy. The results indicate that the standard V" potential generates a more
suitable virtual orbital basis for the calculations.

I. INTRODUCTION

For an N-electron system, the Hartree-Fock
self-consistent-field (SCF) procedure invokes the
variation principle to determine an SCF potential
V" and a self-consistent orthonormal set of N one-
electron orbitals y,- which are optimal within the
particular function space S in which the orbitals
are expanded. That is, the expectation value of
the electronic Hamiltonian $C, with respect to the
N-electron single-determinant constructed from
these optimal orbitals, has a minimum value rela-
tive to the energy corresponding to any other sin-
gle-determinant constructed from other combina-
tions of N elements of S. In addition to the set of
self-consistent optimal occupied orbitals y, , the
SCF potential can be used to generate an ortho-
normal set of unoccupied orbitals y, which are
orthogonal to each of the cp, . Although the variation
principle is used to partition the space S into oc-
cupied and unoccupied subspaces, the elements of
the unoccupied space have neither a self-consis-
tent nor optimal property. The unoccupied orbitals
are merely those orbitals that diagonalize the
Hartree-Fock operator in the unoccupied subspace.
The unoccupied orbitals can be subjected to a uni-
tary transformation among themselves by the use
of a modified potential. This provides additional
degrees of freedom in the choice of a set of unoc-
cupied orbitals which may, for example, lead to
improved convergence properties when these or-
bitals are used to calculate a correlated wave-
function. Qn the other hand, it is possible that
the original set of unmodified unoccupied orbitals
is as suitable as any modified set; and hence, such
a redetermination of these orbitals might be super-
fluous for certain applications.

In a previous paper, ' various aspects of the use

II. THEORY

The diagrammatic many-body formulation' of
Rayleigh-Schrodinger perturbation theory is em-
ployed. The reader is referred to the previous
paper' for further background, notation, and de-
finitions. The diagrams contributing to the cor-
relation energy through third order are shown in
Fig. 1. Explicit expressions have been given for
the two-body portions of these diagrams.
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FIG. 1. All diagrams contributing to the correlation
energy in (A) second or~ r and (8)-(F) third order,
using antisymmetrized vertices.

of modified potentials were examined by perform-
ing two-body third-order perturbation calculations.
The present work investigates the three-body and
four-body contributions to the third-order energy
when a modified potential is used. In particular,
results are given for the X'Z' state of hydrogen
fluoride at its equilibrium internuclear distance
using the previously reported' 46 orbital Slater-
type basis set (E: 12o, 'lv, 35; H: 6o, Sm, 15).
Many-body perturbative wave functions, truncated
after first order, are also obtained. Rigorous
upper bounds to the energy are obtained by using
these wave functions in the Rayleigh quotient.
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Three-body terms arise in the third-order dia-
grams (C) and (D); while four-body terms arise in
diagram (C):

the SCF potential is V~:

V"(1)=g dr, V (2)r, ', (2 —V„)V,(2),
1 ~~ (ab II ij &(ij II kl&(kl II ab&

8 ~», d,, D(ijab)D(kebab)

~g(ijIIab&(ic II ak&(jk IIbc&

D(ij ab)D(j kbc) (2)

and the modified potential is denoted by V. In the
present work, V is taken to be either V~ itself or
the V" ' potential of Kelly, '

D"~(ijab) =D(ijab) —b."~(ijab}, (4)

where the denominator shift is given by

&"(ijab) =&al(V —V) la&+(bl(V" —V) lb&. (5)

The fully shifted denominator D~ corresponds to
shifting the denominator with the diagonal elements
of all the third-order diagrams in Fig. 1:

D~ (ijab) = D(ijab) —6~ (ijab),

where

&'(ij b} = &ab II
ab&+ &ij llij&+ &aillia&

+ (bill ib&+ (aj ll ja&+ (bjll jb&+6 (ijab) .

(f)
The basis functions y are simultaneous diagonal

states of the matrix equation

(v lHI~&=~ (8)

containing the operator'

a(1) =k(1)+V~(1)+P[V(1)—V"(1)]P,

where h is the sum of kinetic-energy and nu-
clear attraction operators, I' is the projector
for the orthonormal complement to the occupied
space

P=1— (10)

The number of distinct occupied orbital labels
(ijkl} is equal to the number of interacting bodies
that give rise to the energy term. Three-body ef-
fects in mariy-body perturbation theory have often
been discussed for atoms and molecules"' as
well as for nuclear matter. ' Using expansions in
a finite set of basis functions, the evaluation of
three- and four-body contributions to the energy
has become quite tractable for atoms and mole-
cules. '

The standard energy denominators D employed
with the diagrams of Fig. 1 and Egs. (1) and (2)
are defined in terms of the orbital energies

D(ijab) = @1+E 1. —~.—s, .
The potential-shift denominator D~~ is obtained
by shifting the standard denominator with the di-
agonal elements of the potential-interaction dia-
grams, Fig. 1 (E+E):

(12)

although several other choices for V had been con-
sidered previously. '

III. RESULTS

An analysis of the correlation corrections is
given in Table I, where the contributions from
various diagrams are compared. The magnitudes
of the three- and four-body interactions are largest
for the V" ' calculation using the standard de-
nominator D. The calculation using V" with the
denominator D gives energies comparable with
those corresponding to the use of the potential
V" ' with denominator D~ . Finally, the two cal-
culations using the D denominator give results
which are quite similar to one another. Even for
the calculation using V" with denominator D, which
has the smallest three- and four-body effects, the
many-body energy amounts to a significant frac-
tion of the total two-body energy through third-
order and in an absolute sense contributes -31
kcal/mole, which is certainly not negligible.

The perturbative energy components are sum-
marized in Table II. The three- and four-body
effects are quite important as evidenced by the
differences between the two-body and many-body
results through third order, E, +E, . It is interest-
ing to note that the total many-body third-order
contribution is quite small when the potential V"
is used with denominator B. Thus, the difference
between E, and E, + E, (many body) is -0.7/0 of the
mean value of these energies. For all of the other
cases, a lower E, value is obtained than by using
V" with denominator D; however, the positive
three- and four-body effects are largest for these
other cases and the results through third order
lie above that obtained by using V~ with denomina-
tor D.

The [2/1] Pads approximant' to the correlation
energy is also given in Table II:

[2/1] Pade = 1-E3 E2

where E, includes all many-body components. This
alternative third-order representation of the en-
ergy has a fourth-order residual. In addition to
its scale-invariance property, "the [2/1] Pade
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TABLE I. Components of the perturbation expansion for hydrogen fluoride (&=1.7328 bohr).

Potential

Denominator DS Dvs

yN-1

DS

+ 0.04106

Total -0.352 63

Intrapair energies (two body)

E,'(A) —0.30549

E,'(8) +0.046 93

E' (C)

-0.13513

E32 (E+F) 0.0

—0.353 55

+0.032 58

0.0
-0.042 77

0.0
—0.363 74

-0.385 68

+0.082 65

+0.078 05

-0.24749

+0.10968

-0.362 78

-0.31747

+0.05137

+0.045 19

-0.148 81

+0.012 68

—0.357 04

-0.370 09'

+0.036 61

0.0

-0.049 55

+0.018 15

—0.364 89

Interpair interactions between pairs having a common occupied orbital (three body)

E3 (C)

E3(D)

Total

+0.046 35

+ 0.046 31

+0.06749

+0.06741

+0.088 11 +0.05182

+0.08786 +0.05177

+0.077 06

+0. 076 93

—0.000 03 -0.000 08 —0.000 24 —0.000 06 —0.000 14

Interpair interactions between pairs having no common occupied orbital (four body)

22.319.6

E3 (C) . +0.00297 +0.00401 +0.00530 +0.00325 +0.00449

%(3.4 body/2 body) 14.0 25.7 15.4

erlap c + 0,050 73 +0.07315 +0.097 92 +0.055 98 +0.082 77

The energy terms are labelled with subscripts to denote order and superscripts to denote
number of interacting bodies. The potentials are defined in Eqs. (9)—(12); 'the denominators
are defined in Eqs. (3)-(7). Energies are in hartrees.

Defined by 100x [E3(C+D) +E3 (C)]/(&2(A) + &3 (& to &)I .
Defined in Eq. (17).

approximant brings a uniformity to the results;
that is, the spread in energies has been reduced
from -34 mhartree for E, +E, to -V mhartree for
the Pade approximants.

In addition to generating an energy series, the

many-body perturbation theory generates a wave
function having the form of a power series in the
perturbation operator R, . This wave function,
truncated after first order, is depicted in Fig. 2.
Since the orbital basis set is first determined as a

TABLE II. Comparison of perturbative energy corrections for hydrogen fluoride (R=1.7328
bohr) with the empirical correlation energy Eco« =—0.381 hartree. ~

Potential

Denominator

yN yN-1

DVS

yN-i

DS

{% Ecorr)

E2+E3 (two body)
(% E «)

E2+ &3 (many body)
(% Ecorr)

t2/1] Pade ~

(%«Em+)

—0.30549
(80.2)

—0.352 63
(92.6)

—0.303 34
{79.6)

-0.303 36
(79.6)

—0.353 55
(92.8)

—0.363 74
(95.5)

—0.292 31
(76.7)

-0.30135
(79 1)

—0.38568
(101.2)

-0.362 78
(95.2)

-0.26962
'(70.8)

-0.296 47
(77.8)

—0.31747
(83.3)-

-0.357 04
(93.7)

—0.302 Qg

(79.3)

-0.302 74
(79.5)

-0.370 09
(97.1)

—0.364 89
(95.8)

—0.28347
(74.4)

-0.299 90
(78 7)

' All energies are in hartrees. The potentials are defined in Eqs. (9)—(12); the denomina-
tors are defined in Eqs. (3)-(7).

Defined in Eq. (13).
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where the overlap integral has the explicit form

~ (ij [/ab&~
(17)

(b) (cj (dj

FIG. 2. Components of the many-body perturbative
wave function through first-order using antisymmetrized '

vertices. (a) The zero-order function; (b)-(d) first-
order corrections. (b) and (c) mutually cancel if x
represents —V, where V is the Hartree-Fock poten-
tial. (d) Sum over all doubly excited states.

(y)
=E,+ E, + t (2y —y')E, + y'E, ]/(1+ y'S»), (16)

solution to the matrix Hartree-Fock equation using
V", and since the redetermination of the unoccupied
orbitals corresponding to V involves a unitary
transformation within the space of unoccupied or-
bitals, the exact cancellation of the single-excita-
tion diagrams (b) and (c) is preserved. Thus the
first-order wave function consists of (a) the re-
ference single determinant 4, and (d) the double-
excitation diagram 4

y
Different wave functions

are generated by different choices of potential V
or by different choices of energy denominator D,
D orD

Since the first-order many-body wave function
has a simple form, an additional variational pa-
rameter y is easily incorporated:

Pi = @a+y@i ~

This wave function can be inserted into the Ray-
leigh quotient to produce a rigorous upper bound
for the energy"

(15)

The perturbative energy terms through third-order
can be used for this evaluation:

The perturbative variational upper-bounds are
presented in Table III. Changing y from unity to
its optimal value has the greatest effect for the
cases having the highest-energy bound. The use
of the potential VN with denominator D leads to
the lowest energy for either choice of y and an
optimal value of y closest to one. This implies
that the corresponding perturbation wave function
is variationally well suited to describe the hydro-
gen fluoride molecule. The use of an optimal
y brings the results for the five cases into good
agreement with one another; the largest difference
in this case is only -8 mhartree.

The upper-bounds to the total energy are also
presented in Table III for the five cases. These
results should be compared with the best previous
configuration interaction upper bound of -100.351
hartree, obtained by Bender and Davidson. "

IV. DISCUSSION

Although there have been mathematical demon-
strations' that a proper perturbation scheme can
be constructed making use of a modified potential
for the determination of excited-state orbitals, a
mathematical analysis has never been given to
prove that the use of a modified potential is more
efficacious than the standard V" potential for the
perturbative calculation of electronic energies
and wave functions. Instead the advantages of
modified potentials have been advanced through
the use of numerical example.

In contrast, the possibility that equivalent re-
sults might be obtained whether V" or a modified
potential is used for the determination of excited-

TABLE III. Comparison of many-body perturbative variational upper bounds &var for hydro-
gen fluoride (8=1,7328 bohr) with the empirical correlation energy &eprr =-0.381 hartree.

Potential

Denominator

yN

DS

yN-1

Dvs

yN-1

&var (p = 1)
(% &err)

p optimal
hvar (p = optimal)
(% S~rr)

@tot

—0.288 70
(75.8)

0.947 77
—0.289 53

(76.0)

—100.359

—0.27239
(71.5)

0.81133
—0.286 84

(75 3)

—100.356

—0.245 57
(64.5)

0.728 71
—0.281 05

(73.8)

—100.350

—0.286 01
(75.1)

0.90946
—0.288 72

(75.8)

-100.358

—0.261 80
(68 ~ 7)

0.770 51
—0.285 16

(74.8)

—100,354

All energies are in hartrees. The potentials are defined in Eqs. (9)—(12); the denominators
are defined in Eqs. (3)—(7).

The total energy is defined by &ref++var (&=optimal), where &ref is the SCF reference
energy corresponding to these calculations (—100.069 hartree).
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state orbitals can be established from the follow-
ing argument. The problem of interest is the
Schrodinger equation

KP=EP.

Using the unperturbed solvable problem

the perturbation operator is defined

KjKKp)

(18)

(19)

(20)

so that the perturbation expansions are relevant
only when the expansion parameter ~ is unity:

K=KO+K,~, (21)

(22)

(23)

The perturbation-theory expansions for P» and

EP ~ must converge in order to be valid, and furth-
ermore these expansions must converge to the
exact g and E satisfying Eq. (18). Since R is total-
ly independent of K„ then g and E must be inde-
pendent of K, also. Therefore when convergence
is reached, the perturbative solutions g~r and

E» must also be independent of K, and hence
they must be independent of the particular choice
of potential employed in K, . Thus, the correct
result is obtained when the perturbative scheme

, has converged and at that point there must be an
equivalence between the results obtained using
either V" or V.

- Having established that the correct final result
must be independent of the choice of potential, it
is necessary to realize that the rate of conver-
gence of the perturbative expansions might depend
on the choice of V. The usefulness of a modified
potential lies in the possibility of obtaining a con-
verged result at the lowest order of calculation.

The foregoing arguments assume that a comPlete
basis set is used for the expansion of the orbitals
and that therefore the perturbative results should
converge to the exact P and E. If the basis set is
not complete, then the perturbative results can
only be expected to converge to the "basis-set
limit. " The basis-set limit is a quantity which
must be determined from some evidence of con-
vergence. One such test is to compare different
Pth-order representations of the energy for a
given perturbative scheme, like E, +E, and E[2/1].
Another test is to compare a particular Pth-order
representation of the energy for different schemes,
like E,+E, using the various potentials and denom-
inators. Since the converged result must be in-
dependent of these differences, these comparisons

indicate whether the Pth-order results share this
independence property and therefore show some
evidence of convergence. Ideally these compari-
sons and other convergence tests would be per-
formed using high-order results. Of course, as
the basis set approaches completeness, the basis-
set limit should approach the exact result.

The quality of a result should be judged by its
proximity to the basis-set limit. Nevertheless,
the ability to obtain an energy close to the exact
value from a second-order calculation using a
modified potential has been regarded as an attrac-
tive feature of the method. In our previous paper, '
we demonstrated by numerical example that a cer-
tain arbitrariness is introduced into the calcula-
tions through use of a modified. potential with the
standard denominator D such that any desired en-
ergy can be obtained by manipulating the potential.
Although this might be a useful feature in the con-
text of a semiempirical approach, it is not desir-
able for strict ab initio calculations. To avoid
this difficulty, we showed' that the use of either
the denominator D~ or D can ensure the negative
definite character of the resolvent and thus a prop-
er perturbative scheme can be guaranteed.

The present calculations are performed in the
N-electron space restricted to the reference con-
figuration and all other configurations which can
be formed by double excitations. In previous work
on the neon atom, ' the third-order perturbative ca-
calculations had been shown to give an accuracy
comparable with that afforded by the method of
configuration interaction, including all singly and
doubly excited configurations with respect to a.

closed-shell matrix Hartree-Pock reference func-
tion, if the same basis set is employed. The pres-
ent third-order results would therefore be expected
to be close to the corresponding doubly excited con-
figuration interaction results for hydrogen fluoride
obtainable with the present basis set. The extent
to which the energies corresponding to the various
cases in Table II agree with one another is taken
as a measure of how close these results are to
the doubly excited basis set limit for the correla-
tion energy. The most uniform results are obtained
from the [2/1] Pade approximants for the five cases
in Table II. In addition, the best agreement between
the third-order results, E2+E, (many body) and
[2/1] Pads, is obtained for the two cases V" with
denominator D a. . .~ V ' with denominator D~ .
The second-order energy inclosestagreementwith
these third-order results is E, using V" with de-
nominator D.

The perturbative expansion for g can be examined
in terms of the Rayleigh quotient of Eq. (15).
These results, given in Table III, represent rig-
orous variational upper bounds on the energy. The
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near equivalence of these results, especially for
optimal y, is a measure of the convergence of the
perturbative expansion for P to the basis-set limit.

On the basis of the near equivalence of the results
presented here in Tables II and III, the most rea-
sonable conclusion to draw is that the V" and V
potentials are equally efficacious in producing
third-order results of uniform quality. Although

E, using potential V" and denominator D is very
close to the third-order limit, the ease with which
the third-order energies can be obtained within the
algebraic approximation' would suggest that EQ+ E3
(many body) is the most suitable low-order energy
result. Another advantage is that the upper bounds
of Eg. (16) can be derived from the components
of a third-order calculation.

The results and conclusions in this paper pertain
strictly to the hydrogen fluoride molecule within the
particular basis set employed. Although this basis
set is far from complete, it is nevertheless a lar'ge
set for a molecular calculation and its quality is
high enough to produce more accurate upper bounds
for the energy than any previous attempt. Thus,
the present results are probably indicative of the
general situation for arbitrary molecular systems.
If considerably larger basis sets could be employed
for molecules, it would of course be desirable to
examine various aspects of such calculations: two-
body versus many-body effects, convergence with
respect to perturbative order, determination of
the basis-set limit, and the influence of a modified
potential on the rate of convergence of the pertur-
bative series.

Just as the canonical unoccupied orbit', ls can be
subjected to a unitary transformation within the
unoccupied space by using a modified potential,
the occupied orbitals may be subjected to an ar-
bitrary unitary transformation within the occupied

space. There are many arbitrary criteria, such
as localization criteria, which can be invoked to
determine this transformation. " The converged
infinite-order perturbation expansion should be
invariant to the separate unitary transformation
of both the occupied and unoccupied orbitals, with-
in their respective subspaces. The determination
of the effect of transformations on the occupied
orbitals in a truncated perturbation expansion
would require numerical experiment. In v.iew of
the close agreement of the third-order results
obtained with different modifications of the unoc-
cupied orbitals in the present work, it is antici-
pated that a similar degree of agreement might be
obtained when modified occupied orbitals are em-
ployed in calculations taken completely through
third order. The use of localized occupied orbitals
would, of course, change the relative magnitudes
of the various components of the energy.

The present results have demonstrated the im-
portance of three- and four-body effects in the
evaluation of the electronic energy of hydrogen
fluoride. The results vindicate the use of the stan-
dard SCF V" potential for the determination of the
unoccupied virtual states when using finite basis
sets. Of course, the effects of modified potentials
on properties other than energy remain to be de-
termined.
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