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Effect of gravity on the Rayleigh linewidth near the critical point
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The influence of Earth's gravity on measurements of the Rayleigh linewidth I of a simple fluid near its
critical point is investigated in detail. Special attention is given to the scaled linewidth I ~. From a number of
different viewpoints it is found that gravity significantly affects linewidth measurements in the critical region.
Small errors in beam centering render available experimental data useless for the purposes of distinguishing

between modern theories, as variations in beam height spht the universal curve of the scaled linewidth into a
single-parameter family. .The mode-mode coupling'and decoupled-mode theories, which in the gravity-free case
predict slightly different results for I and I ~, predict qualitatively different behavior in the dependence of"I
on height and scattering angle when gravity is taken into account. When the relative deviation of I * from its
gravity-free uniform fluid value is plotted versus the reduced correlation length, it exhibits distinct patterns
characterizing the different theories used to compute it. By comparing these patterns with the results of
carefully controlled experiments, gravity should prove to be a useful tool for eventually selecting a correct
theory.

I. INTRODUCTION

When a simple fluid is near its gas-liquid crit-
ical point the spontaneous density fluctuations be-
come so large that illuminating light is scattered
strongly in all directions. This phenomena was

'discovered over 100 years ago and is called criti-
cal opalescence. Besides great intensity, the
scattered light exhibits another anomaly: The
width of the Hayleigh (central) line of its spectrum
narrows, approaching a small nonzero value, as
the critical point is approached. This is related
to the fact that near the critical point the lifetime
of density fluctuations becomes very long, which
is commonly referred to as "critical slowing
down.

Studies of the Rayleigh linewidth I" reveal valu-
able information about the dynamic properties of
a fluid in the critical region. During the last ten
years direct measurements of I' became possible
with the development of high-resolution light beat-
ing spectroscopy. " Theories were proposed and
modifications were introduced so that now we are
able to explain the observations fairly well. One
of the most dramatic results is that for most cases
the scaled linewidth I'* of simple fluids as well
as liquid mixtures falls at least approximately
on a single universal curve. It should be noted
that, on occasion, considerable deviations from
the universal curve have been observed. '

Recent theories of the linewidth differ from one
another only slightly in the nonhydrodynamic re-
gion, which is located so close to the critical point
that the usual assumption that long-wavelength
fluctuations obey linear hydrodynamics breaks
down. Not surprisingly, this is the same region

where the gravity-induced density gradient, which
results from the singular behavior of the compres-
sibility in the critical region, is known to have a
strong influence on critical phenomena.

In two previous investigations we found that in
the critical region of a fluid the effect of gravity
on measurements of the angular distribution' and
the turbidity of the scattered intensity is signifi-
cant. Recently, Kim, Henry, and Kobayashi ex-
amined the effect of gravity on the Rayleigh line-
width and found that it is important here as well. '
They use a partial moment approximation to det-
ermine approximate deviations from the Loren-
tzian line shape due to the finite beam diameter
of the incident light. This method is applicable
when the influence of gravity is relatively weak,
so that deviations from the Lorentzian line shape
are small.

The purpose of this paper is to describe some
alternative approaches for using gravity effects to
distinguish between different theories of the Ray-
leigh linewidth. To facilitate comparison and in
the interest of brevity, we consider the same the-
ories of the linewidth as Kim et al. , with the dele-
tion- of a minor inconsistency. Thus this work
complements theirs.

A number of geometrical considerations are
carefully taken into account. We find that the in-
fluence of gravity on linewidth is sufficiently great
that the practical experimental uncertainty in lo-
cating the height where the critical density occurs,
as well as the finite beam diameter, make it im-
possible to distinguish which theory, if any, best
represents the available experimental data. Be-
cause of gravity we also find that deviations from
the so-called universal curve of I'* are inevitable,
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regardless of the theory used to describe I"*. Of

major significance is the deviation from the grav-
ity-free case of the scaled linewidth associated
with each theory. Our studies indicate that each
theory is characterized by a deviation that has a
distinct pattern, independent of the scattering geo- .

metry, beam diameter, or sample. By distinguish-
ing between these patterns, gravity may play an
important role in eventually selecting a correct
theory. We conclude that a scattering geometry
where the incident beam is. directed vertically,
parallel to the density gradient, is most practical
for examining these deviations. The vertical beam
geometry minimizes the effects of multiple scat-
tering and eliminates beam bending (due to refrac-
tion). It is insensitive to small variations in the
average sample density and location of the height
where the critical density occurs. Finally, in the
vertical beam geometry, knowledge of the inten-
sity profile or beam diameter of the incident beam
is unnecessary.

II. FORMULATION

I's = (X~/pc~)q'(1+ x '), (4)

H, (x) =-,'[1+x'+(x'-x-')tan-'x]. (6)

The monotonically increasing function H(x) here
represents the modifications which result from
considering the dependence of the shear viscosity
on q and m.'

In Ferrell's decoupled-mode" (DM) theory the
critical contribution is

I c (AT/6' a )q3[X0(x)/x ],
where

where x =q$, Xe is the background contribution to
the thermal conductivity, - c~ is the specific heat at
constant pressure, and p is the density of the fluid.

When the OZ correlation function is assumed,
Kawasaki's mode-mode coupling' (MMC) theory
predicts for the critical part of the linewidth

I' =(k T/6', )q'[K,(x)/x']H(x), (6)

where q, is the shear viscosity and

For a uniform fluid the scattered intensity per
unit solid angle and per unit frequency is given in

the Lorentzian form as

1+ ln —
~ ( +7 xeff

15m2q, q 1+x

(8)

8(Q, u)) = (1/w)I(Q) I'/[((u —(u,)'+ &'],

where ~, is the frequency of the incident laser
light. I' is the half width of the intense central
peak of the scattered light and the diffusive decay
rate of the local density fluctuations.

'

l(Q) is the
angular distribution of the scattered intensity and

is given by the Ornstein-Zernike (OZ) theory as'

I(Q) = CKr sin'P/(1+ q'P), (2)

where Xr is the isothermal compressibility, $ is
the correlation length, g is the angle' between the
directions of observation and polarization of the
incident light, and C is proportional to the volume of
the fluid. The scattered 'wave number is re-
lated to the refractive index at tbe critical point,
n„ the vacuum wavelength of the incident light X

and the scattering angle 8 by

q = (4w/X)n, sin-,'0 .

Two modern theories of the decay rate, or Bay-
leigh linewidth, have been reviewed in much de-
tail by, Swinney and Henry. .

' Here we adopt the same
notation and the same numerical values for all
physical quantities. The total linewidth can be de-
composed into the sum of a background contribu-
tion and a critical part which arises from the path-
ological fluctuation dynamics in the critical region.
Following Swinney and Henry, we also assume that
the background contribution to the total linewidth
can be written in the OZ theory as

In the above g,'" is the effective shear viscosity,
g, is its background contribution, g and q~ are
parameters characterizing the fluid, and ~(x) in-
creases monotonically with x.

Note that we do not include the relatively small
vertex correction" to the MMC theory. In neither'
the MMC nor the DM theories do we include cor-
rections due to a modified OZ theory of the pair
correlation function. This omission is based not
merely on the fact that this correction itself is
comparatively small, but also on the fact that it
involves a reasonable choice of the critical expon-
ent q, as well as a choice of one of several pos-
sible functional forms of the modified correlation
function, each of which gives both a quantitatively
and qualitatively different modification factor to
I"."" Furthermore, such a correction to I" is
only meaningful when it is consistently applied to
the calculation of Kr (in terms of $), I(Q) in Eg.
(2), and I's in Eq. (4). Although Kim et al. have
included such a correction, they have not done so
consistently. '

The study of the effect of gravity on the linewidth
is carried out along the same lines as our earlier
work on the angular distribution and turbidity. "~
Again we use the simple equation of state" for a
fluid in the critical region

8P =A" +6m~ p ~'-
Bp r

where A and B are constants for a given fluid, y
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and 6 are the usual critical exponents, and the re-
duced temperature & and density p„are defined by

= (T —T )I&, p, = (p, —p)Ip, (10)

The subscript c always indicates evaluation at the
critical point. Using optical measurements, Wil-
cox and Balzarini have shown that this equation
generates good density profiles for xenon in the
laboratory. " This is an essential requirement for
any candidate employed for the study of gravity
effects. The profiles generated by Eq. (9) are
quantitatively as well as qualitatively similar to
those of the linearized equation of state."

The effect of gravity on the scattered spectrum
is computed by assuming that the Lorentzian line
shape is locally valid for small, relatively homo-
geneous volume elements. The contribution of a
horizontal fluid layer to the spectrum is thus found
by evaluating the density in the layer from Eq. (9)
and the barometric equation, and using this value
of the density to evaluate the thermodynamic quan-
tities in Eq. (1). Details of this procedure are to
be found in our previous papers. '

Because of gravity, the shape of the composite
spectrum that arises from integrating the local
scattered intensity over a finite height in a fluid
is no longer Lorentzian. Rather, it is a contin-
uous weighted sum of Lorentzians having a con-
tinuously varying linewidth. Thus, when the in-
fluence of gravity is appreciable, the composite
spectrum cannot be closely approximated by a
single Lorentzian line. Here we make no attempt
to study the detailed shape of the spectrum.
Bather, we examine the behavior of the linewidth,
defined as half the frequency spread at which the in-
tensity is half maximum, in the critical region. In
all cases the integration over height is carried
out numerically.

Only the Rayleigh peak of the scattered light is
taken into consideration; the contribution of the
two inelastic Brillouin peaks to the total intensity
is negligible within the temperature range where
the gravity effect is significant. For example,
Ford et al. have observed that near the critical
point of carbon dioxide

I~/2' =0.542@ "2
where I~ and I~'are the intensities of the Rayleigh
and Brillouin lines, respectively. "

lated at the critical density p, . In practice this
procedure is valid only when the light scattering
occurs at the precise height in the fluid (say z =z,)
where the critical density occurs (p= p,).

For temperatures close to T, a strong density
gradient will develop throughout the fluid due to
the coupling of the Earth's gravity with the large
isothermal compressibility in the critical region.
Only within a small layer of the sample will the
density-be close to p, . As T, is approached from
above, the density gradient diverges at z, and the
layer becomes vanishingly thin. Regarding a finite
sample of the fluid as a whole, the effect of ap-
proaching the critical point by lowering T towards
T, is offset by the tendency of the density in most
of the sample to drift away from its value at the
critical point. The net result is twofold: First,
local thermodynamic quantities vary strongly with
height z; second, and more significantly, the sin-
gular nature of the critical point is mitigated by
gravity.

The dependence of the linewidth on height I'(z)
occurs through its dependence on local thermo-
dynamic quantities and has been studied carefully
by Kim et al.' W'ith them we find that, because of
slight differences in curvature in the variation of
linewidth with x, I'(x), the MMC and DM theories pre-
dict different patterns of F(z) (see Fig. 1). By
using smaller modification factors for both theo-
ries, we obtain corresponding smaller curvatures
in I'(x), and hence slightly different results for
I'(z). In contrast to their work, we find that the
single minimum of I'(z) generated by the DM theo-
ry occurs exactly at z =z„and that the double
minima generated by the MMC theory are posi-
tioned closer to z =z, . It should be mentioned that,
in the absence of the shear viscosity dispersion
correction, the MMC theory also yields simply a
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III. RAYLEIGH LINEWIDTH

To date linewidth data have been compared with
the MMC and DM theories, Eqs. (5)-(7), possibly
with some other minor modifications. The experi-
mental fluid samples are assumed to be uniform
so that all thermodynamics quantities are calcu-
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FIG. 1. Reduced linewidth I"(z)/I'tz~) vs z -z~ for
CO2 at T —T, = 0.001 C . The MMC theory predicts that
the minimum of I'(t) does not occur at z =z . The DM
theory predicts that the minimum always occurs at z~.
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FIG. 2. Linewidth of CO2 at 8= 90 vs x =q (, froIn the
DM theory for four values of z -zc (in cm): (a) 0.0;
(b) 0.01; (c) 0.03; and (d) 0.05. The corresponding re-
sults for the MMC theory are given in the insert.
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single minimum.
Because I'(s) is a rapidly varying function of

height, a small experimental error in the loca-
tion of z, will produce a considerable alteration
of the curve I'(x). This is shown in Fig. 2 for
carbon dioxide with scattering angle 0 =90 . For
xenon the effect of gravity on 1 (x) will be larger,
and, as a rule, for smaller 0 the effect is larger.
Examining Fig. 2 leads us to conclude that the in-
fluence of gravity coupled with possible errors in
locating z, makes it extremely difficult to compare
the MMC and DM theories simply by inspecting
the curvature of experimental I'(x) plots in the
critical region. A slight error in z, can make
an MMC plot look like a DM plot, or vice versa.

Uncertainty in the experimental determination
of z, is not the only complicating feature. Another
practical consideration is the finite diameter of
the incident laser light. The observed spectrum is
the result of scattering throughout the entire
cross section of the incident beam which simul-
taneously illuminates layers of varying density
gradient, and hence varying I'(z). For an incident
laser beam with diameter D the intensity profile
may be expressed in a Gaussian form,

I(x) =Io(2n' D) 'exp[-(x/~D) ], (ll)
where x is the distance from the beam axis and I,
is the incident power. I(x) is employed as, a weight-
ing function for the scattered intensity 8(Q, ~) in
performing the integration over height. This pro-
vides us with a spectrum and a l'inewidth that de-
pend both on the height of the beam axis and on

IV. SCALED LINEVfIDTH I

The scaled linewidth, defined as
I'* = (Gvq~ /k~ Tq') I", (Is)

is regarded as a better tool than 1 itself for com-
paring different theories of 1 . When l * is plotted
as function of x, the MMC theory predicts a single
universal curve for all fluid systems independent
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FIG. 3. Relative change of the linewidth RD vs the
scattering angle g for a beam of diameter D= 0.01 crn
centered at z =zc.

the beam diameter as well.
For the special case of a laser beam of diameter

D centered exactly at s, we can determine quan-
titatively how much gravity will affect the meas-
urement of I' at a scattering angle 0 by computing

RD(8) = [I'(8,D) —I'(8, D = 0)]/I'(8, D =0) (12)

in an obvious notation. Plots of RD vs 8 are shown
in Fig. 3 for xenon when D =0.01 cm. The influence
of gravity on I' is found to be appreciable for scat-
tering angles 0 &40 when T is close to T,. In car-
bon dioxide the gravity effect is smaller and we
get similar curves of RD(8); but with smaller
values of ~Rn —I

~

at all temperatures and angles.
Figure 3 also provides a comparison of the two
theories: RD is monotone decreasing with 8 in
each theory; the DM theory yields a positive de-
finite R~ in conformity with its. single minimum
for I'(s) at z, .

For larger values of D the light beam encounters
a greater range of the density gradient so that
more of the illuminated sample is further from the
critical point, yielding larger values of R~. In a
more realistic situation neither D nor z —z, van-
ish, and the effect of a beam axis displaced from
z, must also be considered. When ztz, the line-
width is less sensitive to variationa in be'am diam-
eter thari z, since the density gradient is greatest
at zc
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FIG. 4. Scaled linewidth I'*(x) from the DM theory
when z —z = 0.01 cm.

of the particular thermodynamic path or scattering
angles. For the DM theory it is evident from the
expression for g~", Eq. (8), that I'* is not simply
a function of the combined variable x = q$, but also
exhibits a slight dependence on g and qD, a param-
eter characterizing the sample.

In practice, I'*(x) is derived from the linewidth
data with background contribution subtracted. In
a similar way, we simulate the gravity-affected
I'* by first calculating the corresponding I"~ as the
experimental linewidth and then subtracting from
this the gravity-free background I'~ associated
with a uniform fluid of density p, :

I'~~(x) = „~,' [I'o(x) —I's(s =z,)],
k~ T,q

(14)

where g~ and x are assumed to be taken at z = z, .
The effect of gravity on the I'*(x) curve so ob-

tained is evident from the fact that only the cor-
relation length $ of the combined variable x =q$
is subjected to change along the density gradient,
while another factor,

q = (4m/&)n, sin —,'8,

depends on scattering angle, wavelength, and the
refractive index, which may 'vary from fluid to
fluid. Thus it is not surprising that an error in
locating z, by a small amount, say, z —z, =0.01 cm,
will produce considerable change in the universal
I'*(x) curve. Figure 4 illustrates this situation.
Results from the DM theory are shown for carbon
dioxide and xenon, and for both cases two angles
are used. The scatter of I'*(x) curves is c[uite
large.

The comparison of the two theories of I'* under
the influence of gravity is shown in Fig. 5, where
the relative deviation

R,*=[F~(x) —F~(x,)]/F*(z,)
is introduced. As in the ease of I'(x) shown in
Fig. 3, the MMC theory predicts smaller devia-
tions from the gravity free I'*(x) curve, and yields

40 I I I I I I I I I I I I II

50—

Ro—

MMC THEORY

--- DM THEORY
I' e-~a.

lp—

ao i i. i (i'll
09 lP

X

FIG. 5. Relative deviation of I'*, R* (x), for CO2
with z —z,= 0.01 em.

negative values of R,*(x) for some cases. In gen-
eral, a large modification factor H(x) generates
a large upward curvature for I'(y} and an increas-
ingly negative R,*(x) for selected regions of x.

Actual experimental results do show deviations
from the so-called universal I'*(x) curve. In the
hydrodynamic region (x«1),' these might be at-
tributed to the errors in the background contribu-
tion which becomes predominant for temperatures
far from T,. Gularri and Pings find that by slightly
adjusting the thermodynamic quantities involved in
I'~ of ethane, the agreement between theory and I'*
data is improved considerably in the region x«1,
but not in the critical region. " The systematic
and reproducible deviations in the nonlocal hydro-
dynamic region (0.1.&x&1.0) observed by Schmidt
and Barker' might suggest that either I', I", or
both, must be modified to produce the observed
q dependence. The weak q dependence of I" in
the DM theory is too small to explain these devia-
tions. The effect of gravity is not expected to en-
hance the deviations until the critical region (x
)1) is reached. Schmidt also finds that systematic
deviations become more pronounced in the critical
region. ' Gravity may play an important role here.

The MMC and DM theories may be compared ef-
fectively only in the region where x&10. Reports
on I' (or I'*) in or near this region are sparse
and subjected to considerable uncertainty. Both
absolute values and relative curvatures of I"(x)
or I'*(x) in both theories have been compared with
experimental results. Observations'"" seem to
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FIG. 6. Relative deviation of I"* from the MMC
theory -for xenon at 0=30 . Plots for six combinations
of z —z, and D are shown (all in cm).

the same pattern is obtained for a sample of car-
bon dioxide when the same theory is used. The
only change is the peak value of R* which is re-
lated to the "sensitivity" of a fluid to the gravity
effect. For example, the peak value of R,* in the
MMC theory, with 9 =30', is 30/p for xenon and
18%%uq for carbon dioxide.

Difficulty arises in using I'(z) and R, ~ to test
the theory due to the uncertainties in z, z„and
D. This difficulty may be avoided if we choose
a different experimental geometry where the light
is incident from below and traverses the fluid of
sample height h vertically, parallel to the density
gradient. The characteristic pattern of R„*(x), the
percentage change of I'*(x), is the same as that
of R,*~(x) with the exception of larger peak values.
Figure 7 illustrates some of the results.

It is a conse(juence of the fact that only a small
layer near z, contributes most to the scattered in-
tensity 8(Q, ~), as well as the fact that the height
(z} asymmetry of the density gradient p(z) is in-
significant, that the error in determining h and
locating z, will have negligible effect on R„*. We
have carefully examined the case of xenon and
determined that for h =0.1, 0.5, and 1.0 cm, varia-
tions of z, by +0.1A, produce almost unnoticeable
changes in R„* for all angles.

imply that the MMC theory with modifications is
better than the unmodified original theory of Kawa-
saki, ' i.e., the data shows upward curvature of
I'(x} or I"*(x}in the critical region. Swinney and

Henry suggest that the DM theory might be bet-
ter than the MMC theory in their analysis of:i *(x)
curves. ' The results are not conclusive. More
data is needed in the critical region, especially
for x)l.0. Furthermore, accurate data of q, (e)
is needed in this region for better reliability.

From Fig. 5, it is found that R,*(x) plots ex-
hibit different patterns for the two theories, as
is the case for I'(z). Instead of examining the ab-
solute values or the relative curvature of I' (or
F*), which may be affected to an uncertain extent
by gravity as well as other ambiguities, it is
more practical to test theories by observing the
shapes of R,*(x}curves with gravity taken into
consideration.

Figure 6 shows the percentage deviations for
more realistic situations. The results of several
combinations of z —z, and beam diameter D are
presented for a sample of xenon with 8 =30' in the
MMC theory. Although the effect of assuming
DWO is to introduce deviations for the case of
z =z„conversely it reduces deviations from the
case of a' point light source when-z+z, . The gen-
eral features of R,*&(x}are almost the same for
various combinations of s and D. Furthermore,

50- I I I I ] I I I I I I I

40—
(a)
(b)

30 (C)

(d)

h (crn}

IO—

0

-t0—

pO I l I I I II
0.3 I.O

I I I I I I I I

3.0 IO.

FIG. 7. Relative deviation of I'* from the MMC theory
for xenon at 0=90'. Plots for four values of sample
height h are shown.
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In the general case, both theories predict a
small, weak, 8-dependent R* for large angles, say
V5 ~0 ~180 when gravity is considered. This can
be roughly seen in Fig. 3 which applies only to the
limited case where the beam is centered at z, .
Furthermore, R* at large angles is comparatively
less sensitive to changes in z, D, and h. Thus,
for the purpose of reducing gravity effects on I',
large-angle measurements are suggested. Alter-

natively, if plots of R* vs x are used to distinguish
between different theories, measurements at
smaller. angles are considerably more useful.
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