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Scattering from a multielectron target by a heavy particle is approximated in terms of amplitudes for
scattering from individual target electrons. By treating the motion of the p'rojectile classically and ignoring
correlations, the wave function for the system is expressed as a product of single-electron wave functions.
The probability amplitude for scattering into specific states is then a product of single-electron scattering
amplitudes. In this approximation, cross sections for excitation and ionization involving many electrons are
expressed in terms of a binomial distribution of single-electron probabilities. The standard connection of this

amplitude for multiple excitation and ionization, A (8), to the corresponding scattering amplitude, f(8), is

given, and the validity of this approximation is discussed.

I. INTRODUCTION

It is convenient to use an independent electron
approximation. in calculations of collision cross
sections in multielectron atoms by heavy charged
particles. In this approximation the atom is
treated as a collection of electrons which indepen-
dently interact with the projectile. During the time
of the collision the interaction between the projec-
tile and a given electron neither affects nor de-
pends on the other target electrons. Thus, for
example, in the calculation of single ionization,
the nonparticipating electrons are ignored; i:.e. ,
their wave functions are not used in the calcula-
tion.

While most atomic collision calculations' have
concentrated on the transition of a single electron,
there have been some attempts to describe multi-
ple transitions within a single collision. One ap-
proach is to calculate the probability for a multi-
electron transition by multiplying transition prob-
abilities computed independently for each electron. ,

As is later demonstrated, this multielectron tran-
sition pl obablllty for excitation and. ionization
gives a binomial distribution of the single-electron.
probabilities.

The idea of combining single-el. ectron probabili-
ties for multielectron transitions has been used by
a number of authors, including applications that
extend beyond the scope of this -paper. Gryzinski'
has estimated cross sections for the double ion-
ization of helium by' electron impact in this man-
ner. Aberg' has used the idea for ionization by
photons and electrons, while Sachenko and Demek-
hin~ have considered electron rearrangement after
inner- shell vacancy production. Veje' has recently
applied the method to vacancy production in solids.

For inner-shell ionization in atoms by heavy
particle impact (the problem to which this paper
is addressed), the binomial distribution has been

suggested' and used' "for the analysis of high-
resolution x-ray spectra, "which include satellite
and hypersatellite lines. With a few exceptions, "
the binomial distributions generally give a good
fit to observed data when folded appropriately with
Auger rates. '4

Ln this paper we present a semiclassical deriva-
tion of the independent electron approximation for
atomic scattering by heavy particles and the con-
sequent binomial distribution of single- electron
probabilities. Similar work has been, reported"
by%u and Merzbacher. Our results are obtained
by considering the projectile as a classical parti-
cle and ignoring correlations. Then a standard
connection is given between the probability ampli-
tude for multiple excitation and ionization, A'~(B),
and the corresponding scattering amplitude f(e).
Finally, the validity of this independent electron
approximation and its relationship to various cal-
culations is discussed.

II, REDUCTION TO INDEPENDENT ELECTRON
SCATTERING TERMS

In this section we formulate the scattering am-
plitude for excitation and ionization in a multi-
electron target by heavy-particle impact as a pro-
duct of single-particle wave functions, ignoring
the identity of the target electrons. As we shall
later remark, extension corresponding to an anti-
symmetrized product wave function is straight-
forward and is bypassed for now for simplicity.

Consider a charged particle incident on a multi-
electron target. We seek the wave function for the
full system, 4 (R, r, ~ ~ ~ rz ), which is a solution of
the Schrodinger equation,

94'
H4 =ih

where 8 represents the projectile coordinate, and
r, ~ ~ r~ the set of coordinates of target electrons
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measured from the target nucleus.
The full Hamiltonian of our atomic system is

given by

tion.
The second assumption now guarantees that 0

evolves as a product wave function because the
evolution" operator n(f„t,) factors into a product
of single-particle terms, i.e. , in the Heisenberg
picture,

Z2 p2 Z 82 Z2

Zle Z e2

2M ~ IR —.r I R

n(t„ t,) = 7 exp
Z t2

H(t) dt
1

'g(R=":, -g)-., -., ))
Z2

+ g V(R, r, ~ r~ )+Hr
g=l

2 Z

+ H,.(R, r, ~ ~ r~ ) .

Here the sum over j includes the projectile-nucleus
interaction, and H~ represents the Hamiltonian of
the unperturbed multielectron target. We note that
the HJ(R, r, ~ ~ r~ ) terms contain only c numbers
(i.e. , commuting numbers) in the variable R, but
are not sums of single-particle Hamiltonians due
to the presence of the interelectron interactions,
e'/~ r~- r& j, which produce correlations in the
target electrons. It is. common to approximate the
P„eR/

~ r,. —r(, ) term by an effective potential p(r,.),
so that the eigenfunctions of H~ are product wave
functions.

In order to reduce 4(R, r, ~ ~ rz ) to a product
wave function, we introduce two assumptions: (i)
Assume that initially the total asymptotic wave
function @' is a product wave function, and (ii)
assume that Id /2M commutes with each term in
H. Each of these assumptions is an approximation.
In the case of the first assumption, correlations in
the target wave function are ignored corresponding
to the replacement of g, eR/( r, —r, ~by an ef.fective
V(r~), so that Hr and K~ are sums of single-
electron terms. The second assumption corres-
ponds to treating the projectile motion classically.
These a.re the weakest assumptions that we have
found that lead to the independent electron approxi-
mation.

The first assumption may be expressed in math-
ematical form by writing the initial asymptotic
wave function 4,. a.s

Z2

+ QRt (R(t), r (t))) dt

g t2 ~2
T exp

t 2M
I

Z
tr

2
g

'
t2 (

x, i. , Texp —— H&(t) dt
t

Z2

=n (t„t,) P n, (t„f,),
j=l

since each term in H now commutes. Here T is the
time-ordering operator. This factorization of the
evolution operator into a product of single-electron
terms is the crux of our development. Then, at
any point in. time,

2n(, t)e'= n,(-,f)y'(R) n,(-,t)Q,'(R, r,)

is a product of single-pa, rticle" terms.

III. PROBABILITY AMPLITUDES AND MULTIPLE
IONIZATION CROSS SECTIONS

The probability amplitude A' (f) that the evolu-
tion operator carries 4' into a, particular state 0
is given by the overlap of n(t, -~)4' with 4',
l.e. ~

x"(t)=(e )n(f, ) ~e'&.

If we choose the 0 ~ to be orthonormal" eigen-
functions of the asymptotic Hamiltonian, then the

may be represented as before by a product of
single-electron wave functions, and, at any time,

I

Z2

A"(t)=(d'. (R) [ d;(rt) ttt(t, — )
~

g"-1

Z2

+'(R """.)=&'(R) ~.I&~'(R r~).
j=l

(2) "d'(R) f d't(rt))
g=l

It is common to choose, for example, (Ie)'(R) as
a packet of plane waves sharply peaked about the
classical position R, = B+vt, and P&(R, r&) = Q&(r~),
an effective one-electron bound- state wave func-

Since the wave packet is sharply peaked about 8,
= B+vt, A' is a function of both impact param-
eter 8 and time t. Using the product nature of the
evolution operator, we have
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A' =(Q'(R) ~Q~(t, — ) Q'(R))

ZR

x ]$ ( P,. (r,.) ~
Q~(t, —~)

~
Q~&(r,.))

i=l

a', (t). (4)
gag

That is, the probability amplitude for the transi-
tion i-a for a system with Z2 electrons is
a product of single-electron probability ampli-
tudes [including the j= 0 term, which is
(Q"(R) Qz(t, . -~) ~Q'(R)), here simply correspond-
ing to straightline internuclear motion].

The square of this scattering amplitude,
tA't(+ ~) t', is the probability for scattering from
an initial state 4' characterized by a particular
impact parameter 8 to a final state 4'~ (replacing
o. by f). The total cross section for a beam of
particles, uniformly distributed over impact pa-
rameter, is found by integrating the asymptotic
transition probability over the impact parameter of
the projectile, namely, with A' t(+ ~) =A'~(B), —

Z2

B
(
a' t(B) ('. (5)

p=0

The integral over 8 corresponds to an incoherent
sum of probabilities for processes that are dis-
tinguishable; i.e. , the transition from B, is dis-
tinguishable from the transition from 82. This
incoherence corresponds to our classical notion
of a particle.

We note that the cross section for excitation of
a single electron s in this approximation" is given
by

22

into a final state, denoted by k, and 1- a',"(B)
is the probability of scattering into a final state
other than k. Here. k denotes either a bound or a
continuum excited state.

The probability for producing a vacancy in the
single-electron picture via excitation or ionization
is giv'en by

dk ia*"(B) i',

where the label S designates the state originally
occupied by the electron. The probability for not
producing a vacancy is l-P~.

Obtaining the expression for multiple-ionization
cross section is now a simple matter of specifying
and counting the final states with and without a
vacancy. In a particul. ar atomic shell 8 with a total
of N electrons, if the single-electron vacancy pro-
duction probabilities P~ are identical, then there
are („)possible ways to produce n vacancies with
a probability

N PI

where (f) is the binomial coefficient.
Thus if we consider a target with atomic shells

S=K,L, M, . . . , the cross section for removing
n, = k of the N, = K electrons, n2 = l of the N, = L
electrons, n~=mof the N, =Melectrons, etc. , is
given by

Pz &- Pz
t

X
L P '1—P

d'B la!'(B) I'

since Zz ~a',. t',=1 for all j. Correspondence of
this probability amplitude to a scattering ampli-
tude is discussed in Sec. IV. Conceptually, in our
classical treatment of the projectile, we assume
that there is a one-to-one correspondence between
the impact parameter and scattering angle of the
projectile. Thus summing differential cross sec-
tions over impact parameters is equivalent to a
sum over scattering angles.

In order to compute explicit cross sections for
multiple ionization, it is useful to differentiate
between. the probability that an electron is excited
to a particular state, and the probability that it
is not excited. Since each electronic wave function
evolves independently, we may apply unitarity to
each single-electron wave function. Thus ~a',.'(B) ~'

is the probability that the jth electron is scattered

x p m 1 —p +-m. ~ ~

The cross section summed over all final states,
except those in the K and L shell, is represented
by

z-a L

If one wishes to allow the single-electron probabil-
ities within a shell to vary, it is straightforward
to modify' the counting procedure.

IV. CONNECTION OF THE PROBABILITY AMPLITUDE A'f

TO THE SCATTERING AMPLITUDE f(0)

In Sec. III, total cross sections for multiple ex-
citation and ionization are expressed as an in-
tegral over impact parameters of the square of
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the probability amplitude A&~(B). Alternatively, a
total cross section may be computed as an integral
over scattering angles of the square of the scat-
tering amplitude f (8). Since we have had difficulty
in expressing multiple excitation and ionization
cross sections in terms of f(8) directly, we discuss
in this section in a standard fashion the relation-
ship between f(8) and A'~(B).

The connection between f(8) and A'~(B) is most
simply made classically, namely,

(8)

where 8 is the classical scattering angle for a pro-
jectile with incident impact parameter B inter-
acting via an interparticle potential V,(R). In order
to identify V,(R) and to justify the use of classical
relationships, we expand the quantum-mechanical
scattering amplitude in partial waves (ignoring
the unscattered contribution) according to"

f (8) = —g(2l + 1)e&2'&A',~P, (cos8), (9)

o =2n 8 'd cos8
1

(I+-,') ~A,~~'
1

B (A'~(B) I'dB,

assuming that the greatest contributions come from
large /. ThenP, (cos8) =—J,((l+ —,')8) with sin8=—8and

f(8) —= -ik dBB exp[2i5(l =kB)] A&&~» g, (kB8) .

(10)

This expression corresponds to summing' all
diffraction contributions of f(8) from various im-
pact parameters. In Fig. 1, the wave amplitude at

where"

A',~=(e;f
~

n'(+, )
~

e'*&

is the amplitude of the electronic state (4;~
~

in the
outgoing wave as R- ~. The internuclear distortion
of the scattering wave may be represented by the
phase shift 5„which m3y be determined from an
effective internuclear potential V, (R). Although

this potential determines the deflection angle of the

projectile, for heavy particles, where the deflection
is slight, it may be ignored (as we have done).
For heavy particles the effect of V,(R) is to con-
tribute an overall phase 5, to the probability amp-
litude, A' (B)= e"'rA', , with l =kB, so that the
two amplitudes" give the same total cross sec-
tions, corresponding to

FIG. 1. Scattering illustration.

B' is A'~(B')e&2~' ', where 6 is the phase dif-
ference between an unshifted wave and the true
phase at B'. Beyond the plane at Z=&; defining
the boundary of the scattering region we have

BA&f~ e2id &B&g (kB8 ) dBf (8)= ik-
0

where 4(B) corresponds to 5,
The classical relationship between f(8) and A&~(B)

follows upon using the asymptotic expression for
P, (cos8) [or J,(kB8)] and evaluating the above in-
tegral by the method of stationary phase. A', is
assumed to vary slowly in / (or B). The point of
stationary phase corresponds'4 to

d5)
2 ' = 8,

I

which, with l =kB, is the classical scattering con-
dition for a particle with impact parameter B to
scatter via2' V,(R) into 8. Thus 8=8(B), which we
assume for the present to give a one-to-one re-
lationship between 8 and B. After a little algebra,
the classical relationship given above between
(f(8) j' and (A&~(B) (' then follows.

In this development the scattering amplitude
f(8), corresponding to the transition of more than
one electron, is expressed in terms of the multi-
electron probability amplitude A'~(B). We have not
found a practical technique'@27 for computing f(8)
directly for multielectron transitions.

The validity of this picture rests on replacing
the sum over l by an integral, and assuming that
the quantum-mechanical diffract'ion, "P-l ', is
small compared with the scattering angle 8. For
heavy particles, impact-parameter studies" sug-
gest that most contributions to total cross sections
correspond to l =MvB-M (typically 2000 in atomic

f(8) =a(,f (( dB'e'" '~'A'~
0

1x . d&'exp(iqB'cos&'(),
2K 0

where the momentum transfer is q =k8. The in-
tegral over P' corresponds to a sum of wave
amplitudes from contributions about the annulus at
fixed B' The .term in the brackets is J,(qB'). For
heavy-projectiles, B—= B', and
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units). The diffraction requirement depends on the
choice of the internuclear potential V,(R), which
determines 8(B). For inner-shell processes, it
is conventional to regard'0 V,(R) as a screened
Coulomb potential, whence 8= d, /—B, where d,
=Z,Z, /E is the distance of closest approach in a
head-on collision (Z„E are the charge and energy
of the projectiLe, and Z, the screened nuclear
charge of the ta.rget at the collision site). Thus for
screened Coulomb scattering it is required that
8& $= (MvB) '= 8v/2Z, Z, . Such a simple esti-
mate" "suggests that the classical approximation
is valid at low velocities, ~~ 2Z,Z, .

V. DISCUSSION

The region of validity of our independent electron
approximation corresponds to the limitations of
the approximations used, namely, classical treat-
ment of the projectile, discussed in Sec. IV, and
neglect of correlations. Although we do not under-
stand all possible effects due to correlations,
some restriction is apparent. The effect of
ignoring correlations in the initial unperturbed
wave function is tied to the validity34 of the uncor-
related Hartree- Fock approximation. " Correla-
tions in the final-state wave functions, discussed
below, may be important" in some circumstances.
For applications cited" we distinguish between
inner and outer atomic shells. During the inter-
action, target correlations in inner shells are
neglected. Quter-shell activity is treated using
sum rules" (illustrated at the end of Sec. III) so
that it is effectively ignored. In our picture we also
separate inner-shell excitation processes from de-
excitation processes, i.e. , the effects of final-
state rearrangement are considered apart from the
excitation process. This corresponds to the sudden.

approximation where the target wave function. is
frozen, except for those electrons directly af-
fected during the interaction.

Electron correlation effects in the final state,
following the passage of the projectile through the

target, must be small in order for our method to
be valid. Shakeoff and shakeup at high energies are
examples'" "of final- state correlation contribu-
tions corresponding to rearrangement of the target
wave function occurring after the projectile has in-
teracted with the target. In:photoabsorption ' this
effect appears to be the crucial determinant of

. multiple excitation and ionization. However, the
probabilities for multiple excitation and ionization
due to this final-state rearrangment are often
smaLL, """i.e. , much less. than 1, particularly for
electrons in inner atomic shells. In contrast, when
the projectile charge Z, is not small compared to
the target charge Z„direct Coulomb multiple-

ionization probabilities"'~' are relatively large.
In applying our methods one should ensure that
direct Coulomb ionization probabilities are large
compared to correlation probabilities. For ex-
ample, in atoms between Z, = 20 and Z2= 40 the
probability of L-shell ionization due to shakeoff
following K- shell vacancy production has been
estimated" at less than a few percent, that is, an
order of magnitude less than the probability ob-
tained"'" via direct, Coulomb ionization by 30-MeV
oxygen ions.

The scattering interaction itself may also pro-
duce correlations which we have ignored in the
independent electron approximation. Calculations
which go beyond the independent electron approxi-
mation now exist: for example, Glauber calcula-
tions4' and close-coupling calculations with (or
without) pseudostates. ~ These include eikonal cal-
culations which employ a phase integral over an in-
terparticle potential, mixing the wave functions of
the projectile and target so that the resulting wave
function is no longer a product of single-electron
wave functions. In some cases (for single-electron
excitation and ionization '), the mixing terms
contributing to the scattering amplitude f(8) can
bt: separated from the single-particle terms and
studied separately. The effects of these coupling
terms seem to be more evident in differential
cross sections than in total cross sections.

In our independent electron approximation, the
total wave function was presented using a simple
product wave function ignoring the identity of the
target electrons, e.g. ,

Z2.—

~'=4'(H) .i. ~ 4', (H, r, ).
g=l

This corresponds to a Hartree wave function for
the multielectron target. Our development is
unchanged, however, if an antisymmetrized pro-
duct wave func"'ion is used, namely,

,'2O'= Q'(H)A
Q(

P'j(H, rq),
j=l

where A is the antisymmetrization operator. Now
4' corresponds to an antisymmetrized sum of sin-
gle-particle wave functions. As before, each term
evolves independently so that the resulting prob-
ability amplitude is an antisymmetrized product
of single- electron probability amplitudes. In this
case, 4 corresponds to an uncorrelated Hartree-
Fock wave function.

The expression for multiple-excitation. and ioni-
zation cross sections in Sec. III is defined in terms
of the probability P(B) for the transition of a single
electron. A variety of classical '~' and semi-
classical methods33'" for computing P(B) are avail-
able. For example, . the probability for ionization
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of inner-shell electrons has been expressed ' and
tabulated" in the semiclassical Coulomb approxi-
mation using first-order perturbation theory. The
multiple-ionization cross section computed' using
these first-order probabilities correspond to some
form of higher-order perturbation theory since the
first-order contribution to multiple ionization is
zero when the initial and final states are ortho-
gonal. Also, the single-electron probability P(B)
does not correspond to the excitation of a single
electron with no change permitted in the wave
functions of the other electrons, but rather P(B)
corresponds to the probabilityof exciting a parti-
cular electron with an implicit sum" over all
possible final states of the other electrons, as
demonstrated in Sec. III.

This independent electron approximation xeduces
a many-body scattering calculation to a simple
statistical distribution of single-electron prob-
abilities. Since the binomial distribution itself
is specified, the remaining problem is to determine
the single- electron probabilities. Under some con-
ditions, one may. use first-order perturbation theo-
ry. 4' In other circumstances, where approximate
calculations of P(B) are not applicable, it may be
useful to fit'"" observed distributions with an
empirical probability P(B). In some instances, it

is reasonable to approximate P(B) by P(2f), where
B is a value of B contributing strongly to the total
cross section. For example, if P~«1, and if
Pr(B) falls to zero within the interval where

P~(B) —= P~(0), corresponding to B=O, then

Ok, = 2nBdB P~ B 1-P~ B

x P~B ' 1 —P~B

PLO ' 1PLO ™2rBdB P k

[Ps(0)] '
[ I - Pz(0)] 'v, .l

The empirical vlaue of P(B) may then be compared
to direct observations of the impact-parameter de-
pendence of vacancy production cross sections,
providing experimental tests of the independent
el'ectron approximation.
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