PHYSICAL REVIEW A

VOLUME 16, NUMBER 1 JULY 1977

Liquid argon: The influence of three-body interactions on atomic correlations
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Molecular dynamics calculations on a two-dimensional argon liquid at 96°K have been performed taking
into account three-body interactions. The three-body forces were assumed to have the Axilrod-Teller form.
For the pair interaction the Lennard-Jones potential was chosen. The differences between structural and
dynamical correlations which arise from calculations with and without the presence of three-body interactions
have been studied. Whereas the differences between distribution functions (pair correlation function and
triplet correlation function) due to the three-body forces are not significant, time correlation functions
(velocity autocorrelation function and intermediate scattering function) show systematic deviations. For
“example, in the case of the velocity autocorrelation function, deviations up to 25% have been observed.
Furthermore, the fourth moment of the scattering law is calculated for wave numbers 0.234 < k < 2.34
A~'. Here, also, the deviations (up to 12%) from the pair-theory values are systematic. The results indicate
that the determination of pair potentials from the fourth moment (a recent method by Rahman) does not give
unique pair potentials for argon and argonlike systems since three-body forces are clearly reflected in the

fourth moment. .

I. INTRODUCTION

Liquids are systems with strong anharmonic
behavior. Even near the melting point the anhar-
monicities cannot be treated as small perturba-
tions. Besides the neutron inelastic-scattering
experiments, molecular dynamics (MD) calcula-
tions are important in studying liquid many-parti-
cle systems, since anharmonicity is treated with-
out approximations. Neutron inelastic-scattering
experiments and MD calculations on liquid argon
have led to a remarkable increase in our under-
standing of the correlations in space and time in
that liquid. '

The coherent and incoherent scattering func-
tions' were measured by Skdld ef al.? using the
neutron inelastic-scattering technique. Skold
et al. compared the experimental results to the
molecular dynamics results by Rahman® and
Levesque and Verlet.? The MD calculations were
based on the assumption that a two-body centval
force interaction can give a reasonable description
of the liquid-argon system. In these calculations
many-body forces (three-body forces, etc.) were
not considered. Comparison of the correlation
functions determined experimentally to the re-
spective data obtained by MD indicate that the pair
theory describes structuraland dynamical corre-
lations well in the first approximation.

However, it is shown by Barker et al.’ that
three-body interactions are distinctly reflected
in thermodynamic properties (pressure, energy)
of liquid argon. For example, at a temperature
of 100 K and a density of 1.359 g/cm? the contri-
bution of the three-body terms to the pressure is
about 50% and to the energy 5%. Barker et al. in-
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cluded three-body effects with success using a
perturbative techinique. The three-body interaction
was assumed to have an Axilrod-Teller form.°
Barker ef al. did not investigate the influence of
three-body interactions on the correlation func-
tions mentioned above. To show such effects with-
out using approximate theories, it is necessary

to perform MD calculations in the presence of
three-body interactions.

Our purpose in this paper is to demonstrate how
this type of interaction (we have also used the
Axilrod-Teller potential) is reflected in structural
and dynamic correlations using MD. In this case,
the computer time requirements are very large.
Therefore we have restricted ourselves to a two-

“dimensional system consisting of 144 particles.

Such a small system does not give relevant results
for the absolute values of correlation functions.
We would like to study here the differences be-
tween structural and dynamic correlations which
arise from calculations with and without three-
body interactions, The correlations investigated
were (i) the pair correlation function and the trip-
let correlation function, (ii) the velocity autocor-
relation function, and (iii) the intermediate scat-
tering function and the fourth moment of the scat-
tering law.

II. POTENTIALS OF INTERACTIONS AND THE MD MODEL

The Hamiltonian used in the calculation is given
by

X, p3
H=Z p;n +U,+ AU, 1)
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X being an on-off parameter with values 0 and 1.
For the pair interaction v, we have chosen the
Lennard-Jones potential, using the same param-
eters as Rahman in his MD calculation’:

R

where 0=3.4 A, ¢/kp=120 K, and 7, is the dis-
tance between the particles 7 and j. For the three-
body interaction v, we have used the Axilrod-Tel-
ler form® (the same potential was used by Barker
et al. in the perturbation theory):

1+ 3cos6, cosb,cosb,
3 .3 5.3 °
- T a5

U3(i,j,l)=l/ (5)
Vij» Yty ¥j; and 6, 6,, 6; are.the sides and angles
of the triangle formed by the particles ,j,1.

It is well known that the 1/#° term in Eq. (4) can
be obtained by applying the perturbation theory to
the second order. If the perturbation calculation is
extended to the third order, interactions between
triplets of particles appear. The calculation of the
third-order interaction energy® leads to the ex-
pression given by Eq. (5). v,(,j,!) can be repul-
sive and attractive, which depends on the shape

of the triangle formed by the three atoms i, j, and
J
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I. The parameter v was chosen to be 73.2 x 1078
em® erg. The investigations by Barker ef al. indi-
cate that this value is realistic for argon.

For the MD model, N=144 argon particles were
arranged in a two-dimensional box such that its
density corresponds to that of the three-dimen-
sional argon liquid (p=1.374 g/cm®). To avoid
surface effects, periodical boundary conditions
were imposed on the system. For this model, the
classical Hamilton equations were solved by itera-
tion. . ‘

Using Eq. (1) for the Hamiltonian, two MD cal-
culations have been performed. One with (A=1)
and another without (A=0) three-body interactions.
Both calculations were made for 7'=96 K.

III. PAIR DISTRIBUTION FUNCTION
AND TRIPLET CORRELATION FUNCTION

In a cdanonical ensemble, distribution functions
are defined by (e.g., see Ref. 8)

- . N1
A (T

5 f...fd‘fml...d'vaexp(_Hh/kBT)
f.--fd?l"'d;yexp(-Hx/kBT) ’

(6)

where T, is the position vector of the ith particle.

First we would like to consider three-body effects
by useof a perturbative technique involving a Tay-
lor expansion in powers of the three-body coeffi-

cient v; the result is

-\ [(U . -
=g,(T,,... ,r,,)+[k;;° GoF1yees,T,) -

where ( ), denotes averaging with only two-body
interactions. From Eq. (7) it follows that the aver-
age of any quantity X, which is dependent on the
coordinates of the N particles, can be determined
in terms of two-body averages:

{Uyq XUs)g
kpT kT

(X)), =(X)o+ (X)o - ®)
In order to estimate the influence of the correc-
tion terms in Eq. (8), we have computed and listed
in Table I, as examples, the MD results for the
energies of the mean-square forces. The statisti-
cal errors of the values computed is less than
0.3%. It can be seen that the corrections due to

the three-body forces are relatively small and we,

p"(N —n)!

IEE 'fd?m oo dE (U, /k5T) exp(—-Ho/kBT)] e
f...fdfl--'d'fNexp(—Ho/kBT) ’

)

i
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therefore, do not expect large differences between
g&,,...,T,) and go(¥,,...,¥,). Furthermore, it
can be seen from Table I that in our two-dimen-
sional system the contribution of the three-body
interaction to the internal energy is about 2.8%. It

TABLE I. Energies and mean-square forces.

/ LN
(Uy)y/NkgT (Us3)»/NkgT (1071° g em® sec™)
A=1  —3.0439 0.05529 ‘ 1.31
A=0  —3.0145 0.05545 : 1.35
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FIG. 1. Pair correlation function: crosses, MD re-
sults for A=0; open circles and solid curve, MD results
for A=1.

is easy to show that in the case of a three-dimen-
sional system this effect must be larger. As al-
ready mentioned, Barker et al.® obtained in their
calculations 5%. '
MD results for the pair distribution function and
the triplet correlation function are plotted in Fig.
1 and Fig. 2, respectively. Since liquid argon can
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FIG. 2. Triplet correlation function: crosses, MD
results for A =0; solid curve, MD results for A =1,

be considered as an isotropic and homogeneous
system, both functions only depend on the relative

-distances 7, s, and A of the particles from each

other. We have chosen g,(r=3.7 4,5=3.7 4,A)as
an example because we believe that this configura-
tion is of particular importance in the calculations
of some liquid properties and is the configuration
with the best statistics (less than 5%). The statis-
tical error of g(r) is smaller than 1%. »=3.7 A
corresponds to the principal peak in g(»). It can
be seen from Fig. 1 and Fig. 2 that there are no
significant differences between the distribution
functions. An extra investigation for the structure
factor [the Fourier transform of g(»)] leads to the
same conclusion. The results represented in
Table I, Fig.1, and Fig. 2 give a new justification
for the application of the perturbation technique
introduced by Barker et al.’

The relatively small influence of three-body
forces on g(») and g(r,s,A) is of fundamental in-
terest since all thermodynamic functions essen-
tially depend on the shape of g(r) and g, s, &).
Another important point should be mentioned:
There exist several approximations (e.g., Percus-
Yevick,® hypernetted-chain,'®° Born-Green,! self-
consistent method using MD'?) which make it pos-
sible to calculate the pair potential v(r) from g(r).
Besides other conditions these methods are based
on the assumption that three-body interactions are
not reflected in the distribution functions g(») and
g(r,s,A). This condition could not be verified until
now. Our results indicate that g(») and g(r,s, A)
are nearly independent of v; and justify this as-
sumption (at least for argon and argonlike sys-
tems).

IV. VELOCITY AUTOCORRELATION FUNCTION (VAF)
The VAF ¥(¢) is defined by
P(E) =T (0) - T()) /F(0)?, (9)

where V(¢) is the velocity at time ¢ for one atom
of the ensemble and the brackets (* **) denote a
statistical average. The VAF is of interest not
only because of the central role it plays in the
theory of self-diffusion and particle motion, but
also because of its significance in the determina-
tion of the incoherent scattering law S (%, ).t
Figure 3 shows the MD results for the VAF ob-
tained from calculations with A=0 and A=1, In
both cases, the statistical error of ¥(¢) is smaller
than 1%. It can be seen that the effect of the three-
body interactions is relatively large. For example,
the depth of the VAF for A=0 at the first minimum
(¢=0.36 X 1012 sec) is 25% larger than the depth
of the VAF for A=1. This means that the presence
of the three-body interactions leads to a less-
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FIG. 3. Velocity autocorrelation function: solid curve,
MD results for A =1; dashed curve, MD results for

A=0.

pronounced oscillatory behavior of an atom in a
many-particle system like argon. The diffusion

constant D is given by*
_ kgT f“’
p==E= | W@ at.

We have found that the diffusion constant is nearly
independent of three-body interactions (within the
error limits). An additional investigation of the
mean-square displacement {72(#)) leads to the same

(10)
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result. In this case, the diffusion constant is given
by the slope of the linear part of (#2()). From
this, one finds the diffusion constant to be 2.5

X 10'5 cm? sec™

V. DENSITY FLUCTUATIONS

The Fourier transform of the microscopic num-
ber density of a system with N particles having
positions ?-(t), where i=1,...,N, is given by

Pe(t) = i': eXp[zk T, ().

To describe density fluctuations, the correlation
function (intermediate scattering function)

F(k,t)={pgu)pg(t+u))

is of interest. In Eq. (12), {***) denotes again
statistical averaging. In a liquid, the intermediate
scattering functions depends on k= |k|. F(k,?) is
also independent of the initial conditions . The
averaging over « and vectors k with magnitude %
is done such that the statistical error of F(k,?) is
always less than 0.5%. The estimation of the sta-
tistical error was based on the analysis given in
Refs. 15 and 16.

In Fig. 4 we have plotted the normahzed inter-
mediate scattering function F(k,t)/F(k,0) for sev-
eral values of % as a function of time. The values
%=1.75 and 4.8 A span the whole region of struc-
tural detail in the structure factor S(k)=F(%,0). It
can be seen that the effect of three-body forces of
F(k,t) are negligible for times #<#,, where #, is
the half-width of F(k,#)/F(,0), and are getting
large with increasing time f{. To show these sys-

(11)

(12)
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FIG. 4. Intermediate scattering function: solid curve, F(k,t) and t2F(K,t) for A =1; dashed curve, F(k ,t) and ¢2F(k,t)

for A =0,



tematic deviations, the values need to be plotted
on a log scale. Such tendency means that v, will
be most reflected in the scattering law'®

Sk, &)= f expiwt) F(k, £) dt (13)

for frequencies w which are close to zero.

The MD results are only valid'” for times t=<L/c,
where L is the size of the box and c is the velocity
of sound in the system. In the case of liquid ar-
gon, L/c takes the value 4.5 X 102 sec. Thus the
behavior of S(k,w) for small frequencies w cannot
be reliably determined from the MD results alone.
In order to calculate S(k,w) by means of Eq. (13),
we have to extrapolate the results for ¢>4.5 x 1072
sec, This cannot be made without additional as-
sumptions on F(k,t). Because the long-time be-
havior is too uncertain, we hesitate to draw any
conclusions for S(k, w) from the MD data. The
solution of this problem is to use very large sys-
tems. In the future, with larger computer mem-"
ories and greater speeds, it will become possible
to have precise numerical data to solve this ques-
tion.

The relatively large influence of three-body
interactions on F(k,t) at large times ¢ suggests
that the function #2F(k, t) will reflect three-body
forces much more than F(k,#). This is demon-
strated in Fig. 4. In contrast to F(k,t), the ab-
solute values of t2F(k,t) are large in the time re-
gion of interest [note that the values of {2F(k,t) are
not plotted on a log scale]. The Fourier transform
of ?F(k,t),

R(k,w)=5 [ explwnrr e, o, (14)

is given by the second derivative of the scattering
law S(k, w):

2

R(k, @)= -0 S(k, ). (15)

A way of learning something about three-body
forces is shown by the following method. (i) Give
a model for R(k, w) in terms of v, and v,. (ii) De-
termine the pair potential v,. Since v, is hardly
reflected in structure data (see Figs. 1 and 2), a
unique pair potential should be determined from the
pair correlation function.’?*? (iii) Measure R (%, w)
with high accuracy by scattering experiments., It
should be mentioned that besides R(%,w), other
functions [e.g., S(k,w)/w?] are qualified for the
investigation of three-body forces.

Ay

VI. FOURTH MOMENT OF THE SCATTERING LAW

. Often-used models for S(2, w) are based on gen-
eralized hydrodynamics and the extension of theo-
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ries of the gaseous and solid states. These de-
velopments have built up a sound general under-
standing of the scattering law. Most of the models
involve the knowledge of moments (w™ (%) of

S(k, w):

(w">(k)5f_:s(k,w)w"dw, n=0,1,2,'.... (16)

In a classical system all odd moments vanish.

A great deal of models have been listed and tes-
ted (using neutron-scattering data) for liquid
argon by Rowe and Sk6ld.'® Testing of models
using our MD data lies out of the scope of this
paper. Here we only want to discuss some general
features. In the description of S(%, w) the mo-
ments up to four play an important role (see Ref.
18). In some cases it appears that the knowledge
of these moments is sufficient to account for the
behavior of S(k,w) or its Fourier transform
F(k,1) (e.g., the model by Lovesey!® and the model
by Pathak and Singwi®®). One purpose of the cal-
culations presented here is to investigate (i) how
three-body forces are reflected in the moments
up to four, and (ii) whether it is sufficient to ex-
press F(k,t) and the more v,-sensitive quantity
t*F(k,t) in terms of these moments.

Discussion relating to (i). It has already been

‘mentioned above that (w%(k)=S() does not de- -

pend on v,. Furthermore, in simple liquids the
second moment {w2) (k) =k2kzT/m is not dependent
on any interaction (see Ref. 21). (w* (%) is the ‘
first moment which involves explicitly the inter-
action potential. It is given in terms of the poten-
tial energy U= U,+ AU, by* ‘

0= 32 )’

k% /1 9l U .
=328 0« -x)]). 17
+ mz<N ; dx; 0x; exp[lk(xi x])]> (a7
We have calculated {w®)(k) for 0.234=F%=2.343 A",
To show that the deviations of {w) (k) from {w} (k)
are systematic, we have plotted in Fig. 5 the quan-
tity

a (k) = [ (k) - (wy (k)] Awp (k).

The statistical error of both functions computed
is less than 0.5%. It can be seen from Fig. 5 that
the presence of three-body interactions leads to
deviations up to 12%. With increasing %, the first
term of the right-hand side of Eq. (17) is getting
large compared to the second term involving the
interaction. Therefore the deviations of (w})(%)
from (w (k) are small for large values of k.

Discussion velating to (i7). We have calculated
some F(k,t) for wave vectors % for which

(@ (k) =(wp) (k).
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For those values of & (e.g., k= 1.75 10&'1; see Fig,
5), three-body interactions should not be reflected
in F(k,t) if other quantities depending on interac-
tion do not play an important role in the determin-
ation of F(k,¢). However, the example for k= 1.75
A (see Fig. 4) shows distinctly the presence of
v;. This means that a precise description of F(k,t)
must involve, besides the moments, up to four
other quantities (e.g., higher-order moments?2-2%)
depending on the interaction.

It should be mentioned that Rahman® has re-
cently proposed a method for the determination
of pair potentials from S(2) and {(w*(%). In this
investigation the quantity

1 1 aU dU
2 = il —_— 3 s -
k)= (N Z e o, oRlik e x,)]>

i#j

(18)

is of main interest. We have calculated Q2(k) for
A=0 and A=1. Figure 5 shows the results for the
normalized quantity 22(%)/92(0) for both cases.
It can be seen that the deviations of the two curves
from each other are systematic. As for a(?),
the presence of three-body forces lead to an addi-
tional oscillatory component in £22(%)/2%(0). The
amplitude of this component is relatively large
for some values of k. For example, at the first
minimum of 2(%)/92(0), the absolute value is, in
the case of A=1, about 30% larger than for A=0.
We conclude that the method proposed by Rahman
cannot give a unique pair potential for argon and
argonlike systems since three-body interactions
are clearly reflected in Q2(%).

Expression for the fourth moment. It is easy
to derive an expression for the fourth moment in
terms of both the pair potential v, and the triplet
potential v;. Besides the pair correlation function
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g(r) the triplet correlation function g,(,s,?) has
to be known. From Eq. (17) one obtains

(DB =D ) + o kg T
x[ [dtasg,r,s,0

X (1 —coskx)%’zz—’:;), (19)

where (w} (k) is the pair-theory value

2 2
(Wi (k)= 3(]@2%‘) +—Z—2kBTp

X J drglr) (1 —coskx)g%%z’—z). (20)

The main difficulty in estimating (w?) (%) from Eq.
(19) is the lack of experimental information about
the triplet correlation function. The measure-
ment of the pressure dependence of g(») makes it
possible to test different expansions for g,(r,s,?),
but its direct determination is not possible in this
way.?%%® Although some molecular dynamics and
Monte Carlo calculations about g,(r,s,?) do ex-
ist®"32 for liquid argon and liquid rubidium,’ the
data are not sufficient to solve Eq. (19) numerical-
ly.

VII. SUMMARY AND FINAL REMARKS

The influence of three-body interactions on
structural and dynamical correlations has been
studied for liquid argon by means of molecular
dynamics. The three-body forces were assumed
to have the Axilrod-Teller form. The investiga-
tions by Barker ef al.’ indicate that this potential
is realistic for argon. Whereas the differences
between distribution functions (pair correlation
function, triplet correlation function) due to the
three-body forces are not significant, time corre-
lation functions [velocity autocorrelation function,
intermediate scattering function F(k, )] show sys-
tematic deviations. Our results for F(k,¢) suggest
that the second derivative of the scattering law
R(k, w)= -d?S(k, w)/dw? should be more sensitive
to three-body forces than S(k, w) and should there-
fore be a proper quantity to test models for three-
body potentials. This can be done if a reliable
model for R(k,w) is known. Our investigations
of the fourth moment of S(%, w) indicate that such
a model must involve, besides the moments up to
four, other quantities (e.g., higher-order mo-
ments) depending on the interaction.

Since the pair correlation function and triplet
correlation function are nearly independent of
three-body interactions, a unique pair potential
should be determined from these functions. Re-
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cently Abel ef al.”® showed that both the repulsive
and the long-range part of the pair potential for
liquid rubidium can be extracted successfully from
structure data using an extended Born-Green equa-
tion. Also the self-consistent method!? mentioned
above should be qualified, which allows the deter-
mination of a pair potential from the pair correla-
tion function using molecular dynamics. The meth-
od by Rahman® [determination of pair potentials
from S(k) and (w*)(%)] does not give a unique pair
potential for argon and argonlike systems since
three-body interactions are clearly reflected in

{(w* (k). This method should give an effective pair
potential.

It should be mentioned once more that our study .
was made for a two-dimensional system. Effects
which are marginal in three dimensions could be
exaggerated in two dimensions and vice versa.
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