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The cooperative spontaneous emission from a system of X identical two-level atoms, excited arbitrarily and

interacting with a single mode of radiation, is studied by using the Bonifacio-Schwendimann-Haake

approach. The evolution of the probability distribution of the atomic system is considered as a'Markov
process described by a time-evoiution matrix (TEM). The exact analytic expressions for the elements of this

TEM are obtained by solving the superradiance master equation. It is proved that the TEM satisfies the
normalization condition and the Chapman-Kolmogorov equation as required, The exact general formulas for
the expectation values of various physical observables, expressed in terms of an arbitrary initial distribution,
are obtained. Finally, these results are applied to a specific example, the superradiant initial state.

I. INTRODUCTION

In a previous paper, ' hereafter referred to as I,
we presented the exact analytic solution of the
superradiance master equation (SME) which de-
scribes the coope, rative spontaneous emission f rom
a completely excited system of N identical two-
level atoms. We used the Dicke state representa-
'tion and expressed the SME in the following form:

P(s., m, t) = (y+ m + 1)(r —m) P(s, m + 1, f)

P(s, m, O) =V„.. (1.2)

Although this particular initial condition has
drawn the most attention in the literature; it is
too restrictive and too unrealistic. To use Eq.
(1.2), we must assume much more knowledge
about the system than we can possibly have. Even
if we could prepare the atomic system in such a
fully excited state, we still need to consider the
following problem. Equation (1.1) is valid only
when the spontaneous emission is confined to the
end-fire mode and the cooperation number x is
conserved. However, it is known that the initial
spontaneous emission is very much undirectional
and that for extended systems x is not conserved.
So, during the transient stage, Eq. (1.1) is not
very reliable. However, once the cooperative
effect is established, Eq. (1.1) will be valid.

In this paper, we will derive a (2s + 1) &c (2s + 1)
time-evolution matrix (TEM) by solving Eq. (1.1}
with an arbitrary initial condition, as suggested by
Bonifacio, Schwendimann, and Haake. ' We can
apply this TEM to any probability distribution at

—(s + m)(r m+—1)P(r, m, t), (1..1)

where P(s', m, t) is the probability that the atomic
system is in the Dicke state ~t, m) and the time t
is rescaled to absorb the constant characterizing
the emission rate of a single excited atom. The
initial condition considered in I was

II. TIME-EVOLUTION MATRIX

In conformity with I, we will again define a new
variable n as

n=—y- m. (2.1)

Assuming N to be an even number, n can take the
values 0, j., 2, . . . , 2z. Since x is conserved in our

any time to yield the probability distribution at
any later time. This will allow us ve' ry much flex-
ibility. For example, to deal with the problem of
initial irregularity mentioned previously, we may
use an x-nonconserving equation such as proposed
in Ref . 2 to desc ribe the initial evolution to a cer-
tain point and then let the TEM derived here take
over from that point on.

In Sec. 0, we will use a Laplace transform to
solve Eq. (1.1}. As the result, we will obtain the
exact analytic expressions for the elements of the
TEM; there will be a series of exponential func-
tions of. time. The coefficients in these series
must satisfy certain identities in order for the
TEM to satisfy the normalization condition and the
Chapman-Kolmogorov equation; the latter is re-
quired due to the fact that the SME describes a
Markov process. These identities will be estab-
lished independently in Sec. III. Then in Sec. IV
we will derive exact general formulas for various
expectation values of physical observables, ex-.

pressed in terms of the arbitrary initial distribu-
tion so that these quantities can be calculated im-
mediately when the initial state is given. Finally,
in Sec. V, we will apply our results to the simplest
possible specific case, namely, the Dicke super-
radiant state

~
r, 0) as the initial state. In addition

to exact expressions thus obtained, we will also
introduce a systematic approximation to simplify
the analytic expressions so that numerical evalua-
tions can be carried out easily. We will compare
our numerical result with that of Ref. 3.

Ml
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problem, we need only two variables, one dis-
crete and one continuous, to describe the probabil-
ity distribution. So we let

n=O

P„(t)-=P(~, m, t}. (2.2)

We will further assume that x = ~N and will con-
sider x and —,'N as exchangeable from now on. Then
E»l. (1.1) can be rewritten as

—P„(t)= (N n+ 1—)nP„,(t}—(N n)(n—+ l)P„(t).
d

(2.3)

(2.4)

with

To construct the analytic solution of E»l. (2.3},
we first observe that it represents a set of N+1
simultaneous equations. The linearity of these
equations allows the introduction of a time evolu-
tion matrix (TEM) V„,(t) according to

: P„(t)= QV„,(t)P, (0),

N-2
N-1

N
O

FIG. 1. Classification of the elements of the time
evolution matrix according to the types of singularities
of their' Laplace transforms.

l-1 r 1
V"'(t)= g D' "e' +P[ B' +C' t]e'»'

i=N-n-1 i-l
V„,(0) = 5„,.

The Laplace transform of V„,(t),

(2.5) (2.12)

VN i(t) =1+gDN»e» +p[BN»+ Cz»t]e i
s=l

(2.13)
may be found from the recurrence relation, ob-
tained as the Laplace transform of E»l. (2.3), by
iteration to read

n
1 ~ - ~ (N- i+i}i

V s}= . . . (27)s + (N l) (l + 1) '—;"s + (N —i)(i+ 1)

N- 1
V'~(t)= D' es»»

nial nial

i=Nm 1

N l 1

Vs»(t) =1+ Q D„' »e'»»

v„',(t) =o,

(2.14)

(2.15)

(2.16)
Now, in principle, we can easily obtain V„,(t)

by reducing the expression in E»l. (2.7) to partial
fractions and then taking the inverse Laplace trans-
formation. However, this procedure is compli-
cated by the fact that we may have double poles
as well as simple poles, since the root

where the superscript on the matrix elements de-
notes the regions they belong to. The coefficients
appearing in E»ls. (2.9)-(2.15) are defined as

s, =-(N- i)(i+1) (2.8) x B(N —n —i —1,i+2), (2.17)
remains unchanged when i is replaced by N-i -1.
Hence, according to the way that the simple and
double poles occur, the elements of the TEM are
classified into regions as illustrated in Fig. 1.
The final results are

N- -1 1 1
B„' »—= F„', 2 —(N 2i —1) —

l
+

I - l n- a+1

(2.is)

t) = QA„», e'»»
i=l

Ne-2

(2.9)
C„'

»
=F„',(N 2i —l)—~, —

D» ( 1)m+ne»+»(N 2i 1)

nial

(2.19)

Vrr (t} P g»ea;»+ g [B' +C' t]e"
i~i i~N n-1

(2.20)

V,»(t}= Z[B)» » », »+--
i~ l.

(2.10)

(2.11)

where we have used the notations for binomial co-
efficient and beta function, and have defined the
common factor of B„', and C„', as
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We note that the coefficients A„', B„', and C„',
which appeared in I, are particular cases of A„' „
B„„andC„', defined here, corresponding to l =0.
We also note that the first column of the TEM
corresponding to l =0 is identical to the probability
distribution obtained in I.

N

( „,(1) =1+pe"' g D'
n~ nM-i-1

N

+ e«tg
a nD i-1

+ A„', +

(3.3)

III. NORMALIZATION CONDITION AND

CHAPMAN-QOLMOGOROV EQUATION

The TEM derived in the previous section is sup-
posed to describe superradiance as a Markov pro-
cess. Therefore, it must satisfy the normaliza-
tion condition and the Chapman-Kolmogorov equa-
tion. We have used these conditions to check the
correctness of our derivation. In this process, it
reveals some very interesting identities involving

the coefficients A„' „8„'» C„' „and D„',. The
significance of these coefficients anrd their rela-
tions is enhanced when we realize that they also
occur in the analytic solution~ of the Bonifacio-
Lugiato master equation for oscillatory super-
fluorescence' which is non-Mgrkovian. Therefore,
it is worthwhile to devote this section to showing

how these identities occur and to giving indepen-
dent proofs fox some of them.

A. Normalization condition

The element of the TEN V„,(t} represents the

probability that the atomic system, initially ex-
cited to the Dicks state r, r- l ), has evolved to
the state ~r, r-n) at time t by emitting n-l pho-

tons. Therefore, w@ must have

D„',. =0,
n=N-i-1

(3.5}

n= -i -1

i
~

N»i-2
i iA„', + B„', =0

n= nW-i-1

(3 6')

(3.7)

1. Proof of Eqs. (3e5) and (3e 6)

Using Eqs. (2.19)—(2.21}we can see immediately
that both the summations in E(ls. (3.5) and (3.6)
reduce to some factor multiplied by the following

For ~& l ~ N, we have

N-1

V„,(t) = V„)(t)+V„',(t)
n= n=

N l,1
=1+ g e'e g D , (or r '„l Ne.

1W n=N-i 1

(3.4)

From E(ls. (3.3) and (3.4) we can see that the
normalization condition will be satisfied if and only

if the following identities are true:

V„,(t) =1

as the normalization condition at any time.
For 0&i(r-l, Eq. (3.1) can be written as

(3.1) ( ])Non
( [ j [

—,( 1)J]
(Ã-n)ti) ~ (g ) i

=0, (3.8)

v„,(t}=gv„',(t)+ P v„",(t)+v„. . .(t)
n= nial nm

N-1
+ V„~~)(t)+V~~,(t} for 0&i(r-1 .

n=

(3 2)

Using E(ls. (2.9)—(2.13) and changing the order of

summations, we obtain

where we have replaced n by N —j and then the ex-
pression can be seen to be just the coefficient of
x" ' in the binomial expansion of (1 —x)~'/(1 —x)'",
hence, must vanish for i&N. Thus, the identities
(3.5) and (3.6) have been easily established.

2. ProofofEq. (3.7)

From E(ls. (2.18), (2.19), and (2.21) we have
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with
V„ t, V, t, =V„,, t, +t,

m=2
(3.12)|N+n

(N —n (i, „,(n —k+1)

(-1)'l i N- k —~+1

Al

n= I i)
(3.10) ~

~

m= j
(3.13)

where the summation runs from E to n, instead of
from 0 to N, because V„, vanishes for n(l. The
identities revealed by this condition are listed as
follows'

where, to obtain the second line, we have changed
the order of summations and replaced the dummy
index n by N- ~; to obtain the last line, we have
used identity (A1) proven in the Appendix and re-
placed 0 by n- l.

Putting Eq. (3.10) into Eg. (3.9) and using Egs.
(3.6) and (2.1V), we have

(3.11)

Hence, Eq. (3.V} is proven.

8. Chapman-Kolmogorov equation

Since our SME is Markovian and homogeneous,
we expect the TEM to satisfy the Chapman-Kolmo-
gorov equation

P c„' „~&,=6, ,c„*, ,
m=y

N- 1

mA-j-1

(3.14)

(3.15)

maV»j-I
(3.16)

N- 1
a„'„a'. , for i)j, (S.17}

m" 4+1

N

m=N- j-1

(s.16)

1. Proof ofidentities (3.13)and (3.14)

Using Egs. (2.17), (2.19), and (2.21) we have

where

&.', &', =(- I*}"(N-»- )I( N- i2- )1i (i ii
i&(N-~-i-1, i+2)S,,„(nl (N I) (j)-

kii kj+1) &&)

( 1)Num 41(N 2& ] )2(N 2j 1) (&& ( &+ l ( —
t (&l S

(ij ~N n) (j+1-j &lj

(3.19)

(3.20)

(j+1) ~(N k-2j —2) (-i- j)i-j
(-1 ']

~

for i)j

1/(N-2i-1) tor i=j
= 6, ,/(N - 2i - 1). (3.21)

Substitution of Eq. (3.21) into Egs. (3.19) and (3.20) gives identities (3.13) and (3.14), respectively.
Identities (3.15) and (3.16) can be proven in similar way.

2. Proof ofidentity (3.17)

U sing Egs. (2.1V)-(2.19) nd (2.21) we have

2 1
Ni1

~
„ i

t, m m l (N 2i ])2 (N 2i 1) (+ y+]) n, m m, l

N-i-1, ( 1}~,n, i(N 2, 1)(N 2, 1)(I "11(N-I»'I P Sa

4) N n) kj+1) II) "-*"
(3.22)
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+ 1} (-1)"'(N I» j 2)B(&—' ' — 1)(»+1)(&-j)

=(-1)* '~ B(a-», »+1)B(X f--q I,j+2).,.„.(~- a)t u)

I»+1)(j)
(3.23)

To obtain the third line in E»I. (3.23), we have used E»I. (A1).
Substituting E»ls. (3.14}and (3.23) into E»I. (3.22), replacing the dummy index k by m, and then comparing

the result with E»ls. (2.17) and (2.20), we establish identity (3.1'I).
Identity (3.18) can be proven in similar way.

3. Proof ofEq. (3.12)

This equation is satisfied in different ways according to which region the matrix. elements belong. To
save space, only region II will be considered. The situation in region III is similar to region II, while it
is much simpler in regions I and IV.

In region II, where x»n&N —1 and l&N-n —1, we have
n

g V„„(f,)V. ,(f,)

N-n-2

V„"„(f,)V'„,(f„)+V„' „„,(t,}v'„„,»(t, )
m=l

VG» (f )V» (f ) + P VIv (f )V»» (t )
m-r

N»n-2 N-n-2 m

i~ j=l
e'."""1

n~m m~E

N-n-1

+
m=l

r-1 m r-1 r-1 m

P+ P g P [B„'„X'., +f,C» „'a„,]e'»""''
i~Ã-n-1 j= l m~Ã-n i =m j=l

)Z Z Z
n gm1 r1

E-m-1 8 m2'
D' A j e'i'2+' j'1

n, m m, l
j=l

+ P g g (D» B~ »+f O' C' »)&8»
m=r i =N-n-1 jN'-m-1

(3.24)

where we have used Eqs. (2.9)-(2.12) and (2.14).
We should now change the order of summations in E»I. (3.24) so that we can carry out the summations

over ~ first. Then itwill be convenient to co11ectall the terms in the summands into three groups according
to whether i &j, i =j, or i &j, namely,

V„(t,)V„,(t, ) =—G;, + G;,+ G;, .
m l

(3.25)

We notice that the summations over m of the terms A„' A' „C„' A „and D„' C', are of the forms of
Eqs. (3.13)-(3.15); hence, they all disappear from G,.&,. and G;&, So we are left with

es»»2+s»»y g B» /i
iN-n 1 jl»l

P D».x'„, =0,
m=i+1

(3.26)
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and
r 2 r 1

Q — Q g e8 f2+8 i'
i=S-n-1 j=i+1 —m=N»j -1

N-j -2'

D„' B',+ Q D„'
~

A', =0,
m=j

(3.2V)

where we have used Eqs. (3.1V) and (3.18).
Now we can concentrate our attention on

Sm 2

G g Ai e81(if+f2&+(t + t )
ill

~Si(g1+ g2)
n~f

i=N-W-1

i=N-n-1
e'i&'1"2'

t

i=1-n-1
D„' A', . (3.28)

Using Eqs. (2.1V), (2.20), and (2.21) we have

N i 2 1
D„' A', =Z„', X-2i-12

=F„',(N-2i —1) Q . +
k=i+1 k i+2=

(3.29)

using Eqs. (2.1V), (2.18), and (2.21) we have
N-'-2 1 N- -1

8„', 1 -(N-zf-f);r
) for f&r-1

ii —i k „n—ted+1

N 1 1F„', 1 —(N 2i —1) -for i= -21;
(n t2+ 1)-

(3.30)

using Eqs. (2.18), (2.20}, and (2.21) we have

N i"1 1 N-i-1
F„', 1 —(N 2i —1) g— + . for i&2 1—

k=i+1 k= +2
D' B'

n&N-i-1 N-i 1~ l
8„',(1 —(N —Zf—

k=i+1
(3.31)

Putting E(ls. (3.29)-(3.31) into Eq. (3.28) we obtain

'

N-n-2 r-1

Q, , = Q A, „' e'i 1' 2 y Q [(t +t )1
' +B' ]e'1( 1' 2&=Vii (t +t )

i=l i =N-n-1 .

(3.32)

Now, substitution of E(ls. (3.26), (3.2V), and (3.32)
into Et(l. (3.25) gives

(3.12)

- IV. CALCULATIONS OF EXPECTATION VALUES

The description of supe'rradiance by the SME al-
lows us to consider it as a Markov process. The
final purpose of studying a stochastic process is to
be able to calculate expectation values of relevant
random variables. In this section, we will de-
scribe the procedure and derive general formulas
for doing such calculations.

To begin with, let us recall the meanings of var-
ious key variables we used. The atomic system

is initially excited to a Dicks state 2., r —$) with
a probability distribution P, (G); at time t the atom-
ic system will be in a state

~
z, 2.- n) with a prob-

ability distribution P„(t). The connection between
P, (0) and P„(t) is through the TEM V„,(t} accord-
ing to E(l. (2.4). Both l and n can take integer
values 0, 1, 2, .. . , 2m=¹ The difference n- l
=—N~ is the number of photons emitted; N —n mea-
sures the energy still stored in the atomic system;
and

gives the emission rate or radiation intensity, in
terms of photon number.

A physical (luantity Q, as a random variable,
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can be considered as a function of the random var-
iable n and, hence, denoted by Q(n). The expecta-
tion value of Q can be calculated as follows:

2-1

&m), N+P e" g mD'
s=O n=N-f 1

N n

&Q& =go(~)&(~)= Q(~) &...(t)&(0) .
n=O n

'
=0

(4.1)
+ 8"' nA. ' +

n=i n=S-i-1

Thus, the expectation value of a phySical quantity
depends on the initial distribution. Since we would
like to leave the initial condition open, we should
change the order of summations in Eq. (4.1) to
read

(()&=Qg Q(n)I „(&) {I)=0/(q&p, (D),
l=O n=l

where we have defined

&9) -=gq(n)&. , , (~) .
n=l

(4.2)

(4.3)

We can usually carry out the calculation of (Q),
explicitly before P, (0) is specified.

A. Calculation of &n&&

Since n is the basic random variable of our prob-
lem, the calculation of

+ ~ nC'„r ~

n- -c-1

Using Eqs. (2.19}-(2.21}we have

(4 6)

nD„'
g

= -1 'N —2i —1 8 l —i, i+1 7,-,
), ;+1)

(4.6)

and

~

~

~+C„', = (-1)'(N- 2i- 1)'I
II IF, , (4.V)

, (N- i& ( i)
n=»-i-) ( i+ 1j )( i )
where

( 1)»+a+i ('!+1'I t'&l

(N-nJ (i )

, t'i+1) l'N
~

~

( ~ i (

(n ), -=nv„, (t)
n=

can be a very convenient first step in the calcula-
tions of the- expectation values of most of the phy-
sical quantities that we are interested in. This is
what is done below.

1. 0 &I(r
For this range of l, we can write

1 1-/ 3

(n)! = nv~!(t)+ Q nv„(~i~) N+l- l)V». .-.(i)
n=l n=r

=-(i+1) .

)z (t+ 1) (N X+1)—
(~ J( i+»

(4.8)

Substitution of Eq. (4.8) into Eqs. (4.6) and (4.7),
respectively, gives

( 1)'~( 2 1) (N l)!(l i 1)!
l!(N- l —i-1)!

(4.9)

N 1
+ g nvp', (f)+Nv'„, (i) .

n=N-l
(4.4) ( )g i (N —2$ —1) (N —l).

(4 10)l!(N l —i —1)!(i —l-)!1
~ ~

Substituting Eqs. (2.9)-(2.13) into Eq. (4.4) and
changing the order of summations, we obtain

On the other hand, using Eqs. (2.18), (2.19), and

(2.21), we have

where

(N /'!(i)-~B„)= (N 2i 1}2
—

N 2i 1 ~ l
nC„', (-1)'(N

!) i+1 l(l)

„,„(i+1) ('n)" ' n

((N n) (i j'""—
=(N-2'-1) (-1)"&,II .

~
+ (0 —1)P (-1)'I

(4.11)

g~ Q ]
( ~~

~l Ill(N & i+1 i+2)
n=(

~ ii
(4.12)
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To obtain the last line of E(I. (4.12), we have used E(I. (Al) and then replaced the dummy index k by n —1.
Putting E(I. (4.12) into E(I. (4.11) and using E(ls. (4.10) and (2.1 I), we have

( 1)f+1(N I) t

lt'(N- l —i —I)!(' —l}t „.„,k —l

Now, substitution of E(ls. (4.9), (4.10), and (4.13) into E(I. (4.5) gives

(o) N ='- g(-1)'(N-Ri —1)
' ro'

l! ( 0 (N- l —i —1)l
W ~s]t N-'-1

+(-1} .
(

.
l (

2 —(N-2i —1} +(N-2i —1

(4.13).

for 0&l &~ . (4.14a)

For values of / in this range, we have

2. r ~(l(N

N 1

(o), =Q oV„'r(r) +NV'„, , (4)

N 1
=N+ e"

nD- -1

(—1)'(N —2i-1) . e'1' for r~l&N,(N l) ( )(f-f-f. (l i 1) t

li (N-l —i —1 t
(4.14b)

where we have used E(ls. (2.14), (2.15), and then

(4.9).
which can be considered as the limiting case of
E(I. (4.14a). In the special case of I =N, we sim-
ply have

3. I= Oor 1=N

In the special case of l =0, (n), is exactly the
same as.(n) given in E(I. (3.8) of I, namely,

(n), =N for l =N .

B. Some expectation values

(4.14d)

Ate"'(") ="-,.(N; 1). .
N 1 jx 2 —N-2i —1

k

r (N Rf —f) 1) fo-r f =Q,'(4.14o)

We are now in a position to calculate with ease
the expectation values of some of the important
physical quantities in the problem of superradi-
ance. They will serve as examples for this kind of
calculations.

First of all, using E(Is. (4.14a)-(4.14d) and (4.2),
we can obtain

( o ) =g (o ),N, (D)
l'=0

=N e(~ "(@')' (-—1)'(N- 2i —1) P, (0)
(N- i}((l—i-1}i

wQ l=Al

2 (N 2i 1)
'

+(N 2; 1)f &.
~ ~ ~

/l(N- l —i —1)!(i l)t -„,0 —l

Then the expectation value of the number of photon emitted is simply

(4.15)

{N,) =(n) —(l) =(n) lP, (0) .
=1

(4.16)
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And the derivative of Eq. (4.15) with respect to time gives the emission rate as

e-(N-f)&k+1. &t 1 l N s X+1 N 2l 1 P 0 N ~ il
l! N l--i - 1 !

ko i+1

+ (N —2z —1)'[(N —i)(i+ 1)t—1] (4.17)

On the other hand, we also have

/=-((N- n)(n+1})=(N 1)(-n) -(n')+N,

which implies

(n') = (N 1)(n) ——/+ N.

This relation can be used to calculate the fluctuation in photon number as follows:

,
o' =—(N2~) —(N~)' = ((n - l)') —((n —l))' = (n') —2(nl ) + (P) —(n)'+ 2(n)(l) - (P),

where

(4.18)

(4.19)

(4.20)

(nl) = P (n), /P, (0)
l =1

=N(l) —Q e '" '"'+'" (-1)'(N- 2i- 1) Q P (0) l
'

)l!(N - / —i —1)!

);-(ii-2i —() Q ~
.i+(N - 2)i'

)I
(i(421)-

=1 k=i+1

N

&/'& = g /'Pg(0). (4.22)

another specific initial distribution, namely,

P)(0) =5 (5.1)

Now, substituting Eqs. (4.15), (4.1V), (4.19), (4.21),
and (4.22} into Eq. (4.20), we can easily obtain the
expression for o .

V. SUPERRADIANT INITIAL STATE

When the initial condition P,(0}= &, , is used in
the general formulas obtained in the previous sec-
tion, all the results of I will be recovered. In
this section, the general results will be applied to

This initial state is'called superradiant state by
Dicke' since it has the maximum initial emission
rate. As will be seen, this is. the simplest pos-
sible case. It has been specifically discussed by
Bialynicka-Birula' and by Bonifacio and Preparata. '
A broadened form (binomial distribution centered
around the superradiant state) of this initial dis-
tribution has, also been discussed in Ref. 3.

Using Eq. (5.1}in Eq. (2.4), we obtain the pro-
bability distribution

0 , forn&z

( ])))(+~+(+)/N 2i ]bnt ~-&x-i)(g+j. &t- for ~~~(~P„(t)=V„„(t)= (,„„,(N-n)! (n- i)l(i-N+n+1)l

1 —~ (-1)' e '" ""+'" for n=N(N- i) t(i+1)!

(5.2)

where we have used Eqs. (2.14)-(2.16} and (2.20}.
Substitution of Eq (5.1) into .Eqs. (4.15) and (4.16) gives the expectation value of the number of photons

emitted as
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(5.3)(N ) =r- g (-1)'(N- 2i- 1)e & -'&t'"&'
i=0

This is an exact expression which can be used directly to evaluate (N~} for small values of r, say, sl0 .
For large x, it is more convenient to introduce the following approximation.

Let j=i+1, then Eq. (5.3) can be rewritten as

(N~} =r+ P (-1)~[(N+ 1}—2j]e '"+""e' '
g=l

oo 'gk T

g —g(-l )& [(N+ 1) 2j]j2~e &&++i&~
btko "-- j~
gk d2k d2k41 r

=r+
&~

(2r+1) (N+1) d» +2 d,~, g (-1)~e ~
k4

e' —1 " v~ d'k 1)re-w
=rtanh(g~)+, —g —,(N+1) ",„(N+1)+2—

e' —1 e~ —e' "v' d"
J

d & d') 1
t anh( 27)+

( ~ 1}2
—

( ~ 1}3,1 -g—,(N+ ) d 2~ j d +y 1d 2
I

~ 1
(5.4)

we have defined v'=—(N+ 1)t and where the fourth
line of Eg, (5.4) has been written in such a way so
we can see clearly that the term (-1)"e ~ can be
dropped without getting into trouble even when v

approaches 0. Otherwise, our problem would be
sensitive to whether x is even or odd, which would

be quite unreasonable.
For all practical purpose, it is sufficient to

write

e"-e'
(N~) =r tanh(2r)+(, 1),

—v (, 1), . (5.5)

However, we can always improve the accuracy by
taking more terms of the series in Ec[. (5.4) with-
out much difficulty.

The exact expression and approximation for the
emission rate, in terms of photon number, can
be easily obtained by taking the derivatives of Eqs.
(5.3) and (5.5), respectively, as follows:

dI= (N )——
dt

~1

(—l)~(N-2i —1)(N- i)(i+1) e

2e"—4e' e"—4e"+ e'= (2r+ 1) —sech'(-,'~) —
(

—, 1}, + r

(5.6)

If we just want to calculate the expectation val-
ues of the photon number and the intensity them-
selves, then the first terms in both Eqs. (5.5) and

(5.6), which are well-known results of the very
first semiclassical calculation by Dicke, ' are ac-
curate enough. However, as will be seen soon,
only the second terms contribute to the fluctua-
tions in both photon number and intensity which
are completely quantum mechanical in origin.

An alternative expression for the intensity is I
—= ((r N~)(r+N~+ —1))= r'+ r —(N~' }—(N~) which
implies

(Nq~) = r2+r —I- (N—~)

=y' — -1 'N-2i-1 N —i i+1 —1 e &N "&'""
1aO

=r' tanh'(2~) +r 4e" —6e'+ 2 e~ —4e~+ e~

(e'+ 1)' (e'+ 1)'—2T (5.V)

Then, using Egs. (5..5) and (5.V), we can easily calculate the photon number dispersion as

(N~' }—(N~ }'= ,' r [tanh(2r)l* ,' use h'(c-,'r—)]sec-h'( —,'r},

which equals (N~) for short times, as is well known.

(5.8)
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To calculate the normally ordered intensity fluctuation. which can be measured in a photon-count
experiment, we first find the expectation value

{RR R-R-) =((N —n)(n+1)(N —n —1)(n+ 2) )

1)
(i+ 2)! (N f +—11~ ~

2

r' 4, . 2e~ —3e~ e~ —3e~+ e~= (2~+ 1)' —sech'(-,'r) —8x, , 1., + Sn(e'+ 1j' je*+1 ' (5 9)

{a~a~aa) —{ata)'
{ata)'

{R+R+R-R-)—I'
2I

= (1/~)[~ tanh(-,'~) —2j tanh(-,'~) . (5.10)

The analytic expression in Eq. (5.10) is, to our
knowledge, derived here for the first time. It is
important in determining the coherent properties
of the superradiant emission since we know that
o2(I) equals 0 for Poisson statistics (coherent) and
1 for Bose statistics (chaotic). From this expres-
sion we can see that, as long as r»1 and 7'«r,
o'„(I) is very close to 0; [it is exactly 0 at r =0

0.10—

. .09—

.08-

.07-

, 05
b

.04

.03

.02

.0$

Using Eqs. (5.6) and (5.9) we can now calculate the
intensity fluctuation as

I

and at v tanh(-,'r) = 2];hence, we conclude that the
emitted field behaves essentially classically. We
have plotted Eq. (5.10) in Fig. 2 with r =100 and
have reproduced in the same figure the plot of Fig.
6 of Ref. 3 for comparison. We can see that the
agreement is qualitative but not quantitative. The
discrepancy is, we believe, due to the fact that
the initial state used in Ref. 3 is a binomial dis-
tribution sharply peaked around x, 0) while we
have a 6 distribution. The appearance of negative
values for short times might look strange but is
easy to understand since ((N- n)(n+1)(N- n —1)
x (g+ 2)) = ((N —n)'(n+ 1)') —((N —n)(n+ 1)(2n —N+ 2))
which is approximately I ' —(2n —N+ 2)I for ex-
tremely narrow distributions.

VI. SUMMARY

In this article, we have presented an exact ana-
lytic solution of the superradiance master equa-
tion (SME) which describes the cooperative spon-
taneous emission from a system of N arbitrarily
excited two-level atoms. The solution is ex-
pressed in the form of a time evolution matrix
(TEM); when applied to any given initial prob-
ability distribution arranged as a column matrix,
it will yield the probability distribution as a func-
tion of time. Since the SME is Markovian, the
TEM is expected to satisfy the normalization con-
dition and the Chapman-Kolmogorov equation which
have been proven independently. Some exact gen-
eral formulas for the expectation values of vari-
ous physical observables have been derived in
terms of an arbitrary initial distribution. These
results have been applied to a specific example,
the superradiant initial state. In particular, an
analytic expression for the normally ordered in-
tensity fluctuation have been obtained and com-
pared with the direct numerical calculation by
Bonifacio, Schwendimann, and Haake.

PEG. 2; Plot of Eq. (5.10) for the normally ordered
intensity fluctuation cr„(I) with r =100 (solid line) in
comparison with the result of direct numerical solution
by Bonifacio, Schwendimann, and Haake (dotted line)
reproduced here with proper change of scale.
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APPENMX

In this Appendix, we v~ill prove the identity

i N-&'! 1
g

N-jp(-1)
~ ~

'~ . =(-1)' &(j — t, i +I) for N)i+j —2 and j )i, (A1)

where we have used the notations for binomial co-efficient and beta function.
By observation we can see that the left-hand side (LHS) of Eq. (A1) is just the coefficient of x~ '+' in the

expansion of the integral

(A2)

So we have

LHS= -1" B j-i k+1

=RHS .
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