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Theoretical analysis of dielectric properties of polar liquids in the far-infrared spectral range
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The Zwanzig-Mori theory is applied to the study of dielectric behavior of polar liquids in the far-infrared
spectral range. The basic dynamical variables on which the calculation is based are the macroscopic dipole
moment M(t) of the liquid sample and its time derivatives. The return to transparency. and the excess
absorption are analyzed in detail. Et is shown that the spectral behavior of pure liquids can be described by
the same formulas as those applicable to analyze diluted solutions provided microscopic time parameters 'of
the. latter theories are replaced by new macroscopic time parameters chosen in an appropriate way.

I. INTRODUCTION

A considerable interest has been manifested in
the study of dielectric behavior of polar liquids,
or liquid solutions of polar molecules, in the far-
infrared spectral range. Two essential facts have
been discovered: the return to the transparency
of molecular liquids in this region and the exis-
tence of strong excess absorption at the high-fre-
quency edge of the absorption area." The first
of these phenomena, predicted many years ago"
is a consequence of the finite value of molecular
moments of inertia and the second is a manifesta-
tion of libration-type motions in the liquid.

T'he simple Debye theory was rapidly seen to be
inadequate in treating this problem and three
groups of theories have been proposed to study the
dielectric behavior of diluted solutions of polar
molecules. In stochastic-type theories either
molecular motions are considered to be similar
to free rotations and to be weekly perturbed by a
random force, ' or they are thought to folly. the
M or J extended diffusion model, ' or else they are
assumed to be libration-type at short times and
diffusion-type at longtimes and are described by
the cumulant expansion technique' "(see also
work by Birnbaum and Cohen" ). In quasi-crystal-
line theories, a molecule of a liquid solution is
believed to be trapped into a potential well of a
given symmetry and its motion to be weekly per-
turbed by a random force."" Finally, in the
memory function type theories, the memory ker-
nel is constructed in the way to describe different
kinds of molecu1ar rotations going from the free
rotation to the rotational diffusion. "" The re-
sults of these theories strongly support the inter-
pretation sketched above and allow a quantitative
reproduction of different sorts of diagrams the
experimentalists use to express the experimental
data.

The purpose of the present paper is to extend
above theories to the case of pure liquids. The

method applied is the Zwanzig-Mori theory" "in
the version used by Kivelson-Keyes. " The theory
is given a form which makes appear a series of
successive approximations; all modelist assump-
tions are carefully avoided. A good agreement is.
found between theory and experiment.

II. BASIC APPROACH AND METHODOLOGY

A. Relation between dielectric constant and macroscopic dipole
moment correlation function

The system S undergoing the investigation is a
sample of liquid dielectric material of spherical
form. This choice of the reference volume is a
matter of convenience and, by no means, a ques-
tion of principle. T'hen, the dielectric constant &

is obtained by submitting S to the action of a vari-
able electric field and by analyzing its response to
it; e is expressed in terms of the macro-
scopic dipole moment correlation function G(t)
= (M(t)M(0)) /(M(0)M(0)). Practically, the problem
is treated by (i) applying the linear-response theo-
ry in its classical version, (ii) developing the
Born-Oppenheimer expression for M into a power
series of vibrational coordinates of individual
molecules, and (iii) introducing the conventional
high-frequency dielectric constant &„as well as
its static value E,. Then, choosing the Z axis in
an arbitrary direction, e.g. , in the direction of the
applied electric. field, the following well-known
formula is easily obtained:

(e -e„)(e,+2) "„, ,„, d (M, (0)M.(t))
(e, —e„)(e+2), dt (M,(0)M,(0))

'

(I)
This relation is the basic relation used in the
present theory. The Hamiltonian H, or the Liou-
villian I, , determining the natural motion of M(t)
is that of the complete macroscopic sample 8
placed into an empty, force-free space and the
statistical average designated by angular brackets
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is over a canonical ensemble in absence of an
electric field. No reduction of the macroscopic
sphere S into smaller units is needed in this work;
thus problems associated with this reduction, and
difficulties related to it, do not arise here.

B. Principle of calculation

The calculation of G(t) is based on the Zwanzig-
Mori theory of Brownian motion. According to
this theory, the correlation matrix 8(t) =(A(0)A(t))
of a dynamical quantity A= (A„A„.. . ,A„) obeys
the generalized Langevin equation:

—8(t) = iQ8(f)—
d
dt

ds K(s)8(t -s), (2)

where 0 is the n &&n frequency matrix and K the
corresponding n && n memory matrix. This equa-
tion can be solved by successive approximations,
either by truncating the continuous fraction formu-
la established by Mori" or by applying the Kivel-
son-Keyes procedure. " The two methods are inti-
mately related to each other and converge, in
principle, to an exact solution.

The calculation involves the following steps. (i)
The z component of M(Pq;t) should be expandable
in a Taylor series in f;:

(3)

C. Discussion

An approach similar to the present one has been
proposed, in another context, by Levi." It is
based on the Doob theorem according to which the
correlation matrix associated with a n-dimen-
sional Markovian-Gaussian process is a n &n ex-
ponential. Thus, a sequence of successive approx-
imations can be constructed by supposing, in turn,
that M, (t), or M, (t), M,'(t), or else M, (t), M,'(t),
M,"(f), etc. is a Markovian-Gaussian vector. This
sequence of approximations can be easily shown

Equation (3) can be reinterpreted in terms of the
Zwanzig-Mori theory by stating that M, (pq;f) is
contained in that part of the vector space of dy-
namical variables subtended by A = (M„M,', M,",~ ~ ~ ).
(ii) Successive approximations for G(t) are ob-
tained by constructing 8(t) on M„or on M„M,', or
else on M„M,', M," and by treating the Eq. (2)
according to the Kivelson-Keyes procedure. The
approximations of this sequence are called the
one-variable, the two-variable, and the three-
variable theory, respectively. (iii) The param-
eters which appear in the theory after elimination
of the projected Liouville operator are the time
integral of G(t) and its time derivatives at t= 0.

III. DILUTED SOLUTIONS OF POLAR MOLECULES IN

NONPOLAR SOLVENTS

In this section, the present method is checked
by applying it to the study of dielectric behaVior
of diluted solutions of polar molecules in nonpolar
solvents, the systems for which the theory is al-
ready firmly established. For sake of simplicity,
linear and symmetric-top molecules are only
considered in this paper.

The calculation involves the following steps.
(i) The macroscopic dipole moment M is written
as a sum of microscopic dipole moments m, as-
sociated with individual polar molecules; the sol-
vent molecules are assumed to carry no measur-
able dipole moment. In the simpliest description
m is the permanent (gas phase) dipole moment of
the polar molecule; in. a more accurate analysis
it is an effective dipole moment including a com-
ponent produced by the reaction field. (ii) The
correlation function G(t) contains, both, self and
distinct pair terms; the latter can safely be ne-
glected if the dilution in sufficiently high. Thus,
in applying the formulas of the Sec. II, G(t) can
be assimilated either to the correlation function
(u(t)u(0)) of the unitary vector along the direc-
tion of m if the molecule is nonpolarizable or to
the correlation function (m(t)m(0))/(m(0)m(0)) if
it is polarizable. (iii) The inequalities &, —a„
«e„, E —E„«E„are expected to be valid and the
Eq. (1) can be written as follows:

dt e-'"'—u t u O,

c —e„",„,d (m(t)m(0))
e, —&„, dt (m(0)m(0))

'

Equation (4) applies to the nonpolarizable case
and Eq. (5) to the case of polarizable systems.

(4)

(5)

A. Nonpolarizable molecules

The case of nonpolarizable molecules is treated
first. Three sorts of dielectric diagrams are
considered: (i) the absorption coefficient o.'(&o)

as a function of ~, (ii) the Cole-Cole diagram, and
(iii) G(t) =(u(t)u(0)) as a function of t. The param-
eters of this theory are r = fo dt G(t) for the one-
variable theory, r and G" (0) for the two-variable

to converge to an exact solution when n- ~; in
fact, the correlation matrix associated with M, (t),
M,'(f), M,"(f),. . . , can be independently shown to
be an exponential. It is very probable that the
successive approximation scheme described in
the present paper is based on a similar physical
background although the techniques are very dif-
ferent.
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2c v'&„—G" (o) = —— " d~ ~(~),
1T

(6a)

G'"(0) = — "
d&o uPp. (ur),

2c
7l

(6b)

G tf(0) I
2ZT ' I'

G'"(0)= 2 I l+—+ —((«)')-4I I

(7a)

In these equations, , I is the moment of inertia of
the polar molecule about an axis perpendicular to
the symmetry axis and I' that about an axis paral-
lel to the symmetry axis, ((VV)') is the mean
square torque acting on the polar molecule in the

theory, and r, G"(0), and G" for the three-variable
theory. No simple way exists to estimate 7; on
the contrary G"(0) and G"(0) can be related to
either macroscopic or molecular quantities by the
help of the following relations" ":

(d 7n~=
I+(g) (Z' 27' )+to Z' (8a)

solution.
The results of the theory are as follows. The

one-variable theory coincides with the Debye the-
ory; neither the return to transparency nor the
excess absorption are reproduced (Fig. l). The
functions p. (to), e'(~), e"((u), and G(t) have simple
Debye form and do not need to be reproduced here;
the parameter T, entering into these expressions
is T, = tu dt G(t). The two-variable theory intro-
duces the inertial effect, accounts for the return
to the transparency but fails to explain the presence
of the excess absorption (Fig. 2). The functions
p. (v), e'(&u), e"((o), and G(t) remain simple enough
to be expressible analytically. Putting T, = v

= f, dt G(t) and T,'= —G'(0) the following formulas
are found:

na, c

0,25

I0'
ptt

0.5

ln G(t)
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FIG. 1. Dielectric diagrams a= +(~), E"=& (&'), and
lnG(t ) as given by the one-variable theory. According
to the definition of the parameter T&, these curves can
be used to describe either diluted solutions or pure
liquids. In the case of diluted solutions T&=f0 dtG(t) is
the microscopic time parameter, for pure liquids
Ti ——[(co+2)/(e +2)] fo dt G(t) = [seo/(e +2eo)] f 0 dt G~(t)
is the macroscopic time parameter (~&=4t in arbitrary
time units).

FIG. 2. Dielectric diagrams n = 0.(co), e"= &" (e' ),
and lnG(t ) as given by the two-variable theory. These
curves can be applied to describe either diluted solutions
or pure liquids, provided the parameters &&, T'2 are de-
fined in an appropriate way. In the case of diluted solu-
tions T& ——

fo dtG(t), Tt2 =-G(0) are microscopic time
parameters, for pure liquids T& =[(Gp+2)/(e„+2)if( dtG(t)
=[ se 0/(2e 0+v„)]f0 dtG, (t), T2 ~ ———[(e + 2)/(e +2)]0G(0)

= —I. (& + 2& 0)/% 0]~~(0) represent macroscopic time pa-
rameters (T, =4t, T,=lt).
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1 —(o T2

eo —&„ I+ &d (T —2T )+ (o T (8b) NPx

2

) (dT
1+ u&2(Ts —2Ts)+ &u4T4 (Sc)

In turn, G(t) appears as a sum of two exponen-
tials; it can easily be cast to one or another form
proposed in previous work. " The three-variable
theory explains, both, return to transparency and
excess absorption (Fig. 3); however, the descrip-
tion remains on a qualitative level. The occur-
rence of librations is associated, in this theory,
with the existence of the complex roots of the
transport matrix

I'=in-Iim dte' 'K(t);8~0 0

they are only present if. G'"(0) is large enough,
i.e„ if intermolecular torques are sufficiently
efficient. The analytical expressions for n(&o),
e'(ur}, e"(to), although relatively complex, are
similar to (Sa-c); the appropriate parameters
are T, =7', T,'= —G"(0)'+G"(0). It results from
the above discussion that all qualitative features
can be obtained from this three-variable theory;
the quantitative agreement can only be obtained if
the induced moments are explicitly introduced.
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B. Polarizable molecules

The case of polarizable moleeules can be treated
in a way similar to that described above the only
difference is that, here, G(t) is equal to
(m(t)m(0)}/(m(0)m(0)) rather than to (u(t)u(0));
the Eqs. (Sa) and (Sb) and (8a)-(Sc) remain valid
but not the Eqs. (7a) and (7b). Practically, the
three quantities r, G"(0), and G'"(0) are consid-
ered as adjustable parameters and are fitted to
reproduce experimental curves; only two of them,
r and G'"(0), need to be treated in this way in the
case of nonpolarizable molecules since, there,
G"(0)= —2KT/f. Detailed calculations have been
made for CHBr, dissolved in CC14, the system
which has already been carefully examined in the
previous work. ' The results are reproduced in
Fig. 3 and 'show an excellent agreement between
the theory and the experiment; the fact that ~G"(0)

~

, & 2KT/I is indicative of the presence of induced
moments.

IV. PURE LIQUIDS

After having checked the present method in the
case of diluted solutions where the detailed ana-
lysis is available, the theory is now applied to the
study of pure liquids. It seems important to point
out that the theory can be presented in two differ-
ent forms according to the choice of basic dynam-
ical variables. Either these variables are the

—0,3

-04
I I

0 1 2 '
t

2kT 4
xt'

FIG. 3. Dielectric diagram. ms e= +{cd), e = e {e'),
and lnG{t ) of diluted solutions as given by the three-var-
iable theory; these curves describe, both, non polariz-
able and polarizable solute molecules. The parameters
are Tt fo"dtG(t), T2——=-G(0), T& —G(0) +G "(0);——one
has G(t) = (u(t)u(0)) in the former and G(t) = (rTi(t)m(0)) /
(rTi(0)%(0)) in the latter case. These parameters have
been chosen in the way to reproduce the experimental
values for CHBr3+ CC14 {2p%) at T=25'C {&)=6.19
x &p sec, T2 ——p.83 & Qp sec, &3l= p.35 x]p-1 sec)

macroscopic dipole moment vector and'its time
derivatives M,'"(0), M,"'(0},M,'"(0).. . , or the
Hilbert space is subtend'ed by the microscopic
dipole moments rn, (0), ms(0). . .m~(0) of the N
molecules forming S and by their time derivatives.
One concludes that the theory is a one, two, etc.
variable theory in the former case and an N, 2N,
etc. , variable theory in the latter case. Surpri-
singly enough, the theory can be elaborated in
both versions, at least'in the one-variable mac-
roscopic and the N-variable microscopic cases,
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in spite of the very high order of the trans-
port matrix I' in the second method; this is
due to the isotropy of the liquid confering to I' a
very symmetrical structure. The results of both
treatments turn out to be equivalent, . thus the
simple choice of dynamical variables M,"'(0),
M' (0) M'"(0), etc. , is.confirmed. ""

The calculation implies the following steps. (i)
The macroscopic dipole'moment M is written as
a sum of microscopic dipole moment m, of indi-
vidual molecules of the liquid sample S; for sake
of generality, they are supposed to be effective di-
pole moments and to include a component due to
reaction field. Then the correlation function G(t)
is a multimolecular correlation function describing
the effect of collective molecular rotations. (ii)
No attempt is made to reduce the macroscopic
sphere S to smaller units. If the basic variables
are M,"'(0), M,"'(0), and M,"'(0), the effort nec-
essary to solve their equation of motion does not
depend on the number of molecules contained in the
sphere and there is no advantage to introduce the
embedded sphere. Then, the relation between &

and G(t) is that given by Eq. (1). (iii) The param-
eters of this theory are r = J'o" dt G(t) for the one-
variable theory, v and G"(0) for the two-variable
theory, and v, G"(0), and G"(0) for the three-vari-
able theory. These parameters can be related
either to macroscopic quantities f,

"
der n(~),

f,"der w'n(&u) or, if the comparison with the re-
sults of previous work is desired, to the param-
eters 7'„G,"(0), and G';(0) associated with the
microscopic sphere s embedded in S. One has,
approximately":

Eo+ 2 3&0
47 7 s+2 & +2&0

T-2 s + 2
G (0)

s + 280
G t(0)+2 3&

(11a)

(11b)

600

Th

Exp

400

200

macroscopic embedded sphere approximation.
The results of the theory are as follows. The

one-variable theory coincides with the Debye the-
ory; neither the return to the transparency nor the
excess absorption are reproduced. The function
n(&), e(&u), and G(t) have the simple Debye form
and do not need to be reproduced here. However,
the time parameter involved is

+2 3&T =
+2 6 +2&o

I

rather than ~ or 7,. Curiously enough, the rela-
tion T, = T, (7) coincides with that proposed by
Lorentz-Debye" and the relation T, = T,(v,) with
that suggested by Powles" (Fig. 1). The two-
variable theory introduces the inertial effect, ac-
counts for the return to the transparency but fails
to explain the presence of the excess absorption.
The functions n(co), s'(~), and e "(u&) are still given
by Eqs. (8a)—(8c) but the definition, of T„T, is
different:

—G"(0)= — ' " d(u n (&o),
(~, —c„)(e„+2)

1

(e, —&„)(e„+2)

3s,(s„+2)
(2s, + e„)(e,+ 2) '

G"(0) G-"(0) (2c,+ s„)(e,+ 2)
G", (0) G,"(0) 3e,(s„+2)

(»)

(loa)

(10b)

0—

0

20

10

I

50
I

100

~~ ~ ~

I

150
f)t) (CITI ")

Th

Exp

Equation (10a) applies to a Glarum-Cole type
cavity and Eq. (10b) to both, Glarum-Cole and
Fatuzzo-Mason type spheres, ""see also Nee-
Zwanzig. " The relation between 7 and v, for a
Fatuzzo-Mason cavity is ambiguous due to the
presence of several relaxation times. (iv) The
dependence between e and G(t) is linear in s; this
is a consequence of the Eq. (1). Thus, nonlineari-
ties appearing in the Fatuzzo-Mason theory are
not due to some physical process creating them,
but to the individual decision of a theoretician to
evaluate v, G"(0), G'"(0) by the help of the semi-

I

25
I

50

FIG. 4. Dielectric diagrams &= o.(), &"= & (e') of
pure liquids as given by the tree-variable theory. The
parameters are T& [(ca+2)/(& +2)j JOd——tG(t)'
=[3e,/(e„+2m, )]J,"dtG, (t), T, '= —[(~„+2)/(e,+2)IG(~)

(~ +2 p)/3 0~ Gs (0) T3 = [(E' +2)/(&p+ 2) j
[G'"(0) —G(0) I = [(& +2eo)/3&01{G'~(0) —[(2eo+& )(&0+2)/
3eo(e„+2)IG,(0)2). These curves refer to the liquid
CH3F at T=133oK (T& ——5.28x10 ~ sec, T2 ——0.41
x10 sec, T3= 0.14 &&10 sec).
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Thus, after having changed the time parameters
T„T,according to this prescription, the Fig. 2
correctly reproduces the pure-liquid results. The
three-variable theory explains, both, return to
transparency and excess absorption; the discus-
sion parallels word by word that given in the Sec.
III A. The analytical expressions for n(&o), e'(&u),

and e "(&u) remain the same as for diluted solutions
but the parameters are

Eo+ 2 3&0
7

f~+ 2 c~+ 260
(12a)

G»(0)
+ 0 G»(())

60+ 2

T-'= " [G'"(0) G"'(0)]
Eo+ 2

+ RE
( )

(2 6 + t )(t + 2) „ ( ))

(12c)

Detailed calculations have been made for liquid

CH, F, a system for which careful measurements
have been made. 4' The results, obtained by con-
sidering r, G"(0),G"(0) as adjustable parameters,
are reproduced in Fig. .4; there is a fair agree-
ment between theory and experiment.

One concludes that the dielectric relaxation of
polar liquids in the far-infrared range may be
described by the help of the same formulas than
those applicable to the analysis of diluted solu-
tions; it is only necessary to redefine the time
parameters T„T„and T, in an appropriate way.
Thus, the present theory can be viewed as gener-
alization to the non-Debye case of the early theo-
ries discussing the relation between microscopic
dielectric relaxation times.
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