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The Wilcox-Lamb method of deriving rate equations from Bloch equations is outlined using as an example
a two-level atomic model. Computer-generated plots directly comparing solutions of these rate equations and
of Bloch equations for a three-level atomic model are illustrated. Two cases of interest are discussed:
copropagating and counterpropagating laser beams. Some comments concerning collisional accessing and
ionizing of atoms in a very broad Doppler profile are made.

I. INTRODUCTION

The dynamics of atomic excitation under the in-
fluence of radiation has traditionally been de-
scribed by rate equations ‘which balance popula-
tion gains and losses. For elementary radiative
processes the rate coefficients are the familiar
Einstein A and B coeff1c1ents for spontaneous and
stimulated emission.!

With the introduction of lasers, intense sources
of coherent nearly monochromatic light, new
classes of phenomena became apparent. The
Schrédinger equation is commonly used to de-
scribe details of time-dependent behavior in which
coherence of the radiation-atom interaction domi-
nates the dynamics.

The rate equation and the Schrddinger equation
are usually viewed as two extremes of a more gen-
eral dynamics expressed through the Liouville or
Bloch equations? for the density matrix p. The
diagonal elements of p provide the population vari-
ables of the rate equation, and off-diagonal ele-
ments of p contain phase information as do the
Schrédinger amplitudes.

For an N-level atom the rate equations com-
prise N equations for N real variables; the Schro-
dinger equation yields N equations for N complex
variables; whereas, the Bloch equations deal with
N real and N(N - 1)/2 complex variables. Thus
rate equations are attractive for physical as well
as computational simplicity. Under what condi-
tions can rate equations be used with confidence
for modelling multiphoton ionization dynamics ?
As a rule,® if the coherence-preserving stimulated
rates are much slower than incoherent rates, such
as spontaneous emission, collisional phase inter-
ruption, or ionization, then coherence can be ex-
pected to pay a minor role in the excitation dy-
namics. - However, even when these intuitive in-.
equalities fail and coherent population pulsations
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occur, it may still be possible to obtain reliable
population averages from rate equations.

Recently some work on multiphoton ionization
of atoms and molecules has shown specific cases
where Schrédinger-equation or Bloch-equation
solutions are identical with rate-equation solu-
tions.* For two-photon interaction, these regimes
correspond to very weak or very intense laser in-
tensities (compared with the ionization rate).*®
For multilevel excitation leading to ionization, it
was shown that a very large ionization rate can
totally dominate the dynamics, thereby making
each successive transition of the excitation ladder
describable by successively increasing stimulated
emission rate.*®

The purpose of this paper is to study for very
general parameter choices (not simply expected
rate limits) the agreement between the Bloch-
equation solutions and rate-equation solutions in
multiphoton ionization. The agreement will be
considered good if the rate-equation solutions
represent the time-averaged Bloch-equation solu-
tions, meaning that the gross features of popula-
tion flow from the initially totally populated ground
state up through the excited bound levels into the
continuum are accurately described. Some analyt-
ic calculations along these lines have been done in
the context of excitation transport and laser-in-
duced rate processes in gases.®

A well-defined method for deriving rate equa-
tions from Bloch equations was outlined in 1960 by
Wilcox and Lamb.® Their formal technique is
based on the assumption that the off-diagonal den-
sity matrix elements relax very rapidly to steady-
state values. Their method yields an exph(’:lt form
for the absorption cross section.

Section II of this paper illustrates the Wilcox-
Lamb method applied to a two-level atomic model.
In Sec. III we show, for a more interesting three-
level atomic model, some computer plots compar-
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ing rate- and Bloch-equation solutions for co-
propagating the counter prqpagating laser beams.
In the concluding sections, we summarize our re-
sults and find that we can make some comments
on collisional accessing of atoms within a very
broad Doppler profile.

II. WILCOX-LAMB METHOD

In 1960, Wilcox and Lamb proposed a method for
deriving rate equations from Bloch equations.® In
this section we will outline their general approach
using a two-level model atom.

The equations of motion describing the inter-
action of light with a two-level atom are well
known":

F"u = %in(plz - P21, . (1)
[322 = %iﬂ(plz = P21 » (2)
512 =iAp,, —- %iﬂ(pzz - Py, (3

where the ground state (excited state) is indicated
by the index 1 (2). Here p;;=p}; is the atomic den-
sity matrix element coupling the states ¢ and j.

A is the detuning frequency between the atom and
the laser.  is the on-resonance Rabi frequency
which describes the rate of coherent population
cycling between the two atomic levels.

The introduction of homogeneous rates into the
Bloch equations can be accomplished with a first-
principles calculation. However, for simplicity
we will introduce them in the standard way® and
write

Py =2iR(p55 = pay) + (1/T)pys @)
Doz = —2ipyz — Pay) = (1/T)psy = Rpss (5)
Pra= =105 = 2iR(py — p1y) = (1/27)py,

~3Rpy, - (1/2T))p,, , (6)

where 1/7 is the spontaneous emission rate, R is
the ionization rate, and 1/7; is the collisional
phase destruction rate. Spontaneous emission and
ionization affect both level populations and atomic
coherence, whereas collisions in this model only
affect atomic coherence by relaxing the off-diag-
onal density matrix elements. For simplicity, we
shall assume the laser intensities to be sufficient-
ly large such that spontaneous emission can be
neglected (1/7 =0).

The first step of the Wilcox-Lamb procedure is
to set the time derivatives of the off-diagonal den-
sity matrix elements to zero. We can then solve
these algebraic equations for the off-diagonal den-
sity matrix elements in terms of only diagonal
density matrix elements. For our two-level atom-
ic model we obtain

FUV | )
102 _+iA+%R+1 2T, P22 — P11
11 .
3QGR+1/2T, i)
= (%R +1/2TI)2+ A2 (p22 "pll) . (7)

By substituting these solutions for the off-diagonal
density matrix elements into the differential equa-
tions for the diagonal density matrix elements, we
obtain the desired rate equations,

»F;u:Rs (P22 = P11) i (8)
P 22= =Ry (P22 — p11) = Rpys s 9)

where the stimulated emission rate R, for this "
two-level model is

$2R+1/T,)
~_ 4 I .
Bo=rinT ) 8 (10)

If we define the photon frequency to be w and the
magnitude of the transition dipole matrix element
to be d, then the photon flux is

c @

B oF (11)

By substituting (11) into (10) and defining the stim-
ulated rate to equal the flux multiplied by the ab-
sorption cross section o, we find®

_(@rwd®/c)R+1/T))

C= AR+ 12T P+ & (12)

The form of the cross section is a Lorentzian
broadened by all the homogeneous broadening me-
chanisms in the model. Note that the laser power
does not appear in the cross section.

III. COMPUTER SOLUTIONS

It is not difficult to generalize the two-level
equations, particularly for a system wherein the
laser interaction links only successive levels
along an excitation ladder. Diagonal elements of
p evolve according to the equation

N .1 1.
Pmm= 'lzﬂm(pm-l,m - pm,m—l) + Z'LQ'm-x-l (pm,m-!-l - pm+1,m)

~ 1 iRo, o~ 1 13)
. (lgnz ka + mN)pmm+ »Zm,‘rkm Prr s (
where 1/7,,, is the spontaneous emission rate from
the state % to the state m, £, is the Rabi frequency
for the transition m, and R is the ionization rate
loss from the highest bound level N. Off-diagonal
elements obey the equation h

- 1 1 R 1 )
Pm--<1Am+ > 27”;*‘2 ZT—M+'§6Nn+'2TI Pmn
, k<m k<n
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- %inm-x-lpm-l-l,n ’ (14)
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m<n, where A is the laser-atom detuning be-
tween levels m and n. 1/T, is the collision phase
destruction rate which is assumed constant inde-
pendent of m and #.

As discussed in the previous section, we obtain
rate equations by setting off-diagonal time de-
rivatives (14) to zero, solving (14) for off-diago-
nal elements, and substituting the result into Eq.
(13). Although this prescription has been followed
analytically by several authors,*¢ the resulting
formulas are quite complicated, even for a three-

level atom. We have instead constructed solutions ‘

numerically. The following paragraphs examine
some of our results for a three-level atom.

The Rabi frequencies, £, and ©,, and the ioniza-
tion rate R will be fixed parameters: Q,=9,=1
and R =0.5. We will vary both the collisional phase
interruption time and the detuning independently
for the two cases of copropagating and counter-
propagating lasers. If the lasers are copropagat-
ing, then a laser-atom detuning of A, for the first
transition implies a laser-atom detuning of 24,
for the two-photon transition. If the lasers are
counterpropagating, then we have the two-photon,
Doppler-free case: a detuning of A, for the first
transition is cancelled by the detuning A, of the
second transition, such that the two-photon transi-
tion is always resonant. ’

We would expect that the Wilcox-Lamb rate equa-
tions are exact if 1/7, is very large. In this case,
the off-diagonal density matrix elements relax
very rapidly to their steady-state values, making
their derivatives exactly zero. We have used this
information to check our computer code.

Figure 1 shows the Bloch and rate solutions on-
resonance with no collisional phase interruption.
The agreement appears very good in this case,
since the rate curves roughly represent the time-
averaged Bloch solutions. By turning on the col-
lisions, we notice in Fig. 2 the damping out of the
Rabi oscillations, and after the initial transients
decay, the solutions for the lower populations and
for the ions become essentially identical. On this
time scale, the total ions produced are almost the
same in Figs. 1 and 2, implying that on-resonance
for 1>1/T, >0 the ion production is independent
of 1/T,. On-resonance there is no difference be-
tween copropagating and counterpropagating laser
beams.

In Fig. 3, we choose a laser-atom detuning for each
successive transition equal to the Rabi frequency
and have no collisional relaxation. The rate-equa-
tion solutions have no obvious relation to the Bloch-
equation solutions. In particular, the rate equa-
tions do not predict any ionization, while the
Bloch-equation solutions on this time scale predict
roughly 20% ionization. If we keep the detuning

.......
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FIG. 1. Atomic level populations versus time (in units
of inverse Rabi frequency) obtained as solutions to Bloch
equations (solid line) and to rate equations (dotted line):
A =level 1; B=level 2; C=level 3; D=ions. Parameters
are Rabi frequencies Q;=Qy=1 and ionization rate R
=0.5. Both lasers are resonant (either collinear or
counterpropagating); there is no collisional phase in-
terruption: 1/7;=0.

fixed, but introduce collisional relaxation equal to
the Rabi frequency, then in Fig. 4 we find very
good agreement between the rate- and Bloch-equa-
tion solutions after the initial transients decay.
The off-resonance ionization with collisional re-
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FIG. 2. Same as in Fig. 1 (2;=Q,=1; R=0.5; A=0)
but with relaxation rate equal to the Rabi frequency,
1/T,;=1.
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FIG. 3. Atomic populations versus time obtained as
solutions to Bloch equations (solid line) and rate equa-
tion (dotted line): A =level 1; B=level 2; C=level 3;
D=ions. Parameters are Q;=9Q,=1 and R=0.5; lasers
are collinear and are detuned by one Rabi frequency,
A=Q,=1; no relaxation, 1/7T;=0.

laxation on this time scale is roughly 65%.

We are observing pressure broadening as a
means-of ionizing atoms off-resonance. The
atomic levels are effectively broadened by the col-
lisions, ‘allowing the detuned lasers to effectively
resonantly excite and ionize many atoms. For the
two-level model, Eq. (12) shows the broadening
effect of collisions on the absorption cross sec-
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FIG. 4. Same as Fig. 3 (2=9Q;=1; R=0.5; A=1, col-

linear lasers) but with relaxation rate equal to Rabi rate,

1/Tr=1.

0 10 20
Time Time
FIG. 5. Same as in Fig. 3 (2;=Qy=1; R=0.5; detuned
A=1; no relaxation, 1/7;=0) but with counterpropagating
lasers. ‘ . .

tion. If we would continue to broaden the tran-
sition by increasing 1/T,, we would find that
the number of ionized atoms decreases. The opti-
mum can be shown to be in this case nearly unity.

In Fig. 5 we consider counterpropagating laser
beams where the intermediate-level detuning
equals unity, but the two-photon transition is reso-
nant. Collisional relaxation is negligible. We see
very good agreement between rate-equation solu-
tions and Bloch-equation solutions. We suspect
the two-photon resonance is the origin of this
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FIG. 6. Same as in Fig. 5 (2;=Qy=1; R=0.5; detuned
A =1 counterpropagating) but with relaxation 1/T;=1.
(Same as in Fig. 4 but counterpropagating.)



agreement, since Fig. 1 shows that resonance al-
lows rate-equation solutions to be the time aver-
ages of the Bloch-equation solutions. The number
of ions collected on this time scale is almost iden-
“tical to that collected in Fig. 1, where the inter-
mediate level is resonant. We see a very uniform
ionization, which is very large and independent of
the intermediate-level detuning. If we increase
the collisional relaxation as shown in Fig. 6, the
ionization on this time scale decreases. As ex-
pected, the rate- and Bloch-equation solutions are
identical after the initial-time transients decay.

IV. COMMENTS ON COLLISION OR PRESSURE
BROADENING

The implications of our results with respect to
multiphoton ionization of atoms which are substan-
tially Doppler broadened is that for copropagating
lasers a collision bandwidth on the order of the
Rabi frequency can substantially improve the off-
resonance ion output, while not significantly re-
ducing the on-resonance ion output. In Fig. 7, we
see overall ion output within the Doppler profile as
a function of time and detuning. On the same time
scale, Fig. 7(b) shows the increase in the ion out-
put with collisions as compared to Fig. 7(a). How-
ever, Fig. 7(c) shows that if the collision width
becomes much larger than the Rabi frequency,

overall ion output is reduced. The unequal increase

in the ion output with time in Fig. 7(a) is' a result
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FIG. 7. Distribution of ions at successively later times
(solid curves) within a Doppler profile: relative ion
probability versus detuning in units of Rabi frequency Q.
Parameters are Rabi frequencies Q;=Q,=1; ionization

rate R =0.5; collinear lasers. (a) No relaxation, 1/7;=0.

(b) Relaxation rate equal to Rabi frequency, 1/T;=1. (c)
Relaxation rate muchlarger than Rabi frequency, 1/7 1=5.
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FIG. 8. Same as Fig. 7 (2,=9,=1; R=0.5) but with
counterpropagating lasers. (a) 1/T;=0; (b) 1/T;=1; (c)
1/T;=5.

of Rabi oscillations. We can see this by comparing
Fig. 1 with the resonant-ion production in time in
Fig. 7(a). The collisions act to reduce the coher-
ence and, therefore, the Rabi oscillations. The
roughly uniform increase in the ion output with
time is shown in Figs. 7(b) and 7(c). The resonance
portion of Fig. 7(b) can be compared with Fig. 2.

In Fig. 8, we illustrate the case where the lasers
are counterpropagating. The ion output with an in-
creasing collision bandwidth continually decreases.
We see this effect by comparing Fig. 8(a) with Fig.
8(b) and Fig. 8(c). For a collision bandwidth
greater than or proportional to the Rabi frequency,
we find essentially no difference between coprop-
agating and counterpropagating lasers: compare

T,

FIG. 9. Schematic plot of Doppler-averaged ionization
versus collision width 1/T, _fbr collinear lasers (dashed
line) and counterpropagating lasers (full line). Shaded
region indicates region where rate equations fail.
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Figs. T(b) and 7(c) with Figs. 8(b) and 8(c). The
collision broadening has become sufficiently large
such that the concept of resonance is no longer
meaningful. Off-resonance atoms are now as reso-
nant as resonantly pumped atoms. In general,
counterpropagating lasers and no collisions maxi-
mizes ion output.

V. SUMMARY

We found that without any collisional phase inter-
ruption, the rate-equation solutions represent the
time-averaged Bloch-equation solutions if we are
on-resonance. Agreement is also good if we tune
our lasers to a two-photon resonance, but allow
intermediate-state detuning. The comparison be-
tween rate-equation solutions and Bloch-equation
solutions off-resonance is poor if we have our
lasers copropagating. Therefore, rate equations

cannot be used with confidence to model a system
of atoms which have a large Doppler profile if the
lasers are copropagating. If the lasers are
counterpropagating, however, such that we have'a
two-photon resonance over the entire Doppler pro-
file, then rate equations can be used with confi-
dence.

If we introduced a collisional- or pressure-
broadened width on the order of the Rabi frequency,
then in all cases after the initial transient period
rate-equation solutions and Bloch-equation solu-
tions become identical. As expected, rate equa-
tions can be used with confidence. In addition, ion
output off-resonance is significantly improved by
pressure broadening if the lasers are copropagat-
ing. Figure 9 shows the Doppler-averaged ioniza-
tion as a function of the collision width 1/7, and
the region where rate equations are not valid.
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