
PHYSICAL REVIE% A VOLUME 16, NUMBER 1 JULY 1977

Structure and thermodynamics of liquid metals and alloys

J. Hafner
Max-Planck-Institut fiir Festkorperforschung, D 7 Stuttgart, Federal Republic of Germany

(Received 20 December 1976)

Ab initio calculations. of the structure and the thermodynamic properties of simple liquid metals and alloys
are presented, The basic ingredients of the theo'ry are as follows: (a) An orthogonalized-plane-wave —based

first-principles pseudopotential is used to describe the interatomic forces. The pseudopotential is optimized
specifically for binary systems. The Xa method is used to construct the electron-ion potential. (b) A system

of hard spheres is used as a reference system for describing the liquid structure, Effective hard-sphere
diameters are determined by a variational method based on the Gibbs-Bogolyubov inequality, The method of
this paper yields' encouraging results for the structure factors, the excess volume, and the enthalpy and

entropy of formation for alloys with a nearly random distribution of the components. Difficulties arise where

nonrandomness has to be expected. The theory provides a basis for a microscopic understanding of'the
thermodynamics of alloys of simple metals in terms of their electronic structure.

I. INTRODUCTION

The theoretical basis for an understanding of the
thermodynamics of simple liquid metals has been
forged in recent years to a point where it can be
used to calculate thermodynamic properties with
some success. '~ This advance has been made
possible due to the combination of the pseudopo-
tential theory with thermodynamic perturbation
theories. The pseudopotential theory enables one
to formulate the energy in terms of the pseudo-
potential and of the structure factor. ' Qn the other
side it is possible to write down closed-form ex-
pressions for the thermodynamic quantities of
hard-sphere systems, including the structure fac-
tor, in the Percus-Yevick approximation. '~ A
link between both theories is provided by a varia-
tional technique based on the Gibbs-Bogolyubov in-
equality. " This inequality states that when the
Hamiltonian of a given system is regarded as the
Hamiltonian of a reference system plus a perturba-
tion, . the free energy of the system will always be
smaller than that of the reference system plus the
expectation value of the perturbation (calculated
with the structure factors of the reference sys-
tem). In our case, the reference system is one of
hard spheres, and the hard-sphere diameters will
be chosen to minimize the free energy.

The theory is readily generalized to binary-liq-
uid systems, closed-form expressions for the
thermodynamics of hard-sphere mixtures being
available xx-is So far however, difficulties con-
nected with the pseudopotential description of bi-
nary systems have prevented a widespread use of
this scheme for alloy calculations. The papers of
Stroud'4 on the phase separation in lithium-sodium,
of Umar et al."on the enthalpy and entropy of so-
dium-potassium, and of Stevenson" on liquid hy-
drogen-helium mixtures are, to our knowledge,

the only comprehensive calculations for alloys. Qn

the other side, the theory has been used by Umar
et al.""and Yokoyama et al."to parameterize
the excess entropy of formation of binary alloys in
terms of -pseudopotential and hard-sphere param-
eters. It emerges from these investigations that
the excess entropy of binary alloys depends very
largely on the excess volume of formation. In the
above-mentioned alloy calculations, the volume of
formation has either been neglected" or taken
from experiment. " " Stevenson" predicts a smal].
negative volume of formation for hydrogen-helium
mixtures.

We have recently presented an optimized first-
principles pseudopotential scheme for binary al-
loys"'" (hereafter these papers will be referred
to as I and II), which is a generalization of Har-

' rison's pure-metal theory. The approach is based
on an expansion of the valence-electron states in
the alloy in terms of generalized orthogonalized
plane waves, the Xa method being used to con-
struct the electron-ion crystal potential. Gener-
ally the pseudopotential will be different in the
pure metal and in an alloy due to (i) the change in
the chemical potentia, l, (ii) the change in the core-
shift which is produced by the modified surround-
ing of the ions, and (iii) a redistribution of the
electronic charge caused by changes in the ortho-
gonalization and in the screening. All. these ef-
fects are taken into account in the optimized pseu-
dopotential scheme. The theory has been used
successfully to calculate the enthalpies and vol-
umes of formation of solid LiMg, "LiAl, "andbi-
nary alkali-metal systems. " It predicts correctly
the structure and range of stability of the LiMg al-
loy phases and their low-temperature ordering be-
havior. Zintl-phase formation is predicted for
LiAl. The crystal-structure parameters and the
enthalpies and volumes of formation of the highly

16



J. HAF NER 16

complex alkali-metal inter metallic compounds
Na, K, Na, Cs, K,Cs, and K,Cs, have beenexplained
with surprisingly high accuracy. Thus it appears that
the concept of pseudopotential optimization is very
useful in the perturbation treatment of binary crystals.

In this paper, our optimized pseudopotentials are
used in the variational thermodynamic perturbation
scheme to determine appropriate effective hard-
core diameters for seven simple metals and their
alloys. The calculated diameters are very realis-
tic in each case and produce structure factors
which agree reasonably well with recent measure-
ments. For all the pure metals, the calculated
excess entropies are in a very good agreement
with experiment. Departures of the interionic
potential from the hard-sphere behavior show up
in the calculation of derived thermodynamic quan-
tities: the isothermal bulk modulus, the thermal
expansion coefficient and the heat capacities at
constant pressure and volume are calculated with
very good accuracy for aluminium, magnesium
and lithium, but with a lower accuracy for the
heavier alkalis, as the softness of the pair poten-
tial increases.

The variationally determined hard-sphere diam-
eters change substantially in the alloy. The change
in the hard-sphere diameter may be traced back,
via the effective interionic pair potentials, to
changes in the mean valence-electron density on
alloying and to a redistribution of valence electrons
due to screening and orthogonalization.

No experimental information is available on the
partial structure factors of binary alloys of simple
metals. In order to make at least a global corn-
parison with experiment, we use our theoretical
partial structure factors to calculate the x-ray
scattering intensity for sodium-potassium and al-
uminum-magnesium alloys and neutron-scattering
intensity for sodium-potassium.

The calculated enthalpies of formation are the
result of a close cancellation between free-elec-
tron, band-structure, and electrostatic contribu-
tions. Their reasonable agreement with experi-
ment is taken to constitute a stringent test of our
theory. The exper imentally known formation vol-
umes are also well reproduced. Again the trends
in the volume change on alloying may be inter-
preted in terms of the interionic potentials. Dif-
ficulties are encountered in describing the lithium-
magnesium and lithium-aluminum alloys, where
the experimentally well-known "chemical compres-
sion" of the lithium ion is overestimated (cf. e.g.,
Ruppersberg and Speicher). ~ The entropies of
formation are found to be sensitive to the volume
of formation. This corroborates the more empir-
ical analysis of Umar et al."'

We present. a systematic study of the change of

the bulk modulus, the thermal expansion coeffi-
cient, and the specific heat on alloying. The final
section is 'devoted to a discussion of our results.

II. OPTIMIZED PSEUDOPOTENTIALS FOR BINARY ALLOYS
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c is the concentration of the B component, the E"„,
are the core eigenvalues in the alloy, u„(q) is the
electron-ion potential, u is the concentration av-
erage of it's q= 0 Fourier component, P is the
projection operator on the subspace spanned by the
g"„, and C core states. For any detail, see I. The
bare electron-ion potential m' is made self-consis-
tent by linearly screening it by a homogeneous
electron gas of the average density;
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We use the Vashishta-Singwi" approximation for
the exchange and correlation correction function
G(q) to the random-phase (RPA) dielectric func-

The pseudopotential theory presented in I is
based on an expansion of the valence-electron
states in the AB alloy in terms of generalized or-
thogonalized plane waves (OPWs). An OPW is
constructed by projecting a plane wave on the sub-
space orthogonal to the core states p"„, and C. In-
serting this expansion in the one-particle Schro-
dinger equation, one obtains a generalized Phil-
lips-Kleinman equation for the pseudo-wave-func-
tion. Within this general class of pseudopotentials,
an optimized pseudopotential may be selected using
Cohen and Heine's criterion~ of the smoothest
pseudo-wave function. The resulting electron-ion
pseudopotential may again be factorized in terms
of form factors sv~ ~a and structure factors ~ ~a
describing the spatial arrangement of the A. and B
ions. The form factor of the A component is given
by [we use atomic units (@= 2m = e2/2=1) in our
pseudopotential calculations, the final results how-
ever are converted to the appropriate conventional
units j
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tion. The construction of the electron-ion poten-
tials u„, u~ and the calculation of the core-eigen-
values E"„„E„,is described in detail in I and in
prior publications on the pure solid metals. '""

The essential point in the present theory is that
the form factor ze~ is different from that of the
pure metal A, even recalculated at the atomic vol-
ume and valence electron density of the alloy. This

. change is due to different effects: (a) The core
eigenvalues in the alloy are shifted relative to the
pure metals. This effect combines with a further
change due to the appearance of the concentration
averages of the diagonal form factors in (la) and
of the electron-ion potential in (lb). (b) The pro-
jection operator P contains core states of both
kinds. This will give the nonlocal repulsive parts
of the form factors a different weight. This last
point is also important for a correct evaluation of
the one-OPW charge density, which can be divided
into a homogenous pari and orthogonalization holes

centered around the ionic positions. For most, pur-
poses these may'be combined with the valence
charge to form effective valences Z„*,Z~~ which are
now given by

2Q (k IP„s Ik)
(2g) it I 331 —(kIP 1k)

with the partial projection operators P„and I'~ and
P= (1-c)P„+cP~. They are again different from
the pure metal.

The perturbation calculus for the total energy
has been described in I, here we restate only the
most important results. The total energy E is
given by three different contributions:

The free-electron energy'E„contains essentially
the zeroth and first-order terms and depends only
on the atomic volume, but not on the structure;
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The first and second term are the kinetic and the
exchange and correlation energy of the free-elec-
tron gas, Z and Z* being the average nominal and
effective valences. The third term stems from the
first-order contribution of the electron-ion poten-
tlaly V and V being the average Q'=0 Fourler
components of the Coulomb-core and the valence-
core exchange potentials. The fourth and fifth
terms constitute the contribution from the repul-
sive parts of the pseudopotentials m" and m; &"„,
and E„, are the ionic core energies and V„""and
V~'" are the orthogonalization-hole contributions
to the core shift, cf. I. These two terms are quite
difficult to calculate accuratt. ly. On the other hand
they have a large influence on the volume-depen-
dent properties, especially on the zero-pre&sure
density. Our calculations on the pure solid metals
have shown that we can predict the lattice con-
stants with a maximum error of a few percent. ""
This is certainly as accurate as can be expected
for a first-principles theory, but not accurate
enough to allow a detailed comparison of our cal-
culated thermodynamic quantities with experiment. .

Therefore, we introduced adjustable prefactors f„
and fs in Eq. (5). . They ary determined by fitting
the density of the pure liquid metal at the melting
point. The same parameter is used to scale the
corresponding contribution of each of the compo-

nents in the alloy.
The band-structure energy Eb, is just the effec-

tive potential energy due the indirect interaction
between the ions via the conduction electrons. Ac-
cording to the thermodynamic variation principle
stated in the introduction, one needs only the ex-
pectation value of this potential, averaged over the
reference system. Consequently, E„, is given by

Z„,= Q 3 P;,(q)S„(q)q' dq.
m'

o

20
l J(q) (2 )3

(k+ also, Ik)(klw, . ik+Qq
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'

The zv, are the screened form factors and the ao',"
are the screening potentials [Eqs. (1) and (2)].
There two possible choices for the partial energy
wave-number characteristic's E,-z and the partial
structure factors 8,,: (a) the au, 's are the form

. factors of the two components, ze„and so~; and the
S„, i,j=A, J3 are related to the Ashcroft-Langreth"
structure factors S,&

through S,&

——(c,.c~)'~3S,&. The
characteristics E„„,I'„~, and I'~~ constitute an
indirect ion-electron-ion interaction in q space.
Fourier transforming and adding the direct
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Coulomb repulsion yields effective pair potentials for
the A-A, A B,-and B-B interactions. (b) The S,,
are the number-concentration structure factors
S», S„~, and 5« introduced by Bhatia and Thorn-
ton." They are related in a simple way to the
SA~. ' In this case, zo,. and zo',."are. the average
and difference form factors ze and b,zv introduced
in I, I» corresponds to the E and E« to the ~ of
that paper. S»iand S«, correspond to'the thermo-
dynamic averages (S*S) and (D*D) for a hard-
sphere mixture. Hence this formalism corre-
sponds exactly to the one used to describe random
solid alloys.

The electrostatic energy E of point ions with
effective valences Z~~ and Z~~, immersed in a ho-
mogeneous compensating background is given by

)~~ a&~a+ a &aa.

(7)
The coefficients g, , are determined by

An analytic expression for g of a simple hard-
sphere fluid has been given by Jones. ' This result
has been generalized to a binary mixture by Ross
and Scale" and by Umar e~ al 's

E„, E„„and E„together represent the volume
and structure dependent contributions to the inter-
nal energy of a binary alloy, averaged over a ref-
erence system of a mixture of hard spheres. At a
given temperature T and pressure p, it is the min-
imum in the free enthalpy G which determines the
stable phase. This means that at a given finite
temperature we have to calculate the free energy
E as a function of the atomic volume and deter-
mine the equilibrium (p =0) values of the free en-
ergy and volume. The enthalpy difference at zero
pressure is given by the difference in the equilib-
rium free energies.

In the thermodynamic perturbation scheme, the
entropy part of the free energy is calculated in the
Percus- Yevick hard- sphere approximation. Due
to the two-component nature of metallic liquids
there is an additional contribution from the elec-
trons. In the noninteracting electron-gas model,
the electronic contribution to the entropy is given
by S„=Zy,T, where y, = —,'(v'kaa/k2z) is the Sommer-
feld constant for the electronic specific heat. In
@e foregoing discussion we have implicitly as-
sumed the valence electrons to be completely de-
generate, i.e., we have approximated the Fermi
distribution function by a step function. Calculat-
ing E„and E„,with the true distribution function
would yield first- and second-order corrections to
y0, at the expense of considerable numerical com-
plications, however. Further corrections arise in

principle from exchange and correlation. For the
metals and alloys of interest, however, the tem-
peratures are high enough that the electronic con-
tribution to the entropy is small relative to the
ionic contribution (generally 0.5—1.5/o of the total
entropy) and yet low enough to justify approximat-
ing the Fermi distribution by a step function (E~/
kaT ranges between 60 and 120). Altogether this
means that within the present context, the assump-
tion of complete degeneracy and the use of the
Sommerfeld value for y, are adequate.

III. HARD-SPHERE DESCRIPTION AND THERMODYNAMIC
VARIATION PRINCIPLE

From the solution of the Percus-Yevick integral
equation for the radial distribution functions of a
hard-sphere fluid" or a mixture of hard spheres, "
there are two routes to an equation of state: The
first is the compressibility (or Ornstein-Eernike)
equation derived from fluctuations in the grand
canonical ensemble. The second is the virial the-
orem relating directly the radial distribution func-
tions and the pressure. From exact radial distri-
bution functions, both ways will yield the same
equation of state. This will not be true in general,
if distribution functions derived from an approxi-
mate theory such as the Percus-Yevick equation
are used. Carnahan and Starling' showed that for
a pure hard-sphere fluid a better equation of state
results by averaging the pressures derived from
the compressibility and from the virial equations
in the ratio 2:1. Mansoori et al."generalized this
approach to the two Pereus-Yevick equations of
state derived by Lebowitz and Rowlinson" for
hard-sphere mixtures. The three variants of the
equation of state will be labelled C, V, and CS,
respectively.

Consider a binary mixture of (1 —c)N hard
spheres with diameter o„and eN with diameter o~.
The free energy may be expressed in terms of the
packing fraction q (i.e., the volume occupied by the
hard spheres divided by the total volume) and of
the hard-sphere diameters in the following way:

+ha ~ kB T —TShs (9)

The first term is the internal energy of an ideal
gas and the entropy of the hard-sphere mixture is
given by

S~=Sg +S,+S„+S„ (10)

where S, is the .ideal gas entropy, S, is the ideal
entropy of mixing, and S„depends only on the pack-
ing density. The last term S, corresponds to the
mismatch between the hard spheres with different
radii. Closed-form expressions for all these quan-
tities have been given by Umar et al zs, ze for the C
and CS cases. The pure metal result is included
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if we set c=1 or c =0, in this ease S,=S,=O.
Equations (9) and (10) constitute the free energy

of our reference system E„„the configuration av-
erage of the total interaction potential, performed
over the reference system, (V)~ has been formu-
lated in Sec. II. According to the Gibbs-Bogolyubov

. inequality, the sum of these terms constitutes an
upper bound to the free energy of the real system:

j'(j' +gT)

k~T+ Efe+ Ebs+ Ees —TSm —&&o~T

Since (11) constitutes an upper bound, it follows
that at a given temperature and volume, the best
hard-sphere diameters and the best estimate for
the free energy are given by

(."..)....,=("..)......-'
As a consequence of the variational condition (12),
the entropy per ion is given by S=S~—ypZT. "

We want to calculate the equilibrium (p =0) val-
ues of the volume and of the free energy. There-
fore, for each temperature, the variational pro-
cedure has to be repeated for different volumes.
The equilibrium values are then determined by a
simple interpolation procedure. " This calculation
yields at once the isothermal compressibility. The
isobaric expansion coefficient, n =Q (8Q/8T)~ may
be calculated in two different ways: (a) the varia-
tional procedure is repeated at a higher tempera-
ture and the definition is treated as a difference
equation. (b) Alternatively, n may be reformulated
using the Mamvell relations n = Q '(8S/8P) r. This
is again calculated by numerical differentiation.
We anticipate that both methods should yield iden-
tical results. The specific heat at constant pres-
sure is calculated by numerically differentiating
the entropy, C~= T(8S/8T)~. The specific heat at
constant volume may be calculated using C„=T(8$/
8T)„or using C„=C& —n QBrT, again both meth-
ods yield results which are in good agreement.
This shows that our numerical procedures are ac-
curate enough.

IV. PURE LIQUID METALS

We have summarized the basic ingredients for
the ab initio thermodynamic calculations for liquid
metals and alloys in Secs. II and III. We turn now
to specific ~applications of this scheme. First we
present our results for the pure metals. The ad-
justable. prefactor f in the repulsive contribution
to E„(Eq.5) has been used to fit the experimental
densities at the melting point, as given in Table I.
f deviates only slightly from f= 1, i.e. , the correc-
tions introduced by fitting f corresponds to a
change of a few percent in the diagonal pseudopo-

tential matrix element. All three variants of the
hard-sphere equation of state have been used. The
calculated packing fractibns, effective hard-sphere
diameters and excess entropies are summarized

/

in Table I. The excess entropy is defined as the
difference between the total entropy and the ideal
gas entropy, S~=S-S, . It canbe seen at once
that the packing fractions are very realistic
throughout, even for Li, where recent model-po-
tential calculations encountered some difficulties. "
In all cases, the virial equation of state leads to a
distinctly higher packing density than the compres-
sibility equat&on, the Carnahan-Starling equation
yielding intermediate values close to the C value.
Since S„ is a monotonically decreasing function of

q, and S„&S„&S„,' the calculated excess entro-
pies are nearly identical, in spite of the differ-
ences in g. For the alkali. metals, the excess en-
tropies are in excellent agreement with experi-
ment. For the polyvalent metals aluminum and
magnesium they are somewhat lower but still very
reasonable.

From the calculated packing fractions, we ob-
tain at once the static structure factors. The re-
sults of our calculations are represented in Fig. 1,
together with the experimental results determined
by inelastic neutron or x-ray scattering. Accord-
ing to the larger packing density, the V approach
yields a higher main peak than the C approach, the
CS peak lying in between but closer to the latter.
Great care has to be exercised in selecting appro-
priate experimental structure factors. There has
been some discussion on the reasons for the differ-
ence in the structure factors determined by neu-
tron and x-ray scattering (see, e.g. , Egelstaff
et af.44), which mainfests itself mainly in the
height of the first peak, S(q,). From the change in
the x-ray scattering factors in a free atom and in
a metal, one would expect S(q,) to be higher for
neutron than for x-ray scattering, and long-range
electronic correlations have been invoked to ac-
count for the apparently reversed experimental
situation. 4 Very recent neutron experiments, -'"~ ~'
however, produced much higher peaks than the-
early experiments of Gingrich and Heaton. ' Com-
pared to the modern experiments the height of the
main peak is distinctly u,nderestimated. For these
metals, the oscillations for q&qo are less damped
and slightly shifted to larger q, compared to the
experimental S(q). For the polyvalent metals Al
and Mg the hard-sphere structure factor with gc
or yea reproduces the experimental S(q) very well,
while g~ leads to a,n overestimate of the first peak.

The relatively poor results for the alkali struc-
ture factors may be ascribed to the softness of the
interionic pair potential and to the neglect of its
attractive part. This may be illustrated by consid-
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TABLE I. Atomic-volume, 0, correction factor to the repulsive contribution to Efe f,
packing fraction q, effective hard-core diameter 0 and excess entropy Sz. The calculations
have been performed using the compressibility, the virial- and the Carnahan-Starling equations
of state.

Ll

T (C)

180

n (a.u. )

151.25 C
CS
V

0.988
0.989
0.992

0.435
0.442
0.458

0- (a.u. )

5.01
5.04
5.10

3.73
3.75
3.80

3.61'
3.70'

-S@/kg
Theory Expt"

Na

K

Rb

100

65

277.89'

531.19'

642.41b

C
CS
V

C
C-s

V

C
CS
V

0.934
0.936
0.942

0.896
0.901
0.903

0.886
0.889
0.892

0.421
0.426
0.440

0.420
0.424
0.442

0.433
0.438
0.455

6.07
6.10
6.16

7.49
7.51
7.62

8.02
8.05
8.15

3.47
3.47
3.50

3.43
3.41
3.51

3.66
3.65
3.72

3.45'
3.55'

3 45
3.61'

3.63'

Cs

Mg 665

Al

851.36

173.9

127.10"

C
CS
V

C
CS

C
CS
V

0.899
0.900
0.904

1.012
1.'014
1.020

1.026
1.027
1.030

0.430
0.436
0.453

0.459
0.466
0.483

0.463
0.468
0.479

8.86
8.90
9.02

5.34
5.37
5.43

4.83
4.85
4.88

3.59
3.60
3.76

4.12
4.10
4.17

4.21
4.18
4.10

3.56'

3.29'
3.45

3.60

Ruppersberg and Speicher, Ref. 23.
Hujben et al. , Ref. 33.
Hujben et al. , Ref. 34.

Liquid Metals Handbook, Ref. 35.
'Huj. tgren et al. , Ref. 36.

Faber, Ref. 30, p. 80.

ering the interionic pair potentials for pure K and
pure Cs which are depicted in Fig. 2. We note that
the variational method for defining hard-core di-
ameters is, to a surprisingly high accuracy,
equivalent to the simple thermodynamic argument
proposed by Ashcroft and Langreth"

I,gf(&) —I g, = 2~~s~ ~

V „is the depth of the first minimum in the effec-
tive pair potential. Equation (13) means that the
effective sphere diameter is given by the distance
at which the difference between the pair potential
and its minimum value is just equal to the average
kinetic energy of a free particle. This relation
holds quite generally for all metals and alloys con-
sidered here. For Al and Mg the hard-sphere po-
tential approximates the true interionic potential
quite well (Fig. 3), and this is reflected in the
structure factor.

The calculated values for the internal energies,
isothermal bulk moduli and thermal expansion co-
efficients are compiled in Table II. The internal
energies compare favorably well with the experi-

mental values calculated from the ionization ener-
gies, the room-temperature sublimation energies,
heat capacities and heats of fusion quoted 'by

Gschneider. " The, isothermal bulk modulus may
be computed by double differentiation of the free
energy Br= Q(8'F/sQ') r [the method of homogeneous
compression (HC)] or from the long-wavelength
limit of the static structure factor Br= ksT/(QS(0))
[the method of long waves (LW)]. In the second-
order perturbation approach, both values will be
different, and the HC value is the correct one. '
For solid Na and K the difference is quite small
(F10%) and BLr"&BHrc. The difference is greater
for the heavier alkalis. It is also important for
polyvalent metals where we have B~ (B "." Our
calculations show that the trend is the same for the
liquid metals. The agreement with experiment is
excellent for Li, Mg, and Al, but a bit disappoint-
ing for the heavier alkalis. The reason for this
discrepancy is the same as discussed above for
the structure factor. The situation is again the
same for the thermal expansion: the excellent val-
ues for Mg and Al contrast with the rather poor
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S(q)

q(A-')

2 3 4
I

Li 320oC
0 418

0
OO OC The specific heats at constant volume are pre-

dicted with fair accuracy, C~ is reproduced quite
well for Al, Mg, and Li. Again the failure to pro-
duce accurate C~'s has its origin in the soft poten-
tials, since C~=C„+n'B~QT, see Table III.

We conclude that hard spheres constitute an ex-
cellent reference system for polyvalent simple
metals. They are less accurate for describing the
heavy alkali metals.

004C
0 (0.421)

665 C

0.459)

0
OO

0)—
3)

FIG. 1. Static-structure factor S(q) for liquid metals,
as calculated in the hard-core model using the variatio-
nally determined packing function (solid-lines & equation,
broken-lines & equations, g in parentheses) and as de-
termined by neutron (&) and x-ray (X) scattering (open
circles). The experimental references are as follows:
Li, Buppersberg and Egger (&), . Ref. 38; Na, K, Green-
field, Wellendorf, and Wiser (X), Ref. 39; Rb, Copley
and Howe (+), Ref. 40; Cs, Hujben and van der Lugt (W),
Bef. 41; Mg, Woerner et cg. (X), Ref. 42; Al, Kunsch
and Eder (N), Bef. 43. Except for I.,i, all experiments
refer to temperatures very close to the melting point.

values for the alkalis. Since a =yo/Br, where
y„= (sp/&T)„ is the thermal pressure coefficient,
we can again ascribe the difficulties to the softness
of the pair potentials.

V. LIQUID ALLOYS

We turn now to the maim point of this paper, the
calculation of the thermodynamic properties of
liquid alloys.

The effective hard- sphere parameters calculated
using the C and CS equation are collected in Table
IV. Again the packing fraction is higher in the CS
than in the C approach. Compared to the pure
metals both yield ari increase in the packing den-
sity of approximately the same magnitude, with
the exception of LiNa, however. The hard-sphere
diameters change on alloying. Here we have to
distinguish between two different causes: in the
homovalent alkali-metal alloys, surprisingly at
first glance, the diameter of the heavier (larger)
ion is further increased, whereas the diameter of
the smaller ion is reduced. The sum of the diam-
eters increases very slightly (0.3 —1%). Again,
Liwa is an exception to this rule. The reason for
the exceptional behavior of Li-containing alkali al-
loys lies in the strong attractive pseudopotential of
Li. This leads to an accumulation of electronic
charge around the Li sites, connected with an in-
creased effective Li diameter, whereas the effec-
tive diameter of the larger ion is reduced. In the
heterovalent alloys, the more electropositive ion
(the one with the lower valence) shrinks, whereas
the electronegative ion expands.

e4

K-K

g„=7„40 a.u.

u.

8 10 12 14

K-Cs

&„q,=8.35 a.u.

8 10 12 14

r t:a.u. l

l

l

l

1

I

1

Cs-Cs

0„=8.70 a.u.

„0'~,= 9.15 a.u.

I I I I I I I I

8 10 - 12 14

FIG. 2. Effective inter-
ionic pair potentials in
pure K and pure Cs (broken
lines) and in an equiatomic
KCs alloy at &=200 C. The
simple thermodynamic
description for deducing
effective, hard-core diam-
eters according to Eq. (13)
is indicated. Note that
0&c,= 2(OK+0 c,) is exactly
obeyed. The cross-hatched
areas indicate the deviation
of the repulsive part of the
potentials from the hard-
sphere behavior. The length
of the vertical arrows cor-
responds to the mean kine-
tic energy of a free particle.
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FIG. 3. Effective inter-
ionic pair potentials in pure
Al and pure Mg and in an
equiatomic AlMg alloy. Same
symbols as in Fig. 2.
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The change in the hard-sphere parameters on
alloying may be explained by reference to the in-
terionic pair potentials. There are two main fac-
tors which produce a change in the effective poten-
tials on alloying. First, there is a change in the
mean valence-electron density. For homovalent
alloy, this effect is equivalent to the volume effect.
The volume dependence of the interionic potentials
within the OPW-pseudopotential method has been
discussed by the present author. " Generally, the
depth of the attractive first minimum is deepened
when the electron density is decreased and vice
versa. The first zero of the effective potential is
nearly unaffected. Hence, this will leave a rela-

tively little effect on the hard-sphere diameters.
More important is a kind of charge transfer due to
orthogonalization effects. For solid binary alkali
systems, it has been shown that this "charge
transfer" is very essential in explaining the crys-
tal structure of the intermetallic compounds. The
origin of this charge transfer is as follows: if the
electron density is increased around an ion, more
charge will be pushed out of the core region, the
orthogonalization hole charge and hence the effec-
tive valence will be increased. The effect is some-
what asymmetric, i.e., for a lower electron den-
sity, the charge transfer will change sign, but will
be less pronounced. This is connected with the

TABLE II. Internal energy E, isothermal bulk modulus Bz I. calculated by the methods of
homogeneous compression (HC) and of long waves (LW)] and thermal expansion coefficient z.

T (C)
E (kcal/g atom)

Theory Expt. Expt. "
Bz (10' dyn cm )
Theory

HC LW
~ (10~ K-')

Theory Expt c d

Li
Na
K
Rb
Cs
Mg
Al

180
100
65
35
35

665
665

171.36
149.97
127.33
121.82
110.45
548.82

1292.06

164.18
145.43
122.22
116.68
108.98
563.55

1309.77

8.1

3 ' 7
1.7
1 ~ 3
0.7

21.6
37.4

9.3
3.8
1.8
1.5
1.1

19.7
30.7

11.5
5.3
2.6
2.0
1.4

20.4
41.3

3.9
5.2
6.4
7.8

10.8
1.71
1.19

2.8
2.9
3.4
3.7
1.66
1.22

Calculated from the data of Gschneider (Ref. 46).
"The values are from the compilation of Webber and Stephens (Ref. 47), except for Mg

(McAlister et al. , Ref. 48) and Li (Ruppersberg, Ref. 38).
Faber, Ref. 30, p. 96.
Breitling and Eyring, Ref. 49.
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TABLE III. Specific heat at constant pressure Cp and
at constant volume C„, and heat ratio N =C /C». The
data are for the temperatures given in Table II.

Cp, 'Z~ C~/X~
Theory Expt. Theory Expt. " Theory Expt.

Li. 43 37
Na 40 38
K 4.6 3.9.
Rb 5.0 3.8
Cs 5.4 3.8
Mg 42 40
Al 39 35

3.4
2.9
33
3.4
3.2
3.2
3.2

3.4
3.4
3 ' 3
3.2
3,0
2.7

1.3
1.4
1.4
1.5
1.7
1.3
1.2

1.1
1.1
1.2
1.2
1.3
1.25

Hultgren et al. , Ref. 36.
"Calculated from C& using C& —C~= & QTBz and the

experimental values of m and B& listed in Table II.

appearance of the factor (1 —(k ~P ~k))
' in the defi-

nition of the effective valence [cf. Eti. (3)]. To be
concrete the effective valences in pure metals are
Zg=1.131, Zgb=1. 16V, Z~~, =1.203. In a KRb alloy
they are Zp = 1.121, Zh= 1.1VV, in a KCs alloy Zr*

= 1.102, Z), = 1.249, in a RbCs alloy Zion = 1.136,
Zc, = 1.222. The consequences on the pair poten-
tials of KCs are illustrated in Fig. 2: a bigger Z*
results in a more repulsive V,«and vice versa.
Thus the change in o„,o~ is well explained by elec-
tronic effects.

For heterovalent alloys the relative importance
of the two effects is reversed: now the change in
the screening is more important. At a lower elec-

I(q) = (I —c)f„'S„„(q)+cf ', S„(q)
+2[c(1—c)j' 'f„f,S„s(q)

=f' ~IN(q)+ ~f'3cc(q)+ 2f ~f~N o(q), (14)

where f„,fs are the atomic scattering factors, f
=(1 —c)f„cfs, &—f=f„fs (in-electronic units).
We have calculated I(q) for an equiatomic NaK
allow at T=100 t, using our hard-core param-
eters and the free atom scattering factors of Han-
son et al." Our result compares quite favorably
with the measured intensity of Orton and Wil-
liams, '~ which is in turn corroborated by the room

temperature results of Henniger ef al." (Fig. 4a),
except for a slight shift of the first peak to smaller
q's. However, it is difficult to explain why the
theoretical peak is now higher than the experimen-
tal one, since both curves are normalized to the
same f. In this connection it is interesting to con-

tron density, the screening electron cloud around
an ion may be reduced and the potential will be-
come more attractive. This is demonstrated in
Fig. 3 at the example of Al, Mg, and their alloy.

Only very little is known of the partial structure
factors of liquid alloys. From the alloys con.-
sidered here, only NaK"'" and A1Mg" have been
investigated by x ray and neutron scattering. The
relative intensity of coherently scattered x rays
may be expressed in terms of the structure factors
by

TABLE IV. Effective hard-sphere diameter 0&, 03 and packing fractions p for A-B alloys.
pq = q —(g&/Q&+ gz/0&)/(1/0&+ 1/0&) is the increase in the packing fraction on alloying.

0'g

T (C) (a.u. ) e =0„/0.~

Li

Na

Ll

Li

Cs

Rb

Cs

Cs

Al

Mg

200

100

100

65

65

700

700

665

C
CS

C
CS

C
CS

C
CS

C
CS

C
Cs

CS

C
CS

C
CS

o.4o4
0.411

0.431
0.435

0.456
0.466

.0.422
0.427

0.430
0.434

0.434
0.441

0.440
0.450

0.481
0.503

0.464
0.469

-0.006
—0.006

0.015
0.017

0.043
0.048

0.003
0.005-

0.011
0.013

0.002
0.004

0.063
0.064

0.088
0.103

0.003
0.003

5.12
5.14

6.06
6.04

5.96
5.95

7.43
7.49

7.35
7.30

7.90
7.94

4.27
4.28

3.68
3.70

5.06
5.03

5.99
6.00

7.57
7.62

9.08
9.12

8.06
8.12

9.01
9.09

8.97
9.05

5.50
5.50

4.97
5.01

5.18
5.14

0.856
0.856

0.800
0.792

0.656
0.652

0.922
0.922

0.816
0.812

0.881
0.878

0.776
0.778

0.740
0.740

0.976
0.976
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FIG. 4. X-ray scattering intensity (in electronic units)
for NaK (a). Solid lines theoretical, open circles expe-
rimental (Ref. 54). Number-concentration structure fac-
tors 8jj (p ) . Sol id lines theoretical, full dots exper imen-
tal (neutron scattering, Ref. 53).

sider, the neutron results of Henniger et al."
Equation (20) holds for coherent neutron scattering
too, with the f„, f~ replaced the coherent scat-
tering amplitudes, b„, b~. For Na and K these are
practically identical: b„,= 0.351, b~=0.35." In
this case, I(q)/O' =S„„(q)and we obtain direct in-
formation about one of the partial structure fac-
tors. Theory and experiment are compared in
Fig. 4(b), they agree very well with one another,
the remaining discrepancies being the same as for
pure metals. Finally, we have calculated the x-ray
intensity for Al-Mg alloy at the liquidus and com-
pared our result with the experiment of Steeb and
Woerner. " Again the over-all agreement is very
good, but the size of the first peak is overesti-
mated when free-atom scattering factors are used.
Recalculation of the scattering factors in the alloy
is necessary to bring the results in line with those
for the pure metal. This, however, is a subject
in its own right and will be discussed elsewhere.

The zero-wave-vector limit of the partial struc-
ture factors may be calculated from thermody-
namic quantities. " This calculation has been per-
formed by McAlister and Turner" for NaK. They
obtain SNN(0)=0. 82, S„c(0)=0.178, Scc(0)=0.402,
while our hard-core model yields SNN(0)= 0.09,
S„c(0)=0.12, S«(0)=0.24. The small, but distinct
differences indicate a deviation from an ideally
random distribution and long-range fluctuations.

FIG. 5. (a) X-ray scattering intensity (in electronic
units) for AlMg. Solid line calculated with scattering
factors of Al and Mg in the alloy, broken lines calculat-
ed with free-atom structure factors. Open circles exper-
imental results (Ref. 55). (b) Partial-structure factors.

We conclude that the hard-sphere description of
partial structure factor seems to be quite reliable
for larger wave vectors, but may encounter diffi-
culties at small q.

The most stringent test for both the hard-sphere
description and our pseudopotential scheme is of
course the calculation of the change in volume, en-
thalpy, and entropy on alloying. Our results are
compiled in Table V. We consider first the excess
volumes. As far as experimental results are
available, the agreement with our theory is as
good as it can expected to be. The large negative
excess volumes of NaCs and, to a lesser extent,
NaK have often been considered as puzzling, since
an ideal mixing behavior seems to require AQ = 0,'
and there is certainly no compound formation in
these liquid alloys. In II we have shown that for
solid body-centered cubic solutions AQ/Q is very
small (& +0.5/p) for all possible combinations of
two alkali metals, except Li containing phases. In
the topologically close-oacked intermetallic com-
pounds on the other side, we found the change in
the atomic radius hr to be small, combined with
negative excess volumes (b,Q/Q=-11. 6/g for
Na, Cs, AQ=-1.3/p for K,Cs, and bQ/Q=-0. 8% for
K,Cs,). The last two figures indicate that the ex-
cess volume depends on the space filling of a given
structure. The hard-sphere mixtures are quite
densely packed, but not close packed. Again we
find the change in the mean atomic radius to be
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TABLE V. Volume, enthalpy, and entropy of formation for equiatomic AB alloys.

. AB T ('C)
b.n, (%)

Theory Expt.
~ (cal/g atom)

Theory Expt.
bS (cal/g atom K)
Theory Expt.

LiNa

NaK

NaCs

KRb

200

100

100

100

100

C
CS

C
Cs

C
CS

C
CS

C
CS

0.25
0.40

-1.8
-1.9
-7.1

-8.4
-0.16
-0.19

-0.67
-0.87

—1.4

5 41

-0.19

1220
1240

470
380

1870
1640

120
160

213
200

174 d

30

28"

1.57
1.50

1.03 1.35
0 ~ 98

0.33 1.20
0.30

1.29
1.22

1.1o
1.08

RbCs 100 C —1.3
CS —1 ~ 2

-32d 1.13
1.12

LiMg, 700 C —20.3
CS

—3410
-3870

-2477" . —0,50 1.20 + 0.6
-0.54

LiAl 700 c -4o.s
CS -41.1

2450
3320

—2.6
-2.8

AlMg 665 C
CS

-4.3.
4 4

—3.0 -1980
-2170

-806" 1.19 1.18+O.2'
1.20

~Hujben et al. , Ref. 33.
Hujben et al. „Ref. 34.
Steeb and 97oerner, Ref. 55.

Hultgren et al. , Ref. 59.
'Ichikawa et a$. , Ref. 60.

small, Ar/r ranges between 0.6%%up for NaCs and
-0.12% for RbCs. A similar relation holds for
the sum of the hard-sphere diameters: A(o„+ o~)/
(o„+os) varies between+1. 1%(NaCs) and 0.3%
(RbCs). Our study suggests that for structures
which allow for a favorable spatial arrangement
of atoms of a different size (i.e., liquid mixtures
or topologically close-packed structures), Ve-
gard's rule should be applied to the atomic radius

- rather then to thy volume, and this can be inter-
preted in terms of interionic potentials.

This interpretation holds for heterovalent alloys,
too. In this case both EQ and hx are negative, and
this is correlated to a change in the hard-core di-
ameters: b.(a„+o's}/(o„+ os} = -3.3%(LiMg),
-9.3/o(LiAl), and -0.22/0(AlMg), which has been
explained in terms of the screening. Our result
is numerically correct for AlMg, but only qualita-
tively for LiMg and LiAl. In our calculation for
the corresponding solid alloys we have seen the

'

same tendency to overestimate the negative excess
volume.

The calculated enthalpies of formation of the al-
kali alloys agree with experiment within a factor
of 3. The exceptions are NaCs and KCs. No ex-
perimental values are available for LiNa, but if
we repeat the calculation at elevated temperatures
we find that above T=600'C LiNa will be miscible.

Experimentally, the phase separation occurs at
T = 300 'C. Thus our ~ and 4S values are very
realistic again. In II we have argued that s-d hy-
bridization will contribute to the formation of in-
termetallic phases containing Cs and lower ddt.
This is very important for NaCs, but less impor-
tant for KCs. In~ the aOoy, the Cs ions experience
an enhanced electron density, quite as in pure
compressed solid Cs, where a structural phase
transition connected with an electronic s-d transi-
tion is known to occur. The calculated enthalpies
of formation for AlMg and LiMg are very good
again. For LiA1, second-order perturbation the-
ory is questionable. In the solid phase, covalent
corrections had to be included to explain Zintl-
phase formation. "

It is interesting to factor out the individual con-
tributions to the enthalpy of formation. For all
alkali alloys, except LiNa b E&,&0 and b E„, 6E„
&0. This means that the contributions favoring
a1loying stem from the structure-dependent pair
interactions. All three contributions are seen to

, be volume dependent: AE„decreases on contrac-
tion of the alloy, while EE„„EE„,and 6(-TS) in-
crease. This shows that the ideal-mixing behavior
results from a balance between electrostatic and
electronic forces.

The situation is reversed for heterovalent alloys,
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now ~„&0and m„, m„,&0. The volume depen-
dence is the same as noted above. Again both the
change in enthalyy and th'e change in the mean
atomic distance is explainedas a force balance.
&x has to be negative in order to lower &E„. The
decrease is counterbalanced by opposite changes
n +Ere and &Ees

We turn now to the entropy of formation. The
agreement with experiment i:s excellent for AlMg
and quite good for NaK, though the deviation from
ideality seems to be exaggerated. For KRb, KCs,
and RbCs the theory predicts nearly ideal entro-
pies of formation, so we can expect them to be
very reasonable. Except for LiNa, our analysis
yields an increase in the packing density, Aq &.0.
In this case, the packing term S„gives a negative
contribution to the entropy of formation. &S, and

M„are positive for homovalent alloys and nega-
tive for heterovalent alloys, but quite small in both
cases. &S, is positive everywhere, but again
small. Hence, the excess entropy of formation is
determined mainly by &S„and this depends criti-
cally on the excess volume. In our calculations, AQ is
generally slightly lower than the experimental value,
and this explains the trend in our 4S. Ichikawa e t a l."
have shown that quite large concentration fluctua-
tions are present in NaCs, hence a hard-sphere
description becomes questionable. The failure of
our &S calculations for LiMg„and LiAl is again
connected with our overestimate of the volume
contr action.

Only very little is known, both experimentally
and theoretically, on the change of other thermo-
dynamic quantities on alloying. As far as experi-
mental reference is available, our results are
compiled in Table VI. For the alkali alloys, our
calculations predict a decrease in the bulk modulus
for nonideal systems, while for ideal systems the
bulk modulus is just equal to its concentration av-
erage. This is in agreement with the experimental
results. For AlMg we predict an increase of 8~ on
alloying, this effect is qualitatively corroborated

by experiment. For the thermal expansion coeffi-
cient we find a decrease on alloying, in agreement
with experiment. Thus the assumption of a tem-
yerature-independent excess volume" is invalid.
Only for NaK specific heat measurements are
available. ' If extrapolated to T = 100'C, they
yield &C& —-0, in agreement with our result.

VI. CONCLUSION

The ab initio calculations of the structure and
thermodynamic properties presented here are
based on contributions from two different areas:
(a) The pseudopotential theory is used to describe
the interatomic forces in metals and alloys. (b)
A system of hard spheres represents a sufficiently
accurate and convenient reference system for de-
scribing the structure and the thermodynamics of
metals and alloys. The Gibbs- Bogolyubov inequal-
ity provides the basis for a variational determina-
tion of effective hard-syhere diameters.

The general scheme for a hard-syhere descriy-
tion of binary alloys has been developed in recent
years by different groups of workers, "but up to
now its application has been restricted to the sim-
plest possible systems(LiNa, NaK, HHe) due todiffi-
cultie s in the pseudopotential description of binary
alloys. These problems can now be overcome by
using an optimized first-principles theory. This
theory predicts changes in the inter-atomic poten-
tials on alloying, which can be explained in terms
of screening and orthogonalization effects. Due to
the orthogonalization, the effective ionic charge of
the larger ions is increased on alloying, i.e. , elec-
tronic charge is yushed away from the core region
of the larger ion, while the orthogonalization hole
of the smaller ion is reduced. This is quite simi-
lar to the "charging" effect described by Christ-
man" on the basis of the augmented-plane-waves
and the quantum-defect methods.

The changes in the interatomic yotentials are
important for both the pseudopotential and the hard-
syhere contributions to the thermodynamics of al-

TABLE VI. Isothermal bulk modulus B& and thermal expansion coefficient e for binary
alloys. B& and e are the concentration averaged quantities of the pure metals.

AB T (C)

Bg Bz Bz
(10' dyncm )

Theory Expt.

Q G

(f0~ K-')
Theory Expt.

NaK
NaCs
KRb
AlMg

100
100
100
800

1000

2.6
1.7
1.4

38.0
36.2

2.7.
2.2
f.4

30.3
28.0

3.3'
2.0"
2.2 b

28.3
25 5

3 ' 9
3.4
2 ' 2

27.9
23.8

5.1
6.0

5.8
8.0
7.2
1.4

2.7 d

2.8"
2 ' 8
2.9
3.0
~ OS

Abowitz and Gordon, Ref. 61.
"Kim and Letcher, . Ref. 62.

Maier and Steeb, Ref. 63.
Hujben et a/. , Refs. 32 and 33.
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loys. The calculated hard- sphere parameters for
alloys reproduce the known experimental informa-
tion on the structure of alloys very we11. The the-
oretical description of the thermodynamic yroy-
erties is very satisfying for LiNa, Wax, KRb,
Kcs, BbCs, and AlMg. Small remaining discrep-
ancies are to be attributed to the softness of the
alkali interionic potentials. Difficulties arise
where either concentration fluctuations (NaCs) or
short-range order effects (LiMg) may exist. A

breakdown of second-order perturbation theory
seems to occur for LiAl.
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