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The first observations of two-photon free-precession and driven transient coherence by Hatanaka et al. are
extended by an experimental NMR verification of the Brewer-Hahn exact solutions for two-photon
resonance.

From a set of Bloch-like equations for a three-
level system, Brewer and Hahn"" (BH) have ob-
tained exact resonant transient solutions for the
interpretation of pulsed optical coherence experi-
ments. '+' Radio-frequency transient NMR studies
provide superior experimental control of quantita-
tive tests of the BH predictions. Three-level NMR
experiments can display identical principles of
two-photon dynamics which are applicable to opti-
cal studies, as long as propagation considerations
are not important. We report here the first
demonstrations of exact BH two-photon transient
solutions at resonance, in terms of transient
NMR. These solutions are applicable as well to
a two-photon optical experiment which was re-
ported after NMR observations of two-photon co-
herence by Hatanaka et al. '

In a three-level system [see Fig. 1(a)] with for-
bidden single-photon transitions between levels 1
and 2, it is possible to excite two-photon transi-
tions between levels 1 and 2 using the off-reso-
nant level 3 as the intermediate state. Large
enough pulse excitations during times short com-
pared to the transverse damping time T, permit
the observation of coherent effects. The three-
level system is described by a density matrix
which obeys the normal Liouville equation

tap= [x,+x„p],
where Ko is the Hamiltonian in the absence of the
time-dependent perturbation K, = -p, H. The ap-
plied time-dependent field is &=2H, cos~t, and
p, is the dipole operator. The BH exact solution,
applies where the sum of the energies of the two
photons is equal to the energy splitting between
levels 1 and 2, namely 28& = &» where &,,
= (E; -E,)/h. Bloch-like solutions can be defined
in terms of the following linear combinations of
density matrix elements:

uz- = pz~+ p~z ~

sv ~ ~ =p ~ ~ —p ~ ~

z~ zq (2)

K ~ ~ =p ~ ~ —p g.

The i and j indices apply to states 1, 2, and 3.
Here the p, , are components of the density ma-
trix with the rapidly oscillating factors of the off-
diagonal elements removed. Reference 1(a) gives
solutions for zv». The quantities measured in this
experiment are ze», ze», the population differences
between states 1 and 3, and 3 and 2, respectively.
These quantities which can be derived algebraical-
ly using the solutions from Ref. 1(a), are

'I

'owp„( )0cos(& 2&)t —1 cos(—&—+2&)t —1( «(»'+p')
1 (0)

o."p'zv»(0) cos(& —~&)t —1 cos(&+-,'&)t —1 «(2p'+ o.")
(4)

with o'. = p, ',Q, /5, and p=iJ. ,Q, /h Here (i. ~p ~j)
= p, , are the magnetic dipole matrix elements.
Following Ref. 1(a), we have defined the following
quantities:

E = 2 (Q + p ) . , 6 = (d —(d&& = (d23 —(d

(ot2+ P2+ ~2/4)1/2 + 2g

2 [o."w„(0)—P'w „(0)]
Ep

The physical significance of these solutions can

be viewed as follows. The slowly varying compo-
nents which involve cos(5 —2&)t pertain te the pure
two-photon oscillations in the limit that & +P'

In this limit the two-photon rotating-frame
radio frequency stands out as v,« ——2o.'P/&. Small-
er amplitude [to order (o."+p')/&' «1] and rapidly
oscillating single-photon transitions (at frequency- 4 in the rotating frame) modulate the main two-
photon oscillation amplitude. In the extreme con-
dition of & +P &&&2 the effect of one-photon oscil-
lations may be neglected by setting ug3 u v/3 v3,
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TABLE I. Fourier transformed data of Fig. 3 com-
pared to the predictions of the theory for H& fitted to be
2i.i +0.4 G. d was measured independently to be 82.2
+0.2 Hz. The 2.'3-kHz difference from +e2qQ results
from the slight crystal misorientation mentioned in the
text.

Theoretical Experimental

—,'Z (kHz)

6+ —4 (kHz)

q (kHz)
Amplitude of

oscillation
Amplitude of

oscillation
Amplitude of

oscillation

Fitted

93.2
i 04.2

0.887

O. i05

0.04 i

ji.i +0.2

92.9 +0.9
i03.3+i.o

0.898 +0.02

0.084 + 0.02

0.068 + 0.02

frequency of the slow oscillation. Using only
the oscillation peaks an experimentally mea-
sured value of T,=563 p, s was fitted to a de-
cay envelope of the form e ' 2. Examination
of the data justifies this assumption for times
to at least 1000 p. s: four times larger than the
250 p, s displayed in Fig. 3. However, for short
times there is a small discrepancy which can be
seen- in the figure. The only other quantity (4)
necessary to describe the system could be de-
duced from the measured level separation. Table
I displays the theoretical values [Eq. (4)] and the
values obtained from taking the cosine Fourier
transform of the experimental data. Mixing ef-

fects due to a crystal misorientation of 6 affect
the results negligibly. The rise time of the pulse
envelope was about 2 p. s. A slower rise time
caused the single-photon oscillations to vanish due
to adiabatic following by the single-photon off-res-
onant transition. ' For a much faster rise time
the fourth level would have been excited. Investi-
gations of the av4, indicate that with the 2 p, s rise
time, the contributions from level 4 are negligible.

We have confirmed the particular BH solutions
above which derive from a set of three-level
Bloch equations' applicable to other types of ex-
perimenti as well. A deuterium (I=1) NMR chem-

icall-

shift measurement technique, ' whic h was in-
terpreted in terms of an operator method, ' can be
analyzed alternatively in terms of the macro-
scopic three-level BH Bloch equations. In a single
crystal of NaNO, we have obtained additional two-
photon effects of spin locking, adiabatic fast pas-
sage, rotary saturation, and rotary echoes which
are amenable to analysis by the BH equations. A
more systematic and detailed examination of these
effects will be reported at a later date.
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