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The nonlinear equation governing low-frequency drift waves is considered. Utilizing the linear dispersion
relation for such waves, it is shown that there exists a parameter range for which the drift waves are governed
by a modified Korteweg—de Vries equation having a solitary solution in one and two dimensions. The one-
dimensional solitons are unstable with respect to perturbations in the direction perpendicular to their motion.

I. INTRODUCTION

Solitary solutions of the Korteweg—de Vries
(KdV) equation and its modified forms has been
of considerable interest for the last few years.*
Beside the many interesting mathematical proper-
ties of these equations, they have been found to de-
scribe a wide range of one-dimensional nonlinear
waves which are of considerable physical interest,
including shallow water waves, ion acoustic waves,
Alfvén waves etc. Experimental observations of
solitons have been reported® and are supported by
computer simulations.

The importance of the KAV equation in plasma
was emphasized by Washimi and Tanuiti who have
shown® that ion acoustic waves are governed by the
KdV equation and that one should expect ion acou-
stic solitons. Starting from the fluid equations of a
plasma, expanding n#, v,, and § (where # stands for
the density, v, for the velocity in the z direction,
and Y is the potential) in a small parameter ¢,
stretching the independent variables, and equating
coefficients with the same power in €, one arrives
at a set of equations which can be reduced to the
KdV equation. Using a somewhat more generalized
perturbation method (named reductive perturbation
method by Taniuti and Wei?) one can also show that
Alfvén waves are governed by a modified Korte-
weg—de Vries (MKdV) equation having soliton solu-
tions. Using this reductive perturbation method,

a large number of nonlinear waves have been in-
vestigated. The reader is referred to a recent re-
view of this approach for more details.®

Extensive investigations of Langmuir solitons
using computer codes have revealed that solitons
have remarkable stability properties with regard
to perturbations in the direction of their motion.
However for perturbations in a direction perpen-
dicular to their motion the solitons seem to be un-
stable.® That ion acoustic solitons are stable to
perturbations in the direction of their motion has
been known for quite a while,” and the higher di-
mensional stability problem has recently been

looked at by a few authors,®:°

In order to investigate analytically the stability
properties of solitary solutions of the KAV equation
and its modified forms, it is convenient to use an
approach for deriving these equations somewhat
different from the one mentioned above. This ap-

-proach uses the linear dispersion relation as an

ingredient in deriving the KdV and MKdV equations,
and has been extensively used.!® This approach
will be explained and used in this paper.

The use of the dispersion relation approach also

" has the advantage of hinting at waves which might

be described by a KdV or MKdV ~equations. One
can expect that waves having dispersion relations
similar (in some parametric range) to waves which
are known to be described by KdV or MKdV equa-
tion could also be described by such equations. As
an example we consider low-frequency drift waves.
As is well known, the dispersion relation for such
waves is

w? - ww,,-K2CZ=0,
where Cy=(T,/m;)"/? is the sound velocity,

K,T,n}
Wxe = €0

eB, n,’

v T, and T; are the temperature of the electrons and

ions, respectively, K, and K, are the wave num-
bers in the y and z direction, respectively, »/ is
the x derivative of the x-dependent density, B, is
the z directional uniform magnetic field, and we
assume that the drift waves are moving in the yz
plane. When C2K 2> w%,, the two branches of
solutions turn into the ordinary ion acoustic waves.
As one moves toward smaller K, domain, the up-
per branch of the dispersion relation departs from
the acoustic mode and approaches w_, at K,=0. In
the intermediate region between these two limits
one may expect that the nonlinear equation govern-
ing these drift waves might not be too different
from the equations describing ion acoustic waves.
Now since we know that ion acoustic waves are de-
scribed by the KdV equation, we expect that drift
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16 DRIFT SOLITONS AND THEIR
waves in what we call the “intermediate K, range”
might also be described by the KdV or MKdV equa-
tion.

Motivated in this way we consider in this paper
the nonlinear equations governing low-frequency
drift waves. Using the dispersion approach, we
rederive in Sec. II the KdV equation for ion acou-
stic waves moving in one dimension, and the MKAV
equation for ion acoustic waves moving in a two-
dimensional magnetized plasma. Establishing in
this way the procedure for deriving the relevant
equation we turn in Sec. III to consider drift waves.
We show that they obey a MKAV equation and then
proceed using the stability analysis introduced by
Kadomtsev and Petviashvili'! to show that one-di-
mensional solitary solutions of the MKdAV equations
describing drift waves are unstable with respect to
perturbations perpendicular to their motions.

II. KORTEWEG-de VRIES EQUATION FOR ION ACOUSTIC
WAVES

We start from a fluid model of magnetized plas-
ma

MLT- @¥)=0, (1)
ot

W - = e - -
§+(V'V)V——%V¢+\Q,~sz, (2)

where we have assumed that E == —V;z/), and that the
magnetic field is in the z direction, Z is a unit vec-
tor in the z direction, ©;=eB,/m, B, being the
magnitude of the magnetic field, and v is the ion
flow velocity. Furthermore we assume that the
ions are cold and that the electrons follow a Boltz-
mann distribution. The Poisson equation will thus
read

ﬁz(p - 4173(” -n, eelb/ Te), v (3)

where # is the ion density, #, is the unperturbed
plasma density, and T, is the electrons tempera-
ture.

For ¥, n;, n, we assume the following form

Y, 1) = P, @F KypEaemot) @
1y, 0y 1) =0+ 0ny, @ KK 0D,

Assuming ey/T,< 1, we find
on,~ny,(ed,/T,).

From Eq. (3) we have
(= V2 sdne?n,/T)b(r,t) = 4redn, et Ksw+Kaz-wt)  (5)

Linearizing Eq. (2) we obtain for (w/®;)*<1

0. e 9y
*TmQ, 8y’

(6a)
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L. ew 8y
vy~zmQ?@, (6b)
_ .e
w’l}z—-—lW 'a—z (Gc)
Linearizing Eq. (1) and using Eqs. (6) we find
P (KK z-wt) _ Mo € w_zéz_l’b_ﬂ
dn, et Ky ke = (Qf 59?527 (7
Inserting (7) in (5) we find
- CZ wZ 32¢ aZZp
(—K%VZ+1)¢=F§<§?5§7—@ s (8)

where A, =(T,/4me*n,)/ ? is the Debye length.
In the limit K223« 1, (w/Q;)?< 1, we have as a
first approximation

w%p:-C';’ZZ;”. (9)

Inserting this relation in (8) we find

- 82 32
w2(_ )\%V2+1)¢|=—C§3—Z§ (1 +1’Z—5)—2> I,D, (10)
where 7,=C,/Q,;. Assuming that terms like
MK 2v % K2 are negligibly small we find

_('ri,+7tf,)

2

wC,K, [1 3

7\2
K3-2bicy). (11)
The corresponding equation in terms of the vari-

ables x and ¢ applied to Eq. (6c) will result in

e 9y _ w, rZ+r2) 8%v, A} 83vz:|
%SE—CS[ oz 2 9z0y2 " 2 8z° (12)

Inserting this result in the z component of Eq. (2)
we find

2 2 3 2 3
E;)_tz* ”Z% +Cs [aa_z: L ”5 = aiaz;zz +l22 aa:f]
(13)
This is the result of Zakharov and Kuznetsov.®
Considering motion with respect to a coordinate
system moving with the sound speed C, and de-
noting

u=2vz - Y
) T
=_ % + _ Wp;t
=%, TTa

where wp; is the ion-plasma"frequency, we find
du  du du 8%u
et =

Bu 2% 14
of oz 08z° 078y° (14)

This is a modified Korteweg—de Vries equation.
For a one dimensional system moving in the z di-
rection the right-hand side vanishes and we have
the KdV equation for ion sound waves.
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III. DRIFT SOLITONS

Having established the procedure for obtaining
nonlinear equations through the use of linear dis-
persion relations, we proceed to derive a nonlinear
equation for drift waves. Customarily, we assume
that the unperturbed density is ¥ dependent and the
wave is propagating in the yz plane. We proceed

-as in Sec. II; however, the continuity equation will
now have an additional term including the deriva-
tive of n, with respect to x. Instead of Eq. (8) we
now have

2o zwaaz/) w? 9%y 8%y
(25924 = (Q'. P -5%), @9

where

1 dn,

oA =E—
n, dx

Considering the intermediate parametric range

NK2<1, (0/9;)2«<1
and
WK, \? w aK,
(ﬂiK) «<1, Q K: «< 1.

We have as a first approximation w?=—
9z2%), Inserting this in (15) we find

= 0y, 8y 0y
w2_x2v2 = 2 2 hilih
(=2A3v241) c? (ar”azayJ'T”azZasz'azz ,

ci(%y/

(16)
and the dispersion relation will read
DL A2 C,7yQ
wzCus[ ———————(yH; ») K2 ——22K§]+——~—32H K,.
| (17)

The corresponding equation in terms of the vari-
ables x and ¢ applied to Eq. (6c) will result in

e’ l:avz+owy v, (r3+13) 9%y, +A_z 831){]
m 9z 9z = 2 9y 2 9z0y°%" 2 09z°
(18)

Inserting in the z component of Eq. (2) we get,

9v, vy 20 c. (3115 ary, dv,

Bt Ve *Cs (5t vy

(r3+23) 830, 13 9%,
+ H2 Dazay 2 9z 7)=0. (19)

Transforming to new variables

ozr,,t

z—~z-Cgt, y-'y-Cs——z—

and defining u, y, z, and ¢ as in Sec. II we find

3

L (20)

ot 9z 9z° 929y
which is the modified Korteweg—de Vries equation,
Eq. (14).'2

Nonlinear equations for drift waves were con-

sidered by Nozaki and Taniuti,'® using reductive .
perturbation methods. However, their approach to
deriving the equation is somewhat less convenient
for a stability analysis which they recommended
performing. The way the equation was derived
above in which # is expandable in a smallness pa-
rameter €,

U=Uy+ €U + €Uyt * 0, (21)

leads to a quite straight-forward stability analysis
of the solution tothis MKdV equation.!* The way to
proceed is to use the Krylov- Bogolyubov-Mitro-
polsky perturbation method in the manner used in
the analysis of the phenomenological MKdV equa-
tion proposed by Kadomtsev and Petviashvili,'* and
for ion-acoustic solitons in Ref. 9. For the sake

of completeness this analysis is briefly outlined. We
consider a one-dimensional solitary solution to (20).

(2, £)=3A sech? [AI/Z(E- z,)/2],

where z,= A? is the phase. We introduce a vari-
able £= A'/%(z - %,), where A and z, - Af are slow-
ly varying functions of y and {. Using the expan-
sion (21) we separate the terms in Eq. (20) in two
groups, those in which the perturbation in A and
z, is explicitly exhibited and the other in which it
is not. Following Ref. 9 we next assume that per-
turbations of the amplitude are of order € smaller
than of the phase, and derivatives with respect to y
and 8z,/8f — A are quantities of order €. Using the
variable £ and choosing properly the amplitude or
the phase such that 8z,/8f = A, one finds for the €2
terms of Eq. (20) the relation®

3
2%u,
pE®

184 ' 2z
S — <0+§u0) Ay, "
ay

9
/ /
5E (= A% 2y, 4 AV 2y u,) + A%/?

III az
A 5 ( 9y ) ’
(22)
where primes denote differentiation with respect to
£. Multiplying Eq. (22) by u,, integrating over &,
and substituting 82z,/87 2 for 8A /87, results in the
relation

<u ——2 =.’ (23)

where

o).

The solution of Eq. (23) is unstable. We have thus
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shown that in the “intermediate parametric range.”
Drift waves are governed by a modified Korteweg—
de Vries wave equation having both one- and two-
dimensional soliton solutions. The one-dimension-
al drift solitons are unstable with respect to per-
turbations perpendicular to their motion. Finally,
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it may be worth noting that the effects of inhomo-
geneities in the magnetic field on the nonlinear
equation governing drift waves and the stability
of its solution may be of considerable interest, as
they are for linear drift waves. These effects are
presently under investigation.
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