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Modulations and degrees of coherence of optical fields
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By using the concept of degree of coherence of quantum optical fields, the properties of fields which can be
modulated at a complex rate are studied.
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If P(ct) &0, i.e., if the field E is strictly equiva-
lent to a classical one, the matrix p~ defined by
Eq. (4) is a density matrw for any value of X. This
means that E is modulable at any rate. In that
case we say that E is consistent fox modulation.

In a recent paper' the concept of modulation of
quantum optical fields was introduced in order to
compare classical and quantum theories of optical
coherence. Almost at the same time the transla-
tion of a short paper' appeared, in which the
statistics of fields with equal degrees of co-
herence was studied. In the present paper we com-
pare the concepts of modulations and degrees of
coherence of optical fields. These bvo concepts
are, in some cases, closely related.

Let us first recall very shortly the concept of
modulation of a quantum optical field E statistically
defined Qy a density matrix p. This field is said
to be modulable at the rate X if it is possible to
find a new field E~ ~ i.e., a new' density Q1atrix p)„~
such that for every x;, n, and m

G(n, m)[{&] ] zn+mo(n&~)[(& ] ] (1)

where the 6 functions are the quantum coherence
functions of the two fields E and E~.

Because the results presented in Ref. 2 are ap-
plied to the monomode case only, the following
discussion will be restricted to that case. Thus
the condition (1) becomes identical to Eq. (3.11)
of Ref. 1:

Tr(p at nam) yn+ m Tr(pgt nan5)

In the discussion of Ref. 1 it was sufficient to
consider modulation at zeal vates X. However, j.t,

is straightforward to generalize the result to com-
plex rates X. In this ease Eq. (2) becomes evi-
dently

Tr(p~a™a) = X*"X"Tr(pat "g") .
Using exactly the same method as i~.:, Sec. III of

Ref. 1 one can show that, if Eq. &3~& is valid for
every n and m and if the density m.atrix p has a

, P representation P(o.), then p, can be written

Conversely'if the field is consistent for modula-
tion, then P(n) must be positive and that was one
of the main results of Ref. 1.

In other words, if P(o, )$0 the domain of values
of X for which p„ is effectively a density matrix
is limited. We shall examine this point in more
detail. For this purpose we recall that the only
condition for p, to be a den ity matrix is that

&f p, lf&-o
for any state vector

I
f&. We can expand this

vector in terms of the n-quantum states which
are complete and orthonormal. We thus obtain

' and we can write Eq. (5) in the form

&f I lf& P( )e-lxi2lo. t2

C Qf
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(7)

Because P(n), which has negative values, is the
I' representation of the density matrix p, we have
evidently for X=1, &flp~ I f ) —0. Indeed, as a
consequence of Eq. (4), p, = p.

let, us now see that if I~l —1 "hen &flp) If& —0.
For this purpose we write IX '=1 — p ', with

I pl 1, a.nd

e- Ill Io.l- . - I el2el v I2tctl2 (8)

If we expand e'""' ' ' we obtain a sum of terms
of the general form (k!) '(pct)~(p*ct*)~ Each su.ch .

term gives in Eq. (7) a. contribution proportional
to &ulplu) w"ere lu& is a state deduced from If&.
Because p is a density matrix, &ul plu&~0, and we
obtain in Eq. (7) a sum of positive terms. Then
Eq. (5) is satisfied.

This result is not necessarily true of
I
XI&1 be-

.cause, in this case,
I
xl'=1+

I
p, l' and we obtain

in Eq. (8) the term e- ~~"'~". Its expansion has
negative terms and we c'nnot deduce that &f I p~ I f)
is a sum of positive terms.

To conclude, if P(n) I 0, it is always possible
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to modulate E at a rate X such that
~

A.
~

—1. In
other words it is always possible to decrease the
mean number of Photons in the field fvithout
changing its statistics.

From that result and the fact that the field E
is not consistent for modulation because P(o.) $0,
we conclude that there exists a positive value z,
(r ~ 1), such that p~ is a density rhatrix only if

0

This limiting value of the modulation rate evi-
dently depends on the function P(c.). It becomes
infinite if P(a) &0. A particular example of such
a limiting value was presented in Sec. IV of Ref.
1, Eqs. (4.12), (4.14).

Finally let us introduce the cia.ss M(E) of fields
which can be obtained from E by modulation. Any
element of this class has a density matrix defined
by Eg. (4) where the value of X is restricted by Eg.
(9)

Following the line of the discussion presented in
Ref. 2 we shall introduce the nth-order degrees of
coherence of the field which in the monomode case
are defined by

Tr(pat "a")
[Tr(pa~a")]" '

These coefficients were introduced and studied
in earlier papers' ' not cited in Ref. 2.

I.et us first point out that all the fieLds of the
class M(E) have the same degrees of coherence.
Indeed if we modulate E at a rate A., me obtain the
field E~ and we conclude readily from Eq. (3) that
g„(X)=g„. This is the main result of Ref. 2. In
that reference the authors have studied the set of
fields whose density operators are defined as p„
in Eq. (4). This set is exactly our class M(E).

We will now study in more detail the cia's E(E)
of fields which have the same degrees of co-
herence as E. Any element F' of this class, is
defined by

gn=gn

are deduced from the coherence function calculated
for n =sz.

In conclusion we can say that M(F) is the class
of fields which satisfy Eq. (3) for every n and m,
while E(E) is the class of fields which satisfy this
equation only for n = rn.

Now let us call Ez(F) the class of all stationary
fields belonging to E(E) and E&(F) the class of all
nonstationary fields belonging to E(E). These two
classes evidently have no common elements,
Ez(F) A Et(E) = Q (the nullset), and moreover

E(E)=E~(F) UE~(F) . (14)

If the initial field E is stationary, i.e. , if P(n)
is a function only of

~

n ~, all the coherence func-
tions G"' are equal to zero for n4 m. In that
case it is clear that all the fields of M(E) are
stationary and me deduce easily that

E, (E) =M(E) .

If the initial field is nonstati onary, a circum-
stance which appears in some interesting physical
situation, all the elements of M(E) are nonsta-
tionary. It nevertheless remains possible to
define precisely the structure of Ez(E).

For this purpose let us associate to any non-
stationary field E a stationary equivalent field
E~. The I' representation of E~ is deduced from
P(n) by integration over the phase 8 of the com-
plex number 6 and can be written

P(a) de .

In all experiments of interference, photon-
counting, and photon coincidences, the fields E
and E8 give exactly the same results"' because
their coherence functions are the same for n=m.
Evidently they have also the same degrees of co-
herence and thus E~ belongs to the class E~(F).
It is nevertheless possible to distinguish E and

E~, for example, in beat experiments by using a
reference beam. ' It is clear that all the elements
of M(Ez) are stationary and have the same degrees
of coherence as E, and we deduce easily that

for every n. By using Eq. (9) this property can
be expressed by the relation E,(E)=M(F.) . (I'L)

Tr(p'a""a") =
~

X~'"Tr(pat "a"),

w"ere I~I is defined by

Tr(p'a~ a)
Tr(pa~ a)

(12)

(13)

But M(E) is evidently a subclass of E~(F), M(E)
cE&(F). Indeed the elements of E~(E) are non-
stationary as E itself, but they satisfy Eq. (3) only
for n=rn.

Finally let us observe that the two parameters
r and rz appearing in the definition of M(F) and
M(Ez), Eq. (18), are not necessarily the same.

We see that Eq. (12) i.s a particular case of Eq.
(3), obtained for n=m. This is evidently due to
the structure of the degrees of coherence which

The author wishes to express his thanks to
Professor C. Mehta for interesting discussions
in relation with Ref. 2.
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