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Excitation energies and line strengths in the Mg isoelectronic sequence*
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Excitation energies and line strengths for the low-lying states of ions in the Mg isoelectronic sequence are
studied using relativistic multiconfiguration Hartree-Fock techniques. Line strengths for all possible electric
dipole transitions between these low-lying states are calculated in both the length gauge and in the velocity
gauge along the sequence from Mg to U+', and the results show good agreement between these two forms
of line strength for all cases considered. At low Z, the results of the present work are in good agreement
with other recent theoretical calculations, The results of this. work are expected to give accurate excitation
energies and line strengths at high Z as well since relativistic effects are treated nonperturbatively.

I. INTRODUCTION

Theoretical studies of the line strengths for
highly stripped ions are of current interest be-
cause of the usefulness of these data in astrophy-
sical observations, ' for plasma diagnostics in con-
trolled thermonuclear reactions, ' and in laboratory
beam-foil experiments. ' The main difficulty as-
sociated with these theoretical studies is that one
has to deal with electron-electron correlation ef-
fects; furthermore, relativistic corrections be-
come more and more important with increasing
Z along an isoeleetronic sequence, so that the
usual perturbative treatment of relativistic effects
is not suitable.

Recently, several fully relativistic studies of
oscillator strengths have been reported for vari-
ous isoeleetronic sequences: the Li and Be se-
quences using relativistic multiconfiguration Har-
tree-Fock (MCHF) techniques, "' the He, Be, and

Mg sequences using the relativistic random-phase
approximation (RRPA),"' and the Mg sequence
using a parametric potential. " For the Mg se-
quence, there is also the study using the super-
position-of-configurations (Spp) technique with
relativistic effects being treated, in Pauli's approx-
imation, "as well as nonrelativistic studies using
a model potential" and the time-dependent Har-
tree-Fock (TDHF) method. "

'The RRPA technique is suitable for the study
of line strength at high Z. However, this method
is at present confined to the studies- of excitations
of a single valence electron from the ground state
in closed shell systems. States dominated by two-
electron excitations, for example, cannot be treat-
ed in RRPA calculations. 'The alternative SOC
and parametric potential methods do not suffer
from the restriction to single-electron excitations.
However, a large number of configurations is
usually required to achieve good accuracy, and
the quality of these studies is thus difficult to as-
s.ess.

The MCHF calculations utilize a variational prin-
ciple in choosing an optimum set of single-particle
wave functions and, therefore, relatively few con-
figurations are required to give accurate energy
values. Furthermore, the MCHF technique pro-
vides an unambiguous way of identifying the low-
lying energy levels and thus makes possible stud-
ies of systematic trends of line strengths along
the entire isoelectronic sequence. To illustrate
the utility of the MCHF technique, we present here
a systematic study of the excitation energies and
line strengths for the low-lying states of ions in the
Mg isoelectronic sequence. specifically, a set of
low-lying states is generated throughout the se-
quence, and all possible electric dipole transitions
between these states are studied in both the length
gauge and the velocity gauge from Mg to O'". In
the following section, we discuss the general pro-
cedure for calculations in the MCHF scheme, then
in Secs. III and IV, we present and discuss our re-
sults in detail.

II. THEORY

A. Energy level"

In relativistic theory, energy levels are charac-
terized by the total angular momentum J and the
parity m. States with the same J and m are further
classified by the ordering of their energies. For
Mg-like ions, there are two valence electrons in
thy M shell, and possible energy levels are those
with either even or odd parity and with J=O, 1,
2, . . . , etc.

In our present calculation, multiconfiguration
wave functions are used for the ground state as
well as for the other low-lying excited states. A
state

~
jm) with definite parity m and angular mo-

mentum j is written as a linear combination of
wave functions with different electronic configura-
tions:

~j m) = $ c;
~
(a,b, )j m),
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TABLE I. Two electron configurations included in the present calculation are listed for
each value of n and J, together with spectroscopic designations of the lowest two eigenstates.

' Parity J

Even 0

2
I

Odd 0

Configuration

3s ~ 3p ~ 3p»~ 3d ~ 3d»

3p 3p», 3s3d, 3d 3d,

3p, 3p 3p, 383d, 383d, 3d, 3d, 3d 3d

3s3p q 3p»3d

3s3p, 3s3p», 3p 3d, 3p»3d, 3p»3d»

3s3p») 3p 3d ) 3p 3d») 3p»3d, 3p»3d»

ig

Pi

D2

P
3p

3p

Pp

P

Pi

Eigenstates
First Second

where (a,b, ) denotes a configuration of the two va-
lence electrons, and c; is the corresponding
weighting factor. In Eq. (1),

~
(ab)jm) are anti-

symmetric wave functions of the total angular mo-
mentum j constructed from Slater determinants
of single-particle orbitals

~ j,mitm, ) as

~
(ab)jm) = g C(j,j~j; m, mam)

~j, m, j~ mt) .
m mb

(2)

In constructing the wave functions
~jm) in Eq.

(1), we have confined ourselves to those configura-
tions within the same complex, i.e., having the
same principal quantum number n (in our present
case, n=3). This, however, is not a serious re-
striction. As we shall show in the next section,
the values of the energy levels at low Z in our
present calculation are in good agreement with
experiments, and we expect that our results
should be at least as accurate at high S, because
the wave functions will then be dominated by con-
figurations within the same complex. "

In Table I, we list the energy levels and the cor-
responding configurations that we consider in this
work. Spectroscopic notations are used for these .
states, though this is no more than a convenience
in labeling the energy levels in our present inter-
mediate coupling calculations. Specifically, the
nine states that we have studied are, in order of
increasing energy at low 8: 'S', 'P'(J=O, 1, 2),
'P', 'D' and 'P' (J= 0, 1, 2). For the sake of sim-
plicity, the symbols p„p, d„and d are used to
denote the p, &„p,&„d,&„and d, &, orbitals, re-
spectively, in 'Table I and throughout this work,
while p and d simply refer to the nonrelativistic
designations of the orbitals with /=1, 2, respec-
tively.

an electric (magnetic) multipole field and J,M are
the angular momenta of the emitted photon. 'The

transition rate A, z from an initial state
~
jm) to

a final state
~

j'm') by emission of a single photon
is then given by

a~~„'(r) = [(J+ 1)j~(&ux)/&ur j~„(ex—)]Y~„'(f')
I

+ [Z(Z+ 1)]"'[j,((u~)/(o~]Y,'„"(f), (4)

where jz(~x) is the spherical Bessel function of
order J, and Y~„' and Y~~" are vector spherical
harmonics.

. The expression of the vector field a~~„' in Eq. (4)
is based on an expansion of the vector potential
A(r) in the Coulomb gauge. " In principle, a gauge
transformation can always be made without affect-
ing the transition matrix element (j'm'

~

a~~„'
~ n jm). In practice, however, it is well known
that in approximate Hartree-Fock or MCHF cal-
culations, the transition matrix is gauge depen-
dent. In particular, the expression of a~„' in
Eq. (4) reduces to the velocity form in the nonrela-
tivistic limit, while a suitable gauge transforma-.
tion can lead to the relativistic length form, with
the subsequent replacement of the transition opera-
tor az's ~ n by a+~ n —Qz~, where'

&=8vn&u g((j'm' ~a~~J gn jm) ~'.
m'

Here, ~ is the transition energy and n is the
usual Dirac matrix. Natural units are used in Eq.
(2) and throughout this section. For electric mul-
tipole transitions, a~„' is given by

B. Transition rates

For electromagnetic multipole transitions, the
vector potential A(r) is expanded into a series of
multipole vectors a~~~'(r), where X = 1 (0) denotes

Since gauge invariance is a fundamental physical
constraint, the difference between the results of
these two forms should provide a guide to the re-
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liability of our present MCHF studies. For com-
parison purposes, we have calculated the transi-

- tion matrix in both the length and the velocity
forms. In doing so, we have taken into account
a special feature of the MCHF calculations, speci-
fically, the initial- and the final-state orbitals are
not identical. A consequence of this is that when
evaluating transition matrix elements, there will,
in general, be "direct overlap" terms connecting
identical single-particle orbitals in the initial and
the final states, as well as "exchange overlap"

terms arising from the nonzero overlaps of or-
bitals from different shells having the same an-
gular symmetries. Detailed evaluation of the tran-
sition matrix elements involving nonorthogonal
basis sets is given by I,owdin. "

As an immediate example, consider the transi-
tion from the 'P' state to the '8' ground state. For
simplicity, these two states are represented by
single-configuration wave functions

I
(3s3P,)'P)

and
I
(3s')'S), as defined in Eq. (2). Let 7 be the

transition operator, we then have

&(3s')'s
I
7

I
(3s3p,)'P) = (1s2s3s

I
ls2s3s)(2p-

I
2p-&'&2p.

I
2p.&'

x ((Is2s
I
ls2s&[&2p.

I
2p.&&3s

I

1"
I
3p.&

—&2p.
I
3p &&3s

I
&

I 2p.&]

+ &3s ls 11s2s&[&2p,
I
2p.&&2s

I
~ 13p.& -&2p.

I
3p.&&»

I
~

I
2p.»

+ (2s3s
I
ls2s)[(2P.

I
2P.&&»

I
&

I
3P.&

—&2P.
I
3P.&&» T

I
2P.&& &. (6)

Here, (a I 5) is the overlap matrix element between
orbitals a and b in the initial and the final states,
respectively, and (a„a„.. .a„ I b„b„.. . b„) is
the determinant of an N xN matrix with (a,. Ib,) as
its elements. For simpli;city, the Clebsch-Gordan
coefficients are absorbed into the one-particle
transition matrix element (a

I
T

I
b). In the above

expression, the direct overlap term is given by

&1s
I
ls&'&2s

I
»&'&2p-

I
2p-&'

x (2p I2p &'&3s I3s&&3s I& I3p ) (t)

while the remaining terms in Eq. (6) are exchange
overlap terms.

From this example, -we ean see that the inclusion
of these exchange overlap terms will greatly com-
plicate the ealeuation, especially when multicon-
figuration wave functions are used. However, as
pointed out in Ref. 6, neglecting these terms may
lead to anomalous results, especially in velocity
form studies. In order to make a reliable compari-
son between the length and velocity calculations,
a computer program was writteri to include these
exchanges overlap terms in calculating various
transitions.

TABLE II. Energy levels (in a.u. ) of the Mg sequence relative to the ground state So.

Notation

Cl'
Expt. ~

Ca'
Expt c

Fe"4
Expt. ~

Zn
Kr"
Mo'3o
Cd+36

Xe'4'
Gd'"
w"'
Pb+io
U+80

0.4420
0.4472
0.6484
0.6452
1.065
1.066
1.347
1.784
2.24 i.

2.724
3.242
4.206
5.347
6.438
8.125

0.4448
0.4497
0.6554
0.6521
1.092
1.092
1.399
1.890
2.416
2.977
3.574
4.671
5,945
7.144
8.97, 2

2.

0.4499
0.4550
0.6699
0.6668
1.155
1.157
1.536
2.244
3.199
4.516
6.343

11.05
18.91
28.65
47.40

0.6920
0.6787

. 0.9951
0.9773
1.628
1.604
2.095
2 918e
3.975
5.393
7.326

12.22
20.29
30.21
49.20

&g) e

2

i.040
1.044"
1.531
1.532
2.558
2.550
3.302
4.571
6.110
8.044

10.53
16.43
25.65
36.61
57.09

0

1.072
1.071
1.555
1.542
2.543
2.527
3.224
4.284
5.391
6.557
7.795

10.08
12.73
15.23
19.03

1.075
1.074
1.564
1.551
2.587
2.572
3.332
4.602
6.143
8 ~ 079

10.56
16.48
25.74
36.80
57.54

1.080
1.079
1.580
1.567
2.664
2.650
3.498
5.012
6.971
9.217

11.86
17.98
27.34
38.38
58.96

~Moore, Ref. 18.
"Victor et gl. , Ref. 12.
~Ekb,erg, B,ef. 19.

Cowan and Widing, Ref. 20.
g~~t ——2.87; Hinnov, Ref. 2.
@exyt= 3'89; Hinnov, Ref. 2.
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III. RESULTS AND DISCUSSIONS

2 5
{3p ) P-2I
(3p ) 0-

.020—

= p I=2
015—
(3s3p) P-I

N

LIJ

.OI0
(3s3p) P=

.005—

p

2
l, 2lp .2(3s3d )

~~- I.2(3p 3p, )

-;q(3s BP,)

LL —-—-— - p(3p )
w~

p(3s 3p„)

0 I I I I I I I

IO 20 30 40 50 60 70 80
, Z

FIG. 1. Systematic trends of the low-lying energy
levels in the Mg sequence. In this diagram, E is the
excitation energy (a.u. ) from the ground state g, and

Zeff Z 10~

In Table II, we list the values of the excitation
energies from the ground state 'S' of all the low-
lying energy levels considered in this work, to-
gether with available experimental results for
comparison purposes. The systematic trends of
these low-lying states along the isoelectronic se-
quences are depicted in Fig. 1. A noticeable ef-
fect is the change from the LS to the jj coupling
schemes. At high Z, the energy levels are ar-
ranged in the order of (j,j ) =, (2, 2), (2, k), (2, 2),
.(z' —,') . . . , etc. As a consequence, some energy le-
vels of the ground-state complex which lie high in the
spectrum at low Z must come down and cross
other states as Z increases. An example of such
a level crossing is given in Fig. 1, where the 'P,'
state crosses 'D,' at Z=25, 'P,'-at Z=56, and
'P,' at Z= 62 before it reaches its asymptotic posi-
tion in the spectrum. Later, we shall return to
the problem of level crossings and discuss their
influence on the associated line strengths.

In Fig. 2, we list all the possible electric dipole
transitions between the low-lying states considered
in this work. The first eight lines shown to the
left in Fig. 2 represent allowed transitions, while
the rest are nonrelativistically forbidden ones.

In Table III, we give the values of the transition

5 8

0
I e

2

if 'i' if Ipo

0
P

energy co and the values of the scaled line strengths
Z'S in both the length and the velocity forms (de-
noted by Z'S~ and Z'S», respectively) for the al-
lowed transitions. Similar quantities for the for-
bidden ones are given in Table IV. One can see
from these two tables that S~ and S~ are consist-
ently in good agreement for all cases considered.
Furthermore, one notices that S~ and S~ tend to
agree better as Z increases, reflecting the dimin-
ishing importance of electron-electron correla-
tions compared to the central nuclear potential.
Large discrepancies between S~ and S~ arise only
when there are severe cancellations in the transi-
tion matrices, as in the case of 'P', -'P,' transi-
tions.

In Figs. 3-6, the scaled line strengths Z'S (length
form only) are plotted as functions of Z for all
the transitions considered. Since Z'S is directly
related to the scaled dipole transition matrix ele-
ment, the decrease of Z'S along the isoelectronic
sequence for allowed transitions reflects the con-
tractions of the orbitals due to relativistic effects.
On the other hand, most of the forbidden transi-
tions become comparable to the allowed ones at
high Z because of the gradual transition from LS
to jj couplings.

At this point, we would like to return to the prob-
lem of level crossings and their effects on the cor-
responding line strengths. In general, when level
crossings occur fob state characterized by the
same set of quantum numbers J and ~, there will
be strong configuration mixing between these
states. In such cases, the "normal" channels
for transitions of these interacting states will be
strongly perturbed, resulting in irregularities in
the associated line strengths.

As an example, consider the first few low-lying
states of even parity and J= 2. At low Z, we iden-

p

FIG. 2. El transitioris considered in this work. The
eight lines shown to the left in this diagram are allowed
transitions, whiIe the other six lines are forbidden ones.
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TABLE III. Values of the allowed Pi transitions of the Mg sequence. For each transition, we list first the transition
energies, followed by-the scaled line strengths, Z2SI and Z2S~, respectively. All entries are in a.u.

Fe'4 Zn'" Kr'4 Mo'30 Xe'4' Gd'" Pb"

(0 1) 0.6920
839
829

0.9951
662
661

i.628
509
514

'

2.095
457
462

2.917
402
407

iSB iP 0

3.975 5 ~ 393
359 326
364 330

iP 0 iDB

7.326
'300
303

12.22
269
271

20.29 30.21
248 234
249 234

49.20
217
217

(1 2) 0.3475
432
387

0.5360 0.9293
398 .288
363 266

1.207
235
218

1.654
181
167

2.136 2.651
143 118
133 110

3.202
102
95

4.208
87
82

5.362
78
73

6.404 7.890
70 55
66 52

(0-1) 0.6325 0.9151
311 247
315 252

1.523
192
196

1.985
173
177

2.818
156
159

3PO-3PB

3.903
145
148

5.355 7.322
137 131
139 133

12.28
123
124

10.40
116
116

30.36 49.41
109 96
109 96

(1 0) 0.6268 0.8996
310 246
314 251

1.451
189
194

1.825
170
175

2.394
153
158

2.975
144
149

3.580. 4.222
138 134
143 137

5.406
126
128

6.786
- 118

118

8.086
112
110

10.06
103
98

0.6297
233
236

0.9081
185
189

1.496
143
146

1.933
128
131

2.713
112
115

3.727
99
102

5.102
89
91

6.900
82
83

11.81
72.
73

19.80
66
66

29.66 48.56
63 61
63 61

(1-2) 0.6351
384
389

0.9242
293
298

1.573
186
189

2.099
147
149

3.122
118
120

4.555 6.240
164 317
168 326

8.283
308
315

13.30
330
337:

21.39 31.23
356 377
363 383

49.99
401
406

(2 1) 0.6246
387
393

0.8936
307
314

1.432
237
243

1.797
213
219

2.358
190
196

2.945 3.563
175 164
180 168

4.221
155
158

5.432
143
145

6.836
13&
132

8.151
124 .

123

10.13
114
112

(2-2) 0.6300
1154
1169

0.9097
887
904

1.509
602
618

1.962
505
519

2.768 3.773 4.701
419 292 2.4
429 298 2.8

5.514
10.8
11.6

6.925
7.5
8.0

8.428
3.0
3.2

9.727
0.6
0.7

11.56
0.6
0.5

800-

600—

I I I I I I I
'

I

I I 0S~ P
I 3 0

p o

4oo-

300-

I I I I I I

I 0 I e
P ~ D (i-2) ~

3 0 I e
P ~ 0 (I —2) ~

(2 —2) ~

400- L. 200-

200- I 00—

~-e~o
0 ~ e L i I I I I I

IO 30 50 70 90
Z.

0
IO

I I I

30
I I I I I.

50 70 90
Z

FIG. 3. Systematic trends of the scaled-line strength
Z $ in the Mg sequence (iS i 3P0) FIG. 4. Same as in Fig. 3, but for ~ P'. D'.
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TABLE IV. Values of the forbidden Ei transitions of the Mg sequence. For each transition, we list first the transi-
tion energies, followed by the scaled line strengths Z S~ and Z Sz, respectively. All entries are in a.u.

Cl 5 Ca' Fe"4 z tf8 Kr"4 Mo+ Cd+ Xe'4' Gd'" w"
/

Pb' ~80

{0-1) 0.4448
0.18
0.22

0.6554
0.55
0.61

1.092
3.0
3.3

1.399
7.1
7.7

1.890
18.1
19.4

fSe 3PO

2.417
32.9
34.7

3P 0 iD8

2.977
48.1

50.9

3.575
60.0
62.8

4.671
71.5
73.8

5.949
75.6
76.6

7.144 8.972
75.7 73.1.
75.6 71.5

{1-2) 0.5947
3.8
3.9

{2-2) 0.5896
7.8
7.8

0.8757
16.1
16.3
0.8612
34.9
35.6

1.466
56.0
56.6
1.402
113
117

1.904
76.3
77 ..0
1.767
139
143

2.682
98.7
99.4
2.327
150
155

3.694
114
115
2.912
152
157

iP 0 3Pe

5.067 6.952
124 125
124 125
3.528 4.183
151 151
156 154

11.76
116
115
5.381
150
152

19.70.
94.1

93.3
6.740
148
148

29.47
69.5
68.9
7.966
145
144

48.12
32.0
31.6
9.688
136
135

{1-0)

{1 2)

0.3796
0.24
0.30
0.3825
0.04
0.04
0.3879
4.9
4.8

0.5599
0.65
0.84
0.5684
0.15
0.15
0.5845
20.2
17.3

0.9142
2.6
3.4
0.9590
0.88
0.90
1.036
65.0
57.0

1.129
4.3
5.8
1.237
2.1
2.1
1.402
79.8
71.5

1.366
5.8
8.1
1.685
5.2
5.4
2.095
76.4
69.9

1.417
5.3
8.1

2.169
9.5
9.8
2.997
44.5
41.0

1.163
3.9
7.6
2.685
13.7
14.1
3.824
4.6
5.1

4.710
2.8
13.5
3.239
17..0
17.4
4.533
0.36
0.56

2.146 ~

1.6
6.3
4.259
20.1

20.4
5.752
2.0
1.6

7.556
0.95
0.71
5.458
21.2
21.2
7.050
9.5
8.6

14.98
0.$6
0.56
6.589
21.3
21.0
8.165
17.7
16.6

30.17
0.43
0.39
8.336
21.6
20.3
9.759
30.9
29.5

~The direction of transition is inverted because of the level crossing of 'P
f and Po.

tify the second eigenstate with these quantum num-
bers as the (3p', &,)'P,' state, while the third one is
the (3s3d, i,)'D,' state. Since the (3s3d, &,)J, state
is lower in energy than the (3p,'&,)~, state in the

jj coupling limit, these two states must cross at
some intermediate Z.

In Fig. 7, the systematic trends of the first four
eigenstates with even parity and J= 2 are shown.

As we can see, the crossing of the (3s3d, &,)~,
and the (3p,'&,)~, states occurs at Z= 45. If we
compared this diagram with Fig. 7 where the
scaled line strengths of the three transitions ori-
ginating from the 'P2 state are plotted, we can see
that:the irregularities of the 2'S curves indeed

l 200
I I I I I I I I

500-

C/7

~ 200—

I 1 I I I

3 0 5 e
P P (o-l) ~

( l-0)
(l-l)
( 2- I)

I 0 5 e
P P (l-O)

(l —l) ~

lOOO-

Ch

600-
N

0 5 e
P —P (l-2)

(2-2) ~

I 0 5 e
P P (l-2)

Ioo—

NI~ ~a~

a~k~

400-

200-

lO 50
Z

70 90
~ 0 0 ~—e- — -

~~
O ~ J ~ WWQ OW+ 0 I ~c I 0—

Io 50
Z

i ~
70 90

FIG. 5. Same as in Fig. 3, but for '3P0. P FIG. 6. Same as in Fig. 3, but for i' ~0'
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0.20—

-'(&p, )

TABLE V. Improvement of excitation energies (a.u.}
and oscillator strengths for the resonance transition
'5 -'p' of the Mg sequence when additiona]. configura-
tions are included in the cal,culation. For each ion, the
first line corresponds to results without the 3d configu-
rations, while the second line gives results with 3d con-
figurations included exactly.

O. I 5—
Ion expt fv

N

~ o.io-
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/
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/
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+/

3
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2 I0 —(sp)D-
I I I . I

'

I
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I

70

Mg

Ar'

Fe+14

Kr'4

Xe'4'

U+80

0.2182
0.1608
0.5371
0.4890
0.8547
0.7928
1.716
1.628
3.025
2.917
7.437
7.326

49.29
49.20

0.1597

0.4793

0.7779

1.604

2 87c

Moore, Ref. 18.
"Cowan and Aiding, Ref. 20.
c Hinnov, Ref. 2.

1.75
1.73
1.65
1.57
1.29
1.25
0.839
0.818
o.617
0.603
0.510
0.502
0.841
0.842

0.90
1.79
1.38
1.53
1.13
1.24
0.763
0.825
0.578
0.611
0.496
0.507
0.835
0.841

FIG. 7. Systematic trends of the first four eigen-
states with even parity and J=2. In this diagram, E is
the energy (a.u. ) relative to the lowest eigenstate D2, ,

and Zeg~ =Z —10.

arise in the same region where the interaction be-
tween the (SsSd, &,) and the (Spa», ) configurations
are the strongest. Furthermore, destructive in-
terference between transition channels arising
from the mixing of the (3p') and (3sSd) configura-
tions in 'P,' state strongly suppresses the transi-
tions 'P2-'P2 and 'P', -'P,' in the high Z region,
while the transition 'P', -'P,' is enhanced by the
coherent mixing of the asymptotic configurations.

At the beginning of this section, we pointed out
crossings of the 'P,'state with the 'D,', 'P'„and
'P,' states. These crossings, however, are less
interesting because the various states involved
are characterized by different sets of quantum
numbers J and 7t and so they cannot interact with
each other. The sole effect of these level cros-
sings is the inversion of the direction of the 'P', -
'P', transition. However, since this transition is
forbidden in both the LS and jj limit, the effect
of this level crossing is not at all obvious when

. we look at the corresponding graph in Fig. 5.
At any rate, level crossings involving strongly

interacting states are so common that we should
not expect that the irregularities in the line
strengths 'in our former example represent iso-
lated phenomena. In establishing the systemati. c

trends for the S values, it is therefore important
to take particular care of the regions of possible
crossing anomalies. In this respect, the present.
relativistic MCHF scheme is especially suitable
for the studies of level crossings, because both
intermediate coupling and relativistic effects are
included in calculating the energy levels along an
isoelectronic sequence.

IV. :CONCLUSION

TABLE VI. Comparison of the calculated oscillator
strengths for several allowed transitions of the Cl' ion
with the model potential calculations of Ref. 12.

Transition This work Model potential Experiment

ice 1~0

3y) 0 3~e

1.34

0.115

0 449c

f.27

0.116

0.430

0.97

O. 14"

O.35"

Bashkin and Martinson, Ref. 21.
"Bashkin, et al. , Ref. 22.

Multiplet averaged value.

It is well known that configurations involving 3d
electrons play an important role in the low-lying
states of Mg-like ions. I'o show the effects of
these configurations, we list in 'Table V some en-
ergies and oscillator strengths for the transition
'S'-'P' calculated with and without the 3d configura-
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TABLE VII. Comparison of the present values of excitation energies and oscillator strengths for the resonance tran-
sition S~- P with other theoretical and experimental values along the Mg sequence.

Ion

Al"
Si'
P+Q

S'4

Cl+

Ar'
Ca'
F +i4

Kr+'4

Mo'
Xe'
W+

U
+80

MCHF

0.1608

0.2789
0.3855
0.4890
0 ~ 5909
0.6920
0.7928
0.9950
1.628
2.917
3.975
7.326

20.29
49.20

a) (a.u.}
RRPA

0.1496

0.2667
0.3745
0.4782
0.5796
0.6799
0.7798
0.9798
1.605
2.880
3.927
7.260

20.21
49.14

Expt. '

0.1597

0.2727
0.3776
0.4793
0.5797
0.6787
0.7779
0.9773
1.604"
2.87'
3.89

Others

1.73

1.85
1.7 f
f.57
1.45
1.34
1.25
1.10
0.818
0.603
0.540
0.502
0.612
0.842

1.67

1.85
1.73
f.59
1.47
f.36
1.27
1.11
0.827
0.611
0.549
0.509
0.616
0.843

1.81

1.84
1.70
1 .60
1.46
1.28
1.21
1 .09

1.72

1.77
1.62
1.48
1.36
1.27

66d; f.7f e. f 76f g h. 1.86 . f.9',
1.80 ~; 1.85~; 1.75; 1.67; 2.4

1.8 1.9
7 . 1 6v
8%. 1 2x

1.06&; 1.6 0.24 ~; 1.03 "
0 97
0.84 ".0.86

0.83 '

Oscillator strengths
MCHF RRPA NBS" M.P

Theories:
Shorer et al. , Ref. 9.
Wiese et al. , Ref. 23 (based on Refs. 24, 25, 26).

'Model potential calculations of Victor et al. , Ref. 12.
Amusia and Cherepkov, Ref. 27.
Kim and Bagus, Ref. 28.

~Fischer, Ref. 29.
~Bates and Altick, Ref. 30.

Saraph, Ref. 31.
~ Cowan and Aiding, Ref. 20.

Experiments:
~Moore, Ref. 18.
"Cowan and Widing, Ref. 20.
~Hirinov, Ref. 2.

Smith and Liszt, Ref. 32.
Smith, Ref. 33.

~Smith and Gallagher, Ref. 34.
~Lurio, Ref. 35.

Beam-foil exper iments:
rLundin et a/. , Ref. 36.
SAndersen et al Ref 37
t Berry et al. , Ref. 38.
"Berry et al. , Ref. 39.

Irwin and Livingston, Ref. 40.
Curtis et a/. , Ref. 41.

"Livingston et a/. , Ref. 42.
"Irwin and Livingston, Ref. 43. '

Based on unpublished results of T. Anderson and
G. Sdrensen quoted in Ref. 44.
Berry et a/. , Ref. 45.
Irwin et al. , Ref. 46.

~ Bashkin and Martinson, Ref. 21.
Livingston et al, , Ref. 47.

tions. Both the length and the velocity form oscil-
lator strengths (f~ and f») are presented for com-
parison purposes.

At low Z, where the Sd electron correlations
are most important, there is, in general, a large
discrepancy between f~ and f„when the Bd con-
figurations are omitted, and the transition ener-
gies ~ are not in good agreement with experiment
under this circumstance. By including Sd con-
figurations in the calculations, the agreement be-
tween ~ and ~,„„is greatly improved, as well as
the agreement between f~ and f„. This situation
changes gradually, however, as Z increases. At
high Z, the values of transition energies and oscil-
lator strengths are only slightly modified by the
inclusion of the Sd configurations, reflecting the
diminishing role of correlation effects in the
asymptotic region. The close agreement between
f~ and f» in our present work thus serves not only

, as a measure of the reliability of the MCHF

scheme, but also as an indication of the adequacy
of the configurations included in the calculations.

From Table V, we further notice that f» is, in
general, more sensitive to the inclusion of the Sd
configurations, while f~ does not change appreci-
ably throughout the entire sequence. This obser-
vation suggests that the length form is to be pre-
ferred in the present MCHF calculations, at least
when there are no severe cancellations in evaluat-
ing the length form transition matrix elements.

Our results on the systematic trends of line
strengths along the sequence for all transitions
considered are in qualitative agreement with the
recentSOC study of Wiess. " In 'Table VI, we com-
pare quantitatively the f values of several allowed
transitions for the Cl" ion with recent model po-
tential calculations of Victor, Stewart, and Laugh-
lin" and with experiments. Despite the relatively
few configurations included in the wave functions
of the present MCHF calculations, our results are
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consistent with the model-potential calculations for
the transitions considered. Since the low-lying
states are dominated by configurations of the
ground-state complex in the jj coupling limit, we
therefore expect that our results should be at least
as accurate in the intermediate and high-Z re-
gions.

In Table VII, excitation energies ~ and oscilla-
tor strengths fz, of the present calculations for the
resonance transition 'S'-'P' are compared with
other theories and with experiments along the
sequence. For neutral magnesium and other low-
Z ions, our results are.consistent with other stud-
ies. Since we have confined our attention to the
configurations within the same complex, it appears
that intereomplex interactions are small in the Mg
sequence, even at low Z, where the correlation
effects are the strongest, in accordance with the
observations in Ref. 10. At high Z, the close
agreement between the present work and the RRPA
calculations illustrates the appropriateness of

either -technique in dealing with the properties of
highly stripped atomic systems.

In this work, we have demonstrated the. utility
of the relativistic MCHF scheme by presenting
results of our calculations on the excitati, on ener-
gies and line strengths of the Mg sequence. From
the results of this work, it appears that the pres-
ent relativistic MCHF scheme is a powerful tech-
nique in establishing the systematic trends of the
low-lying states, as well as the line strengths
throughout the entire sequence, even near regions
with crossing anomalies.
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