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The data of Weiner, Langley, and Ford on both the sum and difference of coexisting densities of SF6 are
found to be consistent, within a range of 2% in reduced temperature of T„with the series of terms (revised
and extended scaling) predicted by renormalization group calculations. The hypothesis that the relatively
small range of applicability of this series is due to a crossover to Van der %aals behavior is supported by
further analysis.

Among the unexpected results predicted by re-
cent theories of criticalphenomena is the rectilinear
behavior of the diameter of the coexistence curve
as a function of temperature near the critical point.
'This was pointed out by Green, Cooper, and Sen-
gers' (GCS) in a proposal to extend the range of or-
dinary scaling, and by Mermin' through examina-
tion of certain solvable models. Both predicted
a leading behavior of the form

o (PZ, + Pa) @o+

with $= (T —T )/T and a the critical exPonent de-
scribing the C, singularity. Deviations from a
rectilinear diameter have been reported for sever-
al binary mixtures. ' For pure fluids, this effect
has been observed by Weiner, Langley, and Ford'
(WLF) in a recent experiment on SF,.

As part of an investigation to find the consequen-
ces of the renormalization group for the thermo-
dynamics of the critical point of fluids, we have
derived expansions in nonintegral powers of t for
a number of thermodynamic functions including
the sum and difference of coexisting densities.
Both the premises and results of these expansions
agree in leading. order with the revised scaling
proposal of Mermin rather than that of GCS. The
purpose of this comment is to report on our re-
sults from a least-squares analysis fit of our ex-
pressions to the experimental data of WLF on co-
existing densities of SF,. Our conclusion is that
the experimental data can be well represented by
the renormalization-group expressions with rea-
sonable values of the exponents for

f tf ( 2 x 10'-
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(7 'K). We have also examined the hypothe-
sis that the rather small range of applicability of
the renormalization group (RG) is a manifestation
of a crossover to mean-field behavior for

f
t f) 10 '.

'To obtain our expressions, we have made use of

the general form for the thermodynamic potential
proposed by Wegner. ' For a fluid, this is

P =PU /&BT=Po(P ~)+P (gEg'H g'i 'go) (2)

Po=Poo+Pio&+Poi +

go =8,oP+8 o, t'+O, (P', t'), ,

gs =g of, +g oif+ 0 (li', f '),
A=gDO+g 1 & 0+ogl t+(OP t t )t &= Ip 2 ~

(6)

(I)
The coefficients in the expansions of the scaling
fields are system dependent. -

Although we have made no commitment to the
exponents of the Ising model in Eq. (3), we have

' committed ourselves to its symmetry, i.e.,

where p, = (p —p,,)/li, is the reduced chemical po-
tential difference and t/', the critical volume per
molecule. The nonsingular part p, and the scaling
fields g.~, gH, g»g, may be expanded in integral
powers of the physical variables p, t. 'The singular
part p, is a generalized homogeneous function
which satisfies

PS(gEl g Hl g 17 g2)

—fgsl' P.(+I g fg.
f

', g, fg f', g, fg, f"),
(3)

where + and = are used. to describe the one- and
two-phase regions, respectively; p, is a universal
function which is dimensionless, as are the g's.
The exponents &, 4„and 4, are positive quan-

'

tities; g~ and g„represent the two relevant scaling
fields while g~, k=1, 2, represent the two most
important irrelevant scaling fields. At the cri-
ticaI point, g and g will vanish, but g, and g,
will in general have nonzero values. This means
that the expansion of p„g~, g„, and g~, &=1, 2, .

in terms of p and t will be of the form
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TABLE I. Fitted parameters for Eq. (9).

Two terms Three terms Four terms

~c
Do
1 —0.

Dg

D2
1 —++4&
X~

&max

0.730 49 + 0.0014
1.148 67 + 0.439
0.8495 +0.056

1.51
8.0 x10 4

0.730 24+ 0.0011
2.428 22 + 1.604
0.822 9 + 0.08

-5.220 92 + 2.26

1.35
3.0 x10

0.730 47 + 0.0016
2.373 16+ 1.07
0.829 + 0.08

—6.215 63 + 1.54
9.041 2 + 4.0'4

1.343 9 + 0.11
2.48
].9 x10 2

=~.(~1, -g. lg I

', g, lg. l", -g. lg I") «)
Thus, g, and g, are the leading symmetric and an-
tisymmetric irrelevant scaling fields, respective-
ly.

Under these conditions, the diameter of the co-
'existence curve is given by

P(r
= k(PI. + PG)

=p. +&.
I

&I' +&
I
-&I+D I-&-I' ""+" .

The difference of coexisting densities will be

(p, —p)/2p, =a,
I

tI'+fl, l-t-I"
(10)

'The Isothermal compressibility along the coexis-
tence curve is

kT, /p', V,

+r I-fl "'""+

where + (-) refers to the high- (low-) density
branch. For the constant-volume specific heat
along the critical isochore, we get

c./k. =A. I-fl +~0+&.
I
-fl "'" "

We have attempted to fit Eq. (9) to the data
of Weiner, ' corrected for the dependence of
polarizability on density. In order to deter-
mine the range of validity of this equation,
we have carried out the fitting as a function of
range. This has been done by starting first with
the asymptotic term and determining the largest
interval (0»

I
fl» f,„)which giv-es a satisfactory

fit. For a satisfactory fit we require, in addition
to a minimum X', that the parameters remain con-
stant within their uncertainty as the temperature
interval is increased up to f . We then proceed
to add one more term in the expression and ex-
tend the range with an analogous requirement for
a good fit. 'The best values for the various param-

eters are shown in 'Table I together with the terms
needed in each temperature interval 0»

I
t

I

» /-
Although for 'I -f

I
&0.01 the diameter is approx-

imately linear [see Fig. 1(b)j with a positive slope,
we note that the coefficient of the linear term D,
is negative; this is consistent with results ob-
tained from analyses of specific-heat data, such
as that by F. J. Cook' for 'He, where the constant
term in the specific heat is negative. Also, we
note that our best value for the exponent, 1 —cy, of
the leading term in the diameter yields the value
n =0.15~0.06, which may be compared to the value
z = 0.14 ~ 0.0V obtained by Edwards, I.ipa, a,nd
Buckingham' for Xe from specific-heat measure-
ments.

We have also attempted to fit the expression for
the difference of coexisting densities, given by
Eq. (10), to Weiner's' data. The results are in-
dicated in Table II; t has the same significance
as in the fits of the diameter. We note that our
best value for P which we take to be its value for
the three-term fit, P=0.327+0.003, is considerably
different from the value P = 0.355 suggested by
Sengers and Sengers' as universal for fluids, but
it is in agreement with the value obtained by Hocken
and Moldover" for a temperature interval closer
to the critical point than the present data. How-
ever, if we attempt to fit Eq. (10) over the whole
range 0 —

I
fl —0.055, an e-xponent p=0.34+0.001

is obtained, but the deviations are systematic.
Thus, the results of these fits together with the
experiment of Hocken and Moldover" may be taken
to mean that the true value of P is closer to, but
somewhat higher than, the value 0.3125, given by
high-temperature series expansion for the Ising
model, than to the value 0.355 suggested by clas-
sical I'-V-T measurements. The latter value
is the result of attempting to fit over too
wide a range with a single term and is not re-
presentative of the true universal value. We
note also that the values of &„ obtained from both
the difference and the sum of coexisting densities,
is ~, =0.49+0.04, consistent with theoretical es-
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FIG. 1. Theoretical and experimental comparison of the diameter of SF& for temperature ranges of (a) l
0~II~ 0.0035-

and (b) 0~
I Ii~0.055. -
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TABLE II. Fitted parameters for Eq. (10).

One term Two terms Three terms

B()

P
B(
P+E(
B2
P+ 2Ag

C

X2

1.74134+ 0.604
0.327 7 a 0.082

318.703 + 0.0005
1.19
7.0 x10 4

1.7.22 34 + 0.064
0.327 3' + 0.005
0.742 23 + 0.41
0.853 2 + 0.21

318.703 + 0.0002
2.11
1.0 x10

1.7147 + 0.016
0.327 1+ 0.001
0.820 3 + 0.043
0.821 5 + 0.026

-1.439 6 + 0.24
1.298 9 + 0.09

318.703 + 0.0001
2.57
2.1,x 10

f

the Van der Waals critical temperature and the
true critical temperature T', —T, is 2.05'K.

'To further test the consistency of this picture,
we have fitted an equation of the Van der Waals
form to the density-difference data in the large g

region. As in Eq. (13), we have used a two term
expression,

(p -p )2p. =b, ~, ~

f'('"+5.-~, (-f' "' (14)

where T,' is an adjustable parameter. 'The best
values are

b, ],——3.264 +0.06, b, ],= -6.692+ 0.35,.

and 7",= 320.77 + 0.01 'K for 6 'K &
~

~T
~

& 17.5 'K.
It is gratifying to note that the two estimates for
the effective Van der Waals critical temperature
are the same within uncertainties. We note that
Eq. (13) and (14) give a good description of the
data in the range which begins at approximately
the value of

~
t~ for which —Eqs. (9) and (10) cease

to be applicable.
We draw the following conclusions: (i) The mea-

sured deviation from the rectilinear diameter is
in agreement with the prediction of the renormal-
ization group with an exponent a in agreement
with the value obtained by direct measurements
of C„. (ii) The RG series represents both sum
and difference of coexisting densities up to t
-2 x 10 '. (iii) The exponent P is close to, but
somewhat higher than, the high-temperature ser-
ies expansion value for the three-dimensional
Ising model. (iv) The correction to scaling expon-
ent is consistent with theoretical predictions of
~0 5

Somewhat more tentatively we conclude that:
(v) In a range which begins quite close to the cri-
tical point (~ t

~

&2 & 10 ') both the sum and differ-
ence of coexisting densities are represented by a
Van der Waals or mean-field theory. (vi) The
effective Van der Waals critical temperature is
about 2 'K higher than the true critical temperature
and the effective Van der Waals critical density
is the same as the critical density.

Pg~P = (Pi. + Po)~2P =&+5(-f) (13)

to the data corresponding to the asymptotically
rectilinear portion of the diameter, and we have
obtained

a = 1.006 09, b = 0.948 84

with T, = 138. 703'K for 2x 10 '&
~

f
~

&5.5x10'.
'The lower limit of the interval is the lowest tem-
perature for which a and b remain constants, with-
in uncertainties, and for which Eq. (13) gives a
good description of the data.

The above assumption implies the existence of
an "effective critical temperature" T,' such that
the diameter is in fact a li.near function of -t'
= (T,' —T)/T,'. We obtain T,' by extrapolation of
the rectilinear portjon to the critical density. . 'This
means that T,' will be given as the temperature for
which p„= p, if we assume that the "effective criti-
cal density, " corresponding to the Van der Waals
behavior, is the same as the true critical density;
using the results from Eq. (13), we' get

T'= 320.75 +0.06 'K .
'Thus, on this assumption the difference between

timates. " 4, is estimated to be -1.5 and therefore
is neglected.

One of the most obvious features of the diameter
is that although a single term of the form

~

f ~' "—
gives a good representation of the data close to

T, (~ t~ &10 ')—(see Fig. la) it seems to be asymp-
totically linear away from the critical point (~ f~—
&10 ') [see Fig. 1(b)]. Since a rectilinear diam-
eter is characteristic of the Van der Waals, or
mean-field, equation of state and since the RG
theory itself is supposed to represent the devia-
tions from mean-field theory due to fluctuations,
it is suggestive to suppose that the rather small

rgan(e~-t
~

-10 ') where Eqs. (9)-(10) are valid,
is a reflection of the crossover to a Van der Waals
or mean-field-like behavior. In order to test this
idea we have first attempted to fit an equation of
the form
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