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The effect of relativistic electron-mass variation on the propagation of electron plasma waves is considered.
Including thermal dispersive effects, a variational principle is used to find the possible final states of the
linearly unstable modes, It is shown that dispersion will limit the nonlinear steepening predicted by the cold-
fluid approach.

Intense laser radiation in plasmas, as needed
for, e.g. , laser-. fusion experiments, require a,

nonlinear description. It has been shown' that in
such situations, when the oscillatory velocity of
electrons approaches the speed of light, the re-
sulting variations in the electron-mass produce a
contribution to the nonlinear refractive index
which can be more important than that due to pon-
deromotive force effects. The propagation of an
incoming electromagnetic wave, penetrating into
the region of plasma, where its frequency is close
to the local plasma frequency, can then be described
by nonlinear optics. '

It is well known' that an electromagnetic wave
obliquely incident on a density gradient will under-
go mode conversion into an electron plasma wave
at the critical density. Since the convection of the
plasma wave is weak, the amplitude of the electro-
static mode can be even larger than that of the in-
coming electromagnetic wave. Recently, ' the role
of relativistic electron-mass variation in the gen-
eration of plasma waves by linear mode conver-

, sion has been investigated. For the initial stages
of the mode conversion, the electromagnetic source
has been incorporated into the relativistic equa-
tions for the excited plasma wave. In a more de-
tailed publication, ' the latter effect has been in-
vestigated thoroughly, showing that wave breaking
accompanied by strong plasma heating saturates
the amplitude of the mode-converted plasma wave
at a much lower level than previously predicted.

For the mode-converted electron plasma wave,
a linear instability has been found. ' The nonlinear
stage of the instability and the effect of ion motion
on the instability have been investigated by com-
puter simulation. In addition, the nonlinear evolu-
tion of the electron plasma waves has been dis-
cussed' analytically within the cold-fluid approach.
Numerical solutions of the basic equations demon-
strate shock formation and subsequent wave break-
ing.

In this paper, we study the nonlinear evolution
of the large-amplitude mode-converted plasma
wave by using a variational principle known from

nonlinear optics. This approach allows us to pre-
dict the nonlinear evolution of the large-amplitude
plasma wave as has been demonstrated before by
numerical calculations. Furthermore, we show
that inclusion of thermal dispersive effects will
limit the nonlinear steepening found so far within
the cold-fluid approach.

The dynamical behavior of a nonlinear electro-
static oscillation E =E, cos4, where 4 = ~t —k ~ r,
can be determined from a variational principle
which is widely used' in nonlinear optics. This
principle uses the averaged Lagrangian I. which
in our case for a system of (relativistic) electrons
in the electrostatic field E is

+ net —~2m (divP.

Here, ~ is the electron number density; m is the
electron rest mass, f is the fluid displacement,
related with the electron velocity v through v =d$/
dt; and y is the scalar potential. The 1.ast term
in Eg. (l) represents the potential energy density
associated withthe pressure force, ' where y ig& the
adiabaticity index and 7i, is the zeroth-order scalar
pressure. @le note that with application to the
weak relativistic limit the thermal dispersive ef-
fects will balance weak amplitude nonlinearities
and thus in the following the treatment of thermal
effects as higher order contributions is justified.

The variational principle can be written in the
form

I.( 4-„,4 „a)d r dt = 0, (2)

where a is the amplitude parameter and 4 is the
phase determining the slowly varying wave vector
k = -4» and frequency ~ = 4, .

From Eq. (2) together with Eg. (1) the basic rel-
ativistically invariant equations can be recovered
by taking the appropriate variations with respect
to f, y, etc. The pressure term w=-yv, div$
follows from the time-integrated pressure balance.
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In the following we anticipate a one-dimensional
model which can be easily generalized to higher
dimensions.

Using the electrostatic approximation

n—=1- a6k sine +2a, &k cos24 —3a,6k sin34, (8)

g = (5a+ 252ka2a+ —2'53k'a') cos4 + (5a, + 2'52ka ) sin24
g,a2p/Sxet = -env,

and Poisson's equation

s2rp/ex2 = e(n —n, )/e„

(3)

(4)
- (—', 5'k'a'+ —3,52kaa2 —5a, ) cos34, (7)

a a a,
y = —sine —~cos24+ —' sin34

k 2k 3k (5)

we obtain, up to the third order in the amplitude
E„ the consistent expansions

where 5 =e,/en, .
Inserting the expansions (5)-(7) into Eq. (1) and

collecting t;he zeroth harmonic contributions we
obtain

L = —,'&0(a'+ a, )+ bl, muP52[a2+ 55ka, a'+ 5'k a~+4a22+ —,3,(v2/c')62a~] ——,'en, 5(a'+ a2)

Ba—-,'yy A'il'a!\y8!!ka +2ii!'i'g'!

ywca

i!'a —~y i!'(—

As expected, L is independent of the coefficient a,
if we collect terms up to the fourth order in the
amplitude parameter.

The coefficient a, can be eliminated by taking a
variation with respect to a, . We get the result

a, = -56ka~,

and thus the Lagrangian appropriate for the varia-
tion prescribed by Eq. (2) is

QP
a2[1 1952k2a2+ 3 (~2/c2)52a2]'.4'' 16

In the following we use the ansatz

4 =co&t-&2s I, , —

for the nonlinear phase, The smallness param-
eter c has been introduced in Eq. (14}in orde" to
demonstrate the different scaling for the time and
space variations. In the following, we shall not
explicitly indicate this ordering anymore.

Introducing Eqs. (10) and (14) into Eqs. (11) and
(12) we obtain the coupled set of equations

BS peal'0 BS

men&no Bx Bt mcus&no Bx

Ba
~ k2g2a2 ~1~ gP

Bx
(10)

and

The Euler equations corresponding to the varia-
tion with respect to a and 4 are vl(d&go Ba~ Bs Ba 8 s

+ — +, a'=0.
Bt Bx B. Bx (18)

and

8
+ —I. —L =0,

The last two equations can be combined after intro-
ducing the complex envelope

8—L ——I =0.
Bt " Bx (12)

(=ac",
to yield

(17}

We note that Eq. (11) yields the nonlinear disper-
sion equation 2i —+ + [—(ld'/c2)52 —l252k2]li&

~ g ~2g =0

co m k2
1 —~ + ', + [~l3 52k' ——,

' (uP/c')52]a2 =0, (13) (18)

if higher-order dispersive effects are neglected
'and where the zeroth-order dispersion relation
uP = uP~(1+yk'X2) = aF~ has been used in evaluating
the higher- order contributions.

Equation (18) is the cubic nonlinear Schrodinger
equation. The general solution of Eq. (18) has
been found by applying the inverse scattering meth-
od. For' details we. refer to the original paper by
Zakharov and Shabat. 9
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Here, we want to stress the attention to some.
aspects of Eq. (18) which might explain the behav-
ior of large amplitude electron plasma waves re-
ported previously. First, by linearizing Eq. (18)
one gets an instability if the potential is attractive
(k'&9uP/26c'). The corresponding growth rate

0' =0'0+ p,0'~+ p 0'2,

the stretching"

x' = p, '~'(x —[o,+ (-2pqp, )'~']t],

(22)

(22)

(23)

y - ~~4)~(v@/e ), (19)

where vz = eE,/m ~, agrees with that found pre-
viously by a different method.

Secondly, for the case k & —,',(uP/c'), no modula-
tional instability exists. Instead of this, wave
breaking can take place if thermal dispersive ef-
fects are neglected. To demonstrate the possible
nonlinear steepening in the latter case, we show
that Eq. (18) can be transformed into a Korteweg-
de Vries equation by introducing p and 0 through

0'dX
g= p'~'exp i

2P
(20)

0+ ~~i+ &2~2 (21)

where P =ymo/2m+&n, . For the expansion in terms
of a small parameter p. about the constant state

where q =,', (u—P/c')O' ——,",Pk~ &0, transforms the non-
linear Schrodinger equation into a Korteweg-
de Vries equation. The nonlinear steepening and
wave breaking then follows" from the latter de-
scription if thermal dispersive terms are neglec-
ted. The inclusion of dissipative effects would in-
troduce some asymmetry into the above equaiions
producing shock- like solutions. '

Finally, we want to mention that the process dis-
cussed here occurs at a rather fast time scale and
may dominate over the ponderomotive force ef-
fects on the mode-converted electron plasma
waves" for large laser intensities.

The author gratefully acknowledges stimulating
discussions with Padma Shukla. This work has
been performed within the activities of the Sonder-
forschungsbereich 162 "Plasmaphysik Bochum/
Julich" .

~N. L. Tsintsadze, Zh. Eksp. Theor. Fiz. 59, 1251
(1971) [Sov. Phys. -JETP 32, 684 (1971)];C. Max and
F. Perkins, Phys. Rev. Lett. 27, 1342 (1971);P. Kaw
and J. Dawson, Phys. Fluids 13, 472 {1970).

2S. A. Akmanov, L, P. Sukhorukov, and R. V. Khokhlov,
Usp. Fiz. Nauk 93, 19 (1967) [Sov. Phys. -Uspekhi 10,
609 (1967)];K. H. Spatschek, J. Plasma Physics
(to be published).

V. L.-Ginzburg, Propagation of Electromagnetic Waves
in Plasma (Gordon and Breach, New York, 1961), p.
377.

4J. F. Drake, Y. C. Lee, K. Nishikawa, and N. L. Tsint-
sadze, Phys. Rev. Lett. 36, 196 (1976).

5J. F. Drake and Y. C. Lee, Phys. Fluids 19, 1772 (1976).
A. T. Lin and N. L. Tsintsadze, Phys. Fluids 19, 708

(1976).
7 Whitham& Linear and Nonlinear Waves (Academic,

New York, 1974).
B.B.Kadomtsev, in Reviews of Plasma Physics,
edited by M. A. Leontovich (Consultants, New York,
1966), Vol. 2, p. 153.

V. E. Zakharov and A. B. Shabat, Zh. Eksp. Theor. Fiz.
61, 118 (1971) fSov. Phys. -JETP 34, 62 {1972)).
T. Taniuti and C. C. Wei, J. Phys. Soc. Jpn. 24, 941
(1968).
R. C. Davidson, Methods in Nonlinear Plasma Theory
(Academic, New York, 1972), Chap. 2.
H. H. Chen and C. S. Liu, Phys. Hev. Lett. 37, 693
(1976); and University of Maryland Technical Report
Number 77-006 (1977) (unpublished) .


