Radiative transition probabilities of the $1s2p^2$ P and $1s2p^2$ D states of the lithium isoelectronic sequence

J. I,. Fox* and A. Dalgarno

Center for Astrophysics, Harvard College Observatory and Smithsonian Astrophysical Observatory, Cambridge, Massachusetts 02138 (Received 4 March 1977)

A Z-expansion procedure is used to obtain eigenvalues and eigenfunctions for the 1s²2p²P², 1s2p²P, Δ 2-capansion procedure is used to column eigenvalues and eigenvalues for the 1s $2p$ 1, 1s $2p$ obtained also for the dipole-matrix elements and oscillator strengths of the 1s²2p²P₂²²P₂ and 1s²2p²²P₂ and 1s²2p²²P₂ $^{2}P^{o}$ -1s2p²D transitions, valid for $Z > 3$. A separate calculation was performed for lithium. The calculated P^{o} -1s2p²D transitions, valid for $Z > 3$. transition probabilities agree with the Hartree-Fock values of Gabriel for large Z, but there are considerable discrepancies with the experimental data.

Recent observations of satellite lines of heliumlike ions in the solar corona and in laboratory plasmas have emphasized the need for accurate values of the energies and oscillator strengths of electronic transitions in multiply charged ions. Experimental results from beam-foil spectroscopy and theoretical calculations are available for the wavelengths of several transitions in lithiumlike ions,¹⁻⁵ but lifetime measurements and calculations are relatively rare.⁶⁻⁹ Spectra of the satellite groups $1s^22p^2P^0-1s2p^2P$ and $1s^22p$ $^{2}P^{o}$ -1s2 p^{2} ^{2}D were first observed in a vacuum spark by Edlén and Tyrén.¹⁰ More recently, lines belonging to these transitions have been identified in both solar flares 11 and nonflaring solar active in both solar flares¹¹ and nonflaring solar active regions.¹² In the laboratory, the lines have been observed in high-temperature plasmas, such as θ pinches⁴ and laser-produced plasmas, $13,14$ and in pinches⁴ and laser-produced plasmas,^{13,14} and
beam-foil spectra.^{15,16} Theoretical calculation have concentrated mainly on obtaining accurate transition wavelengths. Safronova and Kharitonova¹⁷ and Summers' have calculated the energies of these states using nonrelativistic second order $1/Z$ expansions. Goldsmith¹ and Vainstein and Safronova¹⁸ have done similar calculations with added terms to account for relativistic effects. Gabriel' and Bhalla, Gabriel, and Presnyakov¹⁹ have studied both the wavelengths and intensities of these and several other transitions in an intermediate coupling scheme using Hartree-Pock wave functions.

In this paper, we calculate energies and eigenfunctions of the $1s^22p^2P^o$, $1s2p^2P^o$, and $1s2p^2P^o$ states of the lithium isoelectronic sequence using an approximate high-order $1/Z$ expansion method. The results are used to obtain oscillator strengths of the $1s^22p^2P^0-1s2p^2^2P$ and $1s^22p^2P^0-1s2p^2^2D$ transitions.

I. INTRODUCTION **II. CALCULATIONS**

The calculations were done using the nonrelativistic Z-expansion theory of Drake and Dal-
garno.²⁰ The Schrödinger equation is given by garno.²⁰ The Schrödinger equation is given by

$$
(H - E_n) |\psi_n\rangle = 0 , \qquad (1)
$$

where H is the nonrelativistic Hamiltonian. The wave functions ψ_n and energies E_n can be found as expansions of the form

$$
|\psi_n\rangle = \sum_{s=0}^{\infty} |Z^{-s}| \psi_n^{(s)}\rangle
$$

and

$$
E_n = \sum_{s=0}^{\infty} Z^{-s} E_n^{(s)}.
$$

The oscillator, strength for an electric dipole transition is given in the length formulation by

$$
f = \frac{2}{3}(E_{n} - E_n)M ,
$$

where

$$
M = \left| \left\langle \psi_n \right| \sum_{\mathcal{Z}=1}^3 \vec{\mathbf{r}}_i \left| \psi_{n'} \right\rangle \right|^2 ,
$$

and all quantities are measured in atomic units. We may expand f_i in the form

$$
f_{\mathbf{i}} = \sum_{s=0}^{\infty} Z^{-s} f_{\mathbf{i}}^{(s)}.
$$

The square of the transition matrix element may be similarly expanded:

$$
M = \frac{1}{Z^2} \sum_{s=0}^{\infty} Z^{-s} M^{(s)}
$$

In this perturbation-variation method, a finite basis set is used to find approximate values for the expansion coefficients. Computational detail may be found in Watson and O'Neil.²¹ may be found in Watson and O'Neil.²¹

 16

283

τ

TABLE I. Atomic orbitals and configurations of the $1s^22p_i^2P^2$, $1s2p^22P$, and $1s2p^22D$ states used in the $1/Z$ expansion.

284

 ~ 10

 \sim \sim

 $\sim 10^7$

 ~ 10

$1s^22p^2P^o$	$1s2p^2~^2P$	$1s2p^2~^2D$
$-1.125000(0)$	$-7.500000(-1)$	$-7.500000(-1)$
1.093526(0)	$6.667298(-1)$	$6.536824(-1)$
-5.024 103(-1)	$-4.536265(-1)$	$-3.818746(-1)$
$-1.258319(-1)$	$-4.903188(-2)$	$-9.109562(-2)$
$1.433014(-1)$	$7.817505(-2)$	$-1.648713(-2)$
-1.834 173(-1)	$3.654516(-3)$	$-2.455665(-3)$
$-1.408782(-1)$	$4.172207(-1)$	$9.324469(-2)$
4.051577(0)	$-4.040002(-1)$	$3.034963(-1)$
1.141479(1)	$-3.653172(0)$	$-3.366886(-1)$
5.583699(0)	$7.734046(-1)$	$-3.126990(0)$
$-1.956390(1)$	$2.116235(+1)$	$-3.367930(0)$

The basis sets and configurations used in the $1/Z$ expansions are shown in Table I. In each state, hydrogenic orbitals are used for the 1s and $2p$ atomic orbitals. This ensures exact values for the zero- and first-order coefficients in the $1/Z$ expansions, and therefore correct values for the series limits at high Z , but it results in some loss of accuracy at low Z. The other exponents were chosen as physically reasonable, but no optimization was performed.

The series did not converge for $Z < 4$ and a separate variational calculation was carried out using a different basis set to obtain the energies and oscillator strengths at $Z=3$. In the lithium $1s^22p^2P$ basis set, the 1s and $2p$ orbitals were selected to be Hartree-Fock orbitals. The nine other orbitals had exponents similar to those used by Weiss 22 in his 45-configuration wave function. The $1s2p^2$ ²P and $1s2p^2$ ²D basis sets each consist of 13 Slatertype orbitals with arbitrary exponents. The basis sets and configurations are shown in Table II. Each wave function is made up of a total of 60 configurations.

TABLE III. Eigenvalue expansion coefficients $E^{(s)}$. TABLE IV. Eigenvalues for the Li isoelectronic sequence $(a.u.).$

	z	$1s^22p^2P^o$	$1s2p^2$ ² P	$1s2p^2~^2D$	
	4	-14.148	-9.793	-9.791	
ł	5	-23.179	-15.876	-15.882	
	$\boldsymbol{6}$	-34.458	-23.459	-23.475	
	7	-47.988	-32.542	-32.569	
	8	-63.768	-43.125	-43.164	
	9	-81.798	-55.207	-55.259	
	10	-102.078	-68.790	-68.854	
	11	-124.609	-83.873	-83.950	
	12	-149.390	-100.456	-100.545	
	13	-176.420	-118.539	-118.641	
	14	-205.701	-138.123	-138.237	
	15	-237.232	-159.206	-159.333	
	16	-271.013	-181.789	-181.929	
	20	-428.638	-287.110	-287.313	
	26	-732.575	-490.120	-490.390	
	28	-851.888	-569.787	-570.082	

Using these basis sets, we calculated wave functions and energies of the lithium isoelectronic sequence. The energy expansion coefficients for each state through tenth order are shown in Table III, and the resulting eigenvalues for several values of Z are presented in Table IV. The energies are less accurate than those obtained by calculations in which the exponents are optimized.^{2,8,22} The $1s^22p^2p^0$ wave functions of Weiss²² are much more compact and yield better energies; our more diffuse wave functions, however, should yield accurate values for the transition matrix elements. The expansion coefficients for the square of the matrix element and the oscillator strengths using calculated energies are shown in Table V.

In Table VI, our calculated transition wavelengths are compared to the values given by lengths are compared to the values given by
Gabriel.^{9,23} Gabriel calculated the energy dif-

	$1s^22p^2P^o-1s2p^2^2P$		$\frac{1s^22p^2P^0-1s2p^{2-2}D}{M^{(s)}}$		
S	$M^{(s)}$	f(s)		f(s)	
Ω	1.664787(0)	4.161 967(-1)	$9.248817(-1)$	$2.312\ 204(-1)$	
	-9.046 128(-1)	-6.998 365(-1)	$-8.923248(-1)$	$-4.942835(-1)$	
$\overline{2}$	$-4.448304(0)$	-8.005 427(-1)	-2.398 158(0)	$-2.635631(-1)$	
3	$-3.731572(0)$	3.886 $038(-1)$	-1.482 011(0)	$2.824206(-1)$	
4	$1.239.326(+1)$	3.896.796(0)	3.778 872(0)	1.067390(0)	
5	$1.445865(+1)$	$-1.38171(2)$	$-2.661458(-1)$	$-1.142603(0)$	
6	$-1.111834(+2)$	$-3.099805(+1)$	$-2.275432(+1)$	-5.049 027(0)	
7	$-2.811860(+2)$	-4.323 103(+1)	$2.519757(+1)$	$1.045600(+1)$	
8	$3.986962(+2)$	1.601 097 $(+2)$	2.667 313(+2)	$5.148775(+1)$	
$\dot{9}$	$3.099112 (+3)$	$6.629902(+2)$	5.354 $305(+2)$	$6.500718(+1)$	
10	$6.874226(+3)$	$9.504449(+2)$	1.072 063(+3)	$1.736700(+2)$	

TABLE V. Expansion coefficients $M^{(s)}$ and $f^{(s)}$ for the $1s^22p^2P^o-1s2p^2P^o$ and $1s^22p$ ${}^{2}P^{o}$ -1s2p² ${}^{2}D$ transition.

z	System	Wavelength (A) Calculated	Empirical	This paper	· Radiative lifetime $(10^{-12} s)$ Gabriel	Experimental ^a
4	Be	104.6		7.96 ^b		
5	B	62.41	\cdots	2.34 ^b	\ddotsc	3.9
6	C	41.44	41.38	0.91	0.79	1.4
7	N	29.51	29.47	0.43	0.38	≤ 2.2
8	Ω	22.07	22.05	0.23	0.216	≤ 2.1
9	F	17.14	17.12	0.13	0.12	
10	Ne	13.69	13.67	0.082	0.076	
11	Na	11.19	11.17	0.054	0.050	
12	Μg	9.31	9.30	0.037	0.034	
13	Al	7.87	7.86	0.026	0.024	
14	Si	6.74	6.73	0.019	0.017	
15	P	5.84	$5.82 -$	0.014	0.013	
16	s	5.11	5.09	0.011	0.098	
20	Ca	3.23	3.20	0.0040	0.0038	
26	Fe	1.88	1.86	0.0013	0.0013	
28	Ni	1.62	1.60	0.00098	0.00099	

TABLE VI. $1s^22p^2P^o-1s2p^2^2P$.

The experimental value includes a contribution from autoionization.

^b These values were calculated using the theoretical wavelengths.

ferences between the resonance line and the satellite line and then adjusted the results to agree with some accurately known satellite energies. His resome accurately known satellite energies. His re-
sults agree well with other published results.^{3,10-12} Because of the relative inaccuracy. of our energies, we used the empirical wavelengths' to calculate the lifetimes shown in Tables VI and VII. The uncertainty in the lifetimes then arises from the calculated value of the dipole matrix element. The calculated lifetimes of Gabriel⁹ and the experimental values of Knystautas and Drouin¹⁵ are

listed in the tables. The differences between our lifetime results and the Hartree-rock values of Gabriel⁹ are due primarily to the effect of core polarization, which is ignored in Hartree-Pock calculations.

The measured lifetimes of Knystautas and Drouin¹⁶ for the $1s2p^2$ ²P state are considerably longer than the theoretical values for 8 III and C IV. The upper limits measured for the NV and OVI lifetimes are consistent with the calculated values. Our calculated lifetimes are slightly

		Wavelength (Å)		Radiative lifetimes $(10^{-12} s)$	
z	System	Calculated	Empirical	This paper	Gabriel
	Be	104.6		25.0	
$\frac{4}{5}$	B	62.46	62.21 ^a	6.94	
6	C	41.50	41.55	2.72	2.40
7	N	29.56	29.57	1.26	1.16
8	О	22.12	22.11	0.66	0.62
9	F	17.17	-17.17	0.39	0.37
10	Ne	13.72	13.71	0.24	0.26
11	Na	11.21	11.20	0.15	0.15
12	Mg	9.33	9.32	0.10	0.11
13	Al	7.89	7.88	0.073	0.071
14	Si	6.76	6.74	0.053	0.051
15	\mathbf{P}	5.85	5.84	0.039	0.038
16	\mathbf{s}	5.12	5.10	0.029	0.029
20	Ca	3.23	3.21	0.011	0.011
26	Fe	1.88	1.87	0.0037	0.0037
28	Ni	1.61	1.60	0.0027	0.0027

TABLE VII. $1s^22p^2P^0-1s2p^2^2D$.

Measured value from Ref. 16.

^b Calculated using the theoretical wavelength.

	$1s^22p^2P^o$	$1s2p^2P$	$1s^2p^2D$
Energy $(a.u.)$ Transition	-7.4046 $1s^22p^2P^2-1s2p^2^2P$	-5.2097	-5.2022 $1s^22p^2P^o-1s2p^2^2D$
Matrix element M Oscillator strength f Radiative lifetime $(10^{-12} s)$	0.0824 0.1207 54		0.0372 -0.0545 177

TABLE VIII. Lithium energies and oscillator strengths.

longer than the Hartree-Fock values of Gabriel,⁹ but they come into agreement as the nuclear charge increases.

The energies and oscillator strengths of the transitions in lithium are shown in Table VIII., Buchet et al.¹⁵ have observed the $1s^22p^2P^o-1s2p^2$ ${}^{2}P$ transition in beam-foil spectra and report a wavelength of 207.5 ± 0.5 Å, in harmony with our calculated value of 207.6 \AA . They obtain an upper limit of $0.015 \pm .01$ ns for the lifetime compared to our value of 0.054 ns. Although our lifetime is appropriate to purely radiative decay, the contribution from autoionization of the $1s2p^2$ ²P^o state is surely small for Li and there is a substantial discrepancy between theory and experiment.

Note added in proof: H. Nussbaumer [J. Phys. B 9, 1757 (1976)] has calculated transition proh-

- *Also Department of Chemistry, Harvard University.
- ¹S. Goldsmith, J. Phys. B 7, 2315 (1974).
- 2 B. R. Junker and J. N. Bardsley, Phys. Rev. A 8 , 1345 (1973).
- ³H. P. Summers, Astrophys. J. Lett. 179, L45 (1973).
- $4A.$ H. Gabriel and C. Jordan, Nature (Lond.) 221, 947 (1969).
- $5A. B. C.$ Walker and H. R. Rugge, Astrophys. J. 164 , 181 (1971).
- $6B$. Donnelly, W. W. Smith, D. J. Pegg, M. Brown, and I. A. Sellin, Phys. Rev. A 4, 122 (1971).
- ${}^{7}P$. Richard, R. L. Kauffman, F. Hopkins, C. W.
- Woods and K. A. Jamison, Phys. Rev. A 8, 2187 {1973). 8 J. S. Onello, L. Ford and A. Dalgarno, Phys. Rev.
- A 10, 9 (1974). ⁹A. H. Gabriel, Mon. Not. R. Astron. Soc. 160, 99
- (1972).
- 10 B. Edlén and F. Tyrén, Nature (Lond.) 143 , 940 (1939).
- 11 Yu. I. Grineva, V. I. Karev, V. V. Korneev, V. V. Krutov, S. L. Mandelstam, L. A. Vainstein, B. N. Vasilyev, and I. A. Zhitnik, Sol. Phys. 29, 441 (1973).
- 12 J. H. Parkinson, Nature (Lond.) 236, 68 (1972).
- $13N.$ J. Peacock, M. G. Hobby, and M. Galanti, J. Phys.

abilities for Fe XXIV and Ni XXVI using a small set of configurations but including spin-orbit interactions. His probabilities for individual transitions are significantly different from those of Gabriel.⁹ who took account of spin-orbit interactions empirically. Our average lifetimes agree more closely with the results of Gabriel.

ACKNOWLEDGMENTS

We are indebted to Dr. A. H. Gabriel for permission to quote his unpublished wavelengths and to Dr. R. M. Stevens for providing us with a Hartree-Fock wavefunction for the $1s^22p^2P$ state of lithium. This work has been supported in part by ERDA, under Contract No. EY-76-S-02-2887.

B 6, L298 (1973).

- ¹⁴U. Feldman, G. A. Doschek, D. J. Nagel, W. E. Behring, and R. D. Cowan, Astrophys. J. 187, ⁴¹⁷ (1974); U. Feldman, G. A. Doschek, D. J. Nagel, R. D. Cowan, and R. R. Whitlock, Astrophys. J. 192, 213 (1974).
- $¹⁵$ J. P. Buchet, M. C. Buchet-Poulizac, H. G. Berry,</sup> and G. W. F. Drake, Phys. Rev. ^A 7, 922 (1973).
- $^{16}E.$ J. Knystautas and R. Drouin, in Beam Foil Spectroscopy, edited by I. A. Sellin and D. J. Pegg (Plenum, New York, 1976), p. 393.
- 17 U. I. Safronova and V. N. Kharitonova, Opt. Spectr. 27, 300 (1969).
- 18 L. A. Vainstein and U. I. Safronova, Short Communica tions in Physics (Lebedev Institute) 40 (1972).
- $19C.$ P. Bhalla, A. H. Gabriel and L. P. Presnyakov, Mon. Not. R. Astron. Soc. 172, 359 (1975).
- ²⁰G. W. F. Drake and A. Dalgarno, Chem. Phys. Lett. 3, 349 (1969).
- 21 D. K. Watson and S. V. O'Neil, Phys. Rev. A 12, 729 (1975).
- $22A$. W. Weiss, Astrophys. J. 138, 262 (1963).
- $23A$. H. Gabriel (private communication).