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Selective multiple-photon absorption by an anharmonic molecule
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We discuss a model of selective absorption of infrared radiation by an anharmonic molecular vibrational
mode. The effects of. the rotational sublevels and of the energy dissipation mechanisms are described
phenomenologically. We show. that in the context of our model the absorption process is described by
coupled nonlinear equations for the complex vibrational amplitude and for the average excitation quantum
number. Two distinct dynamic regimes (coherent and adiabatic limit). can be identified depending on the
relative magnitude of the rotational relaxation time and of the laser pulse duration.

I. INTRODUCTION

The rapid advances in laser photochemistry and
isotope separation' have generated considerable
interest in the selective absorption of radiation
leading to either molecular dissociation or chemi-
cal reactivity. The chemical end of the problem'
is still beset with formidable difficulties. The
selective absorption part of the process, on the
other hand, is fairly well understood qualitatively,
and has been considered in several theoretical
models. ' ' A popular approach views the vibra-
tional degr'ees of freedom as harmonic oscilla-
tors" ' coupled to relaxation mechanisms that
induce energy exchanges between the accessible
internal and external degrees of freedom.

It has been recognized, : however, that the an-
ha, rmonic contribution can hardly be ignored in
most molecules of interest. "" In fact, the in-
creasing loss of resonance. between the driving
electromagnetic field and the higher anharmonic
transitions causes a natural saturation of the ab-
sorption process which, in turn, limits the amount
of energy that can be transferred to a molecule.
Since, on the other hand, there is evidence that
highly excited vibrational states can be created
under high-power irradiation conditions, " " it is
of interest to examine in detail the dynamics of
multiple-photon absorption in an anharmonic sys-
tem.

Our objective here is to formulate a description
of the selective absorption of infrared laser radia-
tion in certain polyatomic molecules in a fashion
which takes, vibrational anharmonicity and rotation-
al effects into account with reasonable accuracy
while retaining computational tractability. To
this end, we begin with the Hamiltonian for an os-
cillator which has quadratic, cubic, and quartic
terms in its potential energy and which is coupled
to an external electric field through its dipole mo-
ment. This Hamiltonian is then unitarily trans-
formed, using a perturbative method formulated

elsewhere" in connection with the study of electro-
magnetic "dressing" effects but employed here
only to simplify the calculation and interpretation
of results. To incorporate rotational and other re-
laxational effects, the dynamical evoluti. on of the
absorption process is then described in the frame-
work of the master-equation formolation.

The effect of the rotational sublevels of the mo-
lecule on the absorption process" " is incorpora-
ted into the master equation after consideration of
the various time scales of the main energy relaxa-
tion pathways which are available to an excited
molecular mode in the presence of collisions. In
general, many rotational levels are excited by the
applied pump field. However, for many molecular
species the cross section for collision-induced
rotational transitions is larger than that for vi-
brational energy transfer, so that the rotational
equilibrium distribution is established in a time that
is short compared to the-relaxation time to vibra-
tional equilibrium. In fact, under usual condi-
tions" one finds 'that rotational equilibrium is
established first, followed by vibrational equili-
brium in a given mode. Next, equilibrium be-
tween different vibrational modes takes place.
Finally, equilibrium between vibrational and
translational degrees of freedom is reached.

These facts suggest that each vibrational level
may be approximately characterize/ by a line-
width contribution due to the energy relaxation be-
tween different vibrational levels, and by an in-
trinsic linewidth resulting from rotational relaxa-
tion within each vibrational level. " Since the latter
process is assumed to eonsexve the average popu-
lation of a given vibrational level, it is modeled
here as producing a decay of the complex vibra-
tional amplitude while maintaining the average
level population constant. (This model is adapted
from some early work by Bonifacio and Haake"
on the relaxatj. on of an oscillator in contact with
a, reservoir. ) The remaining relaxation processes,
which do not affect the average population of a
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given vibrational level, are mathematically rep-
resented as producing decay of the vibrational-
state occupation operator itself.

As a result of our model, the dynamical evolu-
tion of the excitation process is described in
terms of a system of three coupled equations for
the oscillator average occupation number and for
its complex amplitude. Under pulsed excitation
conditions and for moderately large in'cident field
strengths, we find it possible to solve adiabati-
cally for the oscillator amplitude. In this case
the average excitation energy satisfies a single
nonlinear differential equation, which has been
solved numerically under a variety of physical
conditions.

In Sec. II we describe the details of the theo-
retical model and derive the basic equations of
motion. The physical predictions of our model
and the numerical solutions of the equations of
motion are discussed in Sec. III.

II. THEORETICAL MODEL

~&(t)( 1'e-k At+ &e& Qt) (2)

ln Eq. (l) we have limited the anharmonic contri-
butions to. cubic and quartic potential-energy terms;
the operators a~ and a are the usual harmonic-
oscillator-type ladder operators, p, is the dipole
moment associated with the molecular normal co-
ordinate of interest, e(t) is the envelope of the
applied electric field, and 0 is its carrier fre-
quency. In Eq. (2) we have written the interaction
Hamiltonian in the usual rotating-wave approxima-

Of the several infrared-active vibrational modes
of a molecule, we focus on the one that is reso-
nant, or nearly resonant, with the applied laser
field. At low applied field strengths, the resonant
mode will be selectively excited with all the non-
resonant modes remaining virtually in their ground

state. At higher pump levels, the anharmonic
contribution to the vibrational potential energy will
cause mode mixing and subsequent energy trans-
fer from the excited to the unexcited modes. In
order that we may concentrate on the essential
features of the absorption process, we have, as
mentioned in the previous section, chosen to model
all the energy relaxation mechanisms out of the
excited mode in terms of an effective reservoir
whose main effect is to induce vibrational relaxa-
tion at a specified rate.

The reversible interaction between the resonant
mode and the applied field is described by the un-
perturb'ed anharmonic oscillator Hamiltonian

H, = Ru&@~a+ P(at+ a)'+ y(at+ a)',
and by the molecuLe-field interaction Hamiltonian

E„=Rain-San(n+1), . n=0, 1, 2, . . . . (4)

Upon appropriate adjustment of the parameters cu

and e the lower-lying vibrational states of a typical
anharmonic spectrum can be approximated. The
contributions of order y' can also be included in

tion.
The main difficulty with the total Hamiltonian in

Eqs. (l) and (2) is the presence of excitation con-
serving and nonconserving terms. The latter ones
(i.e. , operators of the type at"a" with m+ n) cause
the equations of motion of the relevant observables
to be inconveniently complicated. Thus, the Heisen-
berg equations of motion for the amplitude and
number operators, a and a~a, are members of an
infinite hierarchy. Since in this representation
a is not an excitation operator for the anharmonic
vibrational states, it is not clear how to truncate
this infinite set of coupled equations or to select
contributions which are consistent with an assumed
order of approximation in the anharmonic param-
eters.

A scheme of calculation" developed i;n connection
with the eleetromagnetie dressing of a quantum
system can eliminate the difficulties just described.
The basic idea of the method is to carry out a
certain unitary transformation of a Hamiltonian
composed of "unperturbed" and "interacting" parts
so that the unperturbed part is invariant and the
transformed interaction Hamiltonian commutes
with this unperturbed part. The technique is ap-
plied here to the Hamiltonian II, given in Eq. (l),
with the harmonic oscillator term h ~a~a treated
as the unperturbed part and the cubic and quartic
potential terms as the perturbation. The deter-
mination of the unitary transformation is based
on a lengthy but simple perturbation procedure
that requires only algebraic manipulations. An
outline of the calculation is given in Appendix A.
Here we merely state that by direct application of
the procedure the transformed oscillator Hamil-
tonian, to second order in P and first order in y, '4

takes the form

Ho = 6(uatg —heata(ata+ I),
where the anharmonic correction i.s defined by

kc = 30P'/Ku -6y.

The parameter e is usually a positive quantity.
One of the useful features of the method is that

in the new unitary frame the eigenstates of the
total Hamiltonian are linear combinations of de-
generate eigenstates of the old unpe~tu~bed Hamil-
tonian. Since in the present case the old unper---
turbed Hamiltonian is nondegenerate, the new
molecular Hamiltonian (3) is already diagonal in
the states generated by a~ and has eigenvalues"
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—i~+(t)[a~+ a, W], (5)

where e~(t) is the Rabi frequency p, e(t)/S.
We observe that the energy separation between

tht: ground and first excited vibrational states is
h~, =—S(&u- 2e). It should also be noticed that the
new unperturbed Hamiltonian of the system is
unbounded below. This, of course, would cause
serious problems if we attempted to apply Eq. (5)
to describe the interaction of the molecule with
excessively large fields. Practically speaking,
difficulties will not arise as long as ]he average
vibrational excitation remains well below the turn-
ing point of the unperturbed energy spectrum, i.e.,
as long as (a~a) «h&u/2k'. Since the anharmonic
contribution Se. is usually a small fraction of the
fundamental transition energy S~„mathematical
difficulties are not anticipated for most realistic
cases of interest.

To describe the incoherent energy relaxation
(ER) to other molecular degrees of freedom, we
add to the master Eq. (5) the relaxation terms"

the Hamiltonian (3), but the price one has to pay
is the presence/ of a cubic term in the number op-
erator.

When the Hamiltonian (2) which couples the an-
harmonic oscillator to the electric field is sub-
jected to the same unitary transformation, it is
found that to the same order of approximation in
the anharmonic parameters used in deriving Eq.
(3), this part of the Hamiltonian retains the form
given by Eq. (2). A survey of the lengthy trans-
formation and a discussion of the various terms
that have been discarded is given in Appendix B.

In the new unitary frame the density operator 5'
of the anharmonic oscillator satisfies the usual
reversible I iouville equation

dW = -i(&u —e —Q) [a~a, W]+ i e[(a~a)', W]

(a(t)) = -q(a(t)),d
(8a)

d
dt
—(a~a(t)) = 0. (ab)

We therefore combine all these effects and as-
sume that the irreversible evolution of the active
vibrational mode is described by the total master
equation

reasonably uniform in the neighborhood of the
fundamental transition frequency.

In addition, as indicated in the Introduction,
the mathematical model describing the effect of
rotational relaxation is required to account for
energy redistribution among the rotational sub-
levels, while maintaining a constant average oc-
cupation-number distribution in the vibrational
manifold. This suggests that the complex ampli-
tude of the vibrational normal-mode coordinate.
will be damped by the collision-induced rotational
relaxation, while the average occupation number
of the vibrational level will remain constant. The
phase relaxation model" for a harmonic oscillator
justifies these requirements, and just as for the
energy relaxation terms (6) we assume that the
rotational relaxation (RR) for the anharmonic
oscillator also can be described by the irrever-
sible contribution to the oscillator master equation

= j([a~a, Wata]+ [a~aW, ata]),BW

RR

where g is a measure of the rotational wwidth of the
vibrational levels. That the effect of the irrever-
sible process described by Eq. (7) on the amplitude
and number operators is the desired one can be
easily verified, since the expectation values (a(t))
and (a~a(t)) predicted on the basis of Eq. (7) are
given by

=—([a~, Wa]+ [a~W, a])
n

ER

(6)

= -i(&u —e —n)[a "a, W]+ ic[(ata)', W]

—i u&„(t)[a + a, W]+ +
aW eW

RR ER

where n measures the Average thermal excitation
of all the molecular degrees of freedom that act
as a reservoir for the anharmonic mode of inter, -
est and v. is the sum of the intermolecular and
collisional energy dissipation rates. Strictly
speaking, the irreversible contribution (6) des-
cribes the relaxation of a ha~monic oscillator in
the Born and Markoff approximations. We have
verified, however, that in the Born and Markoff
approximation, the deviations from Eq. (6) due
to the anharmonic potential-energy terms are un-
important if the reservoir density of states is

where the relaxation terms are given by Eqs. (I)
and (6), respectively.

We are especially interested in the time evolu-
tion of the observables a, at, and ata. As expected
the equation of motion for the expectation values
(a(t)), (a~(t)), and (a~a(t)) do not form a closed
system due to the presence of the anharmonic
term. We ignore the difficult but probably not
very important problem of quantum correlations,
and assume the factorization ansatz (ataa) =(a~a)(a)
and (gta"a) =(a~)(a~a). (Note that this factorization
could not have been justified before the unitary
transformation, since in the original representa-



250 NARDUCCI, MITRA, SHATAS, AND COULTER 16

1= -i(u, —Q)A — q+ — A+ 2ieXA —i&uz(t),

dA* . 1,= i(&u, —Q)A* — q+ —'A*
dt

dA

tion, a and a~a were not the amplitude and occupa-
tion-number operators for the anharmonic oscilla-
tor). Upon identification of (a) with A(t) and (a~a)
with N(t), we arrive at the following closed set of
equations of motion:

proximation breaks down and a "coherent" regime
is established that can be described only by the
full set of equations (10).

We have analyzed the behavior of the average
excitation quantum number N(t) under a variety
of conditions both in the adiabatic and coherent
regimes. For definiteness, our numerical compu-
tations have been performed assuming n = 0 (i.e.,
a cold reservoir). Furthermore, the incident field
envelope has been assigned the functional form

—2ieNA*+ i&us(t), (10) (u„(t) = (us»n'(vt/rp), 0- t - w~ . (12)

Under usual pulsed excitation conditions (pulse
duration r~ 100-200 nsec) one expects the relax-
ation time (q+ 1/r) ' to be much shorter than v~.
Thus the amplitude A(t) is exp. ected to follow the
time evolution of the Rabi frequency adiabatically,
always remaining in equilibrium wit6 the rota-
tional relaxation mechanisms. Mathematically,
this amounts to assu~i~g gA/dt «(q+1/~) ~A ~.

In the adiabatic approximation, thy anharmonic
motion can be described by the time-dependent
average excitation N(t), which is the solution of
the nonlinear diff erential equation

dN 2(q+ 1/~)(v~2 (t) 2
)dt (q+ 1/r)'+ ((u, —Q —2 eN)'

III. RESULTS AND DISCUSSION

It has been recognized that, as a result of the
anharmonic nature of the vibrational spectrum,
the largest molecular excitation for a fixed driving.
field amplitude occurs when the driving frequency
is smaller than the fundamental vibrational fre-
quency. " This effect, called the red shift, is
described by Eq. (11), and can be understood
qualitatively as follows: Consider for simplicity
a fixed value of the Rabi frequency, and ignore
the energy relaxation term: if the driving fre-
quency is such that v, -Q& 0, the largest rate
of increase of the vibrational excitation occurs
for X= 0. As the average excitation increases,
its rate of growth declines steadily until the ir-
radiation process is completed. If, on the other
hand, the driving frequency Q is such that 40p

—Q & 0, a rapid increase of the average excitation
is observed whenever N(t) becomes as large as
(&u, -Q)/2e. This, of course, may not happen if
the detuning ~, -Q is too large, or the Rabi fre-
quency is too small or the pulse duration too
short. This argument suggests the existence of
an optimum detuning range, "a fact that is borne
out by our numerical solutions of the equations
of motion. If the pulse duration is comparable to
the relaxation time (q+ 1/v), the adiabatic ap-

A typical set of solutions corresponding to a long
pulse irradiation (r~ = 200 nsec) is shown in Fig.
1. (Table I gives a summary of the parameters
used in the figures). The figure displays a set
of time-dependent average excitations N(t) for
different values of the detuning parameter 5= e,
-Q. As anticipated by previous qualitative argu-
ments, the maximum excitation for a given value
of the Rabi frequency co~ occurs when the incident
frequency Q is red shifted with respect to the
fundamental vibrational transition by an amount
which is a function of the field strength, of the
relaxation parameters, and of the anharmonic cor-
rection. In particular, the solutions in Fig. 1
show the rapid growth of the excitation N(t) re-
sulting when the approximate threshold condition
N(t) -

(&u, —Q)/2e is met. For sufficiently large
values of the detuning parameter, a rapid decrease
in the resulting vibrational excitation is observed,
a fact that is directly analogous to the behavior of
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FIG. 1. Average vibrational excitation under long
pulse irradiation. Each curve corresponds to a different
detuning parameter 6: (1) 4=—5 cm, (2) 6=5 cm ~,

(3) Q =j.5 cm ~, (4) 5 =].7 cm ~, (5) 5=19 cm ~, (6)
0 =25 cm ~.
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TABLE I. List of parameters used in the figures. The
anharmonicity factor e was chosen to be 1.65 cm «(cor-
responding to the v3 mode of BC13) in all the figures.

2.5-

Figure
number v& (nsec) 7 (nsec) uz (cm «) g (cm ')

2.0-

1
2
3
4

200
200
1.0
1.0

100
100
100
100

0.5
0.5
1.0
1.0

1.0
5.0
0.5
5.0

a classical forced anharmonic oscillator. " The
effect of the rotational relaxation is to introduce
a natural width to the vibrational levels, thus
reducing the detuning effects of the anharmonicity.

The red-shift effect is displayed in Fig. 2 where
the maximum exictation for a given value of ~,
-0 is plotted as a function of the detuning param-
eter co, -Q itself. As indicated above, the op-
timum energy transfer from the applied field to
the oscillator corresponds to a positive value of
the detuning. For values of e, -0 larger than a
certain critical value, one observes a rapid de-
crease of the available vibrational excitation.
When the incident pulse duration "becomes compar-
able to or shorter than the rotational relaxation
time, the average excitation N(t) can break into
oscillations which relax at a rate q+ 1jv. This
situation is illustrated in Fig. 3, where an inci-
dent pulse of duration 1 nsec and Rabi frequency
1 cm is assumed to be interacting with the ab-
sorbing oscillator for different values of the de-

1.0-

1.5-

0 02 0.4 0.6
t In sec)

0.8 1.0

tuning parameter. We observe. again the existence
of an optimum detuning range beyond which there
follows a rapid drop-off of the excitation and the
disappearance of the coherent oscillation.

A situation similar to that of Fig. 3 is shown in
Fig. 4 (pulse duration 1 nsec). This time, how-
ever, the rotational width is large enough to

FIG. 3. Average vibrational excitation under short
pulse irradiation. Each curve corresponds to a different
detuning parameter 6: (1) 5 = —3 cm, (2) 5 =0.0 cm
(3) 6 =2 cm «, (4) 6 = 3.5 cm «, (5) 5 = 5 cm «, (6) 6 =7
cn1
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FIG. 2. Behavior of the maximum average vibrational
excitation as a function of the detuning parameter 6.

0.5
t (n secj

FIG. 4. Average vibrational excitation under short
pulse irradiation. Each curve corresponds to a different
detuning parameter 6. (1) 6=0.0 cm «, (2) 6=3 cm «,

(3) 5 =5 cm «, (4) 0 =7.5 cm «, (5) 6 =8.25 cm «, (6)
n =10 cm-'.
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quench the coherent oscillation of the excitation
N(t) .It is to be observed that the largest energy
transfer between a given applied field and the
molecule occurs in the long pulse configuration.
Thus, the pulse energy rather than its peak power
seems to be the important physical quantity that
determines the maximum accessible vibrational
excitation.

A question of importance for both isotope sepa-
ration and laser-induced chemical reactions is the
probability distribution of the vibrational occupa-
tion number. In principle, the answer follows
from the master equation (9) upon calculation of
the diagonal elements (n ~W(t) ~n) of the density
operator. In practice, the calculation appears to
be nontrivial and will be the subject of further
work.
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APPENDIX A: DERIVATION OF EQUATION (3)

The key technical step in the transformation of
Ref. 18 is the construction of a unitary operator
such that the transformed Hamiltonian H'= UHU '
in the new unitary basis is diagonalized by the
eigenstates of the old unperturbed Hamiltonian.
Specifically, if

operators D„and K„not contained in previous
equations in the set; these operators must be
simultaneously determined from this equation.
To see how this determination is made, consider
Eq. (A4). The sum of the two terms on the right-
hand side of this equation must commute with H, ;
and since an operator of the form [K„H,] cannot
have a part which commutes with H„one must
require

D =H1 1 (A6)

i[K„H,]+H,"' = 0, (AV)

D2 —2~[K»D&+H&.1 & (A8)

where the superscript c indicates the contribution
of the commutation which commutes with H, . If
the transformed Hamiltonian (A2) is required to
be unitarily equivalent to H [Eq. (Al)] only up to
second order in ~, explicit knowledge of K, is not
required. However, for reasons to be discussed
in Appendix 8, the operator K, will be needed. It
is calculated so as.to satisfy the algebraic rela-
tion

where H,' and H,"' are the parts of H„which com-
mute and fail to commute with H„respectively.
The operator K, is determined by Eq. (A7) up to
an additive part which commutes with Ho so a
requirement of "simplicity" is added to make its
definition unique: K, is composed only of terms
which do not commute with Ho. Next, D, is chosen
such that

H=HO+ ~H, (A1) i[K„HO] = [,'i[K„D,+-H-, ] -D,]
is the original Hamiltonian of a system, we look
for a unitary operator U(A) such that

= —2i[K» Di+ Hi]"' (A9)

H' = U(H, + AU, )U '= Ho+D(&), — (A2)

D, = i[K„H,]+H, ,

D2 = i[K2, Ho]+ (i /2!)[K„[K„HO]]+i[K„H,]

(A4)

= i[K2& Ho]+ 2i[K„D,+H,].
I

The nth equation in the hierarchy contains two

(A5)

where D(&) commutes with H, . As shown in Ref.
18, the operators U and D can be expressed as
power series in the coupling parameter ~ as

oo

U(A.) =exp i g A."K„=e'
n=l

(A8)

D(X) = g A."D„.
n=l

The operators D„D„.. . and K„K„.. . satisfy
an infinite hierarchy of algebraic operator equa-
tions, the first two having the form

=H +D(~),

where

Hh~m =Sua a,
&H,„„, =P(a +a)'+y(a +a)',

(A10)

(A11)

(A12)

and where the parameter ~ plays the role of an
expansion variable to be set equal to unity at the
end of the calculation. Usually P»p; hence, we
wish to construct an expansion of Eq. (A9) that

and, again, K, is the simplest operator satisfying
this equation, etc. Adapting the foregoing con-
siderations to our needs with appropriate changes
of notation for the various Hamiltonians, we
choose the simple harmonic oscillator as the.un-
perturbed system, and the anharmonic corrections
as the perturbation. We are interested in con-
structing

H,'= U(&)(H„. + &H„„)~ "
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D, = 6y((a~a) '+ ata+ g . (A13)

contains terms of order P' and y in the anharmonic
constants. The calculation of D, is trivial. The
only terms. in Eq. (All) which commute with H„
are

original reference system. After application of
.the unitary transformation induced by U(j«), the
Hamiltonian (2) describing the interaction of the
anharmonic oscine. lator with the electric field be-
comes

E, must be constructed from the equation
H', (~) = U(j«)H, U(j«) '. (al)

0=i[K„H„]+jH,"„'„, (A14)

This may be done by inserting an appropriate
energy denominator in each term of &H",'„h,, and
multiplying the resulting operator by i. The result
of the calculation is

K, = -(ip/j««u)( —,'a"'+ Sa~'a —Sa~a'+ Sa~ —3a ——',a')

—(i y/j««u) (-'at' ='a'+ 2at'a —2a~a'+ Sa~' —Sa').

(A15)

The simple but lengthy construction of D, requires
the calculation of the. commutator —,'i[K„D,+ H, ]
and the selection of all the terms that commute
with Hh„. Upon including terms up to the re-
quired order of approximation, the operator D,
is found to be

D, = —30(P2/j««u) f (ata)'+ (a~a) + 33'3] . (A16)

The transformed Hamiltonian Ho Hh + Dy+D2
has the form given by Eq. (3) (with c-number terms
dropped).

It is required to expand H, (&) to the same order
of approximation in the anharmonic parameters
that was used in the construction of H,' [Eq. (3)].
An elementary calculation shows that the expan-
sion of Eq. (B1) to order &' takes the form

H« = H, + i[K„H,] + i[K2, H, ] -~2 [K„[K„H,] ].
(B2)

In Eq. (B2) we have set the expansion parameter
~ equal to unity. Our objective is to analyze each
term on the right-hand side of Eq. (B2) and retain
only the contributions of orders P' and Py in the
anharmonic parameters. For this purpose we
need to calculate K, from Eq. (AB), and to evalu-
ate aU the commutators on the right-hand side
of Eq. (B2). A simple but lengthy calculation leads
to

p2
K =i (9a~'+ 6at'a ——,'at4)

(h «u)'

+i, (122at+ —"' at'a+ 16at + —'" at'a'y
(h «u)'

+ Bat~a —"a"')+ H. a. + O(y') (BS)
APPENDIX 8: INTERACTION HAMILTONIAN

IN THE NEW UNITARY FRAME

The interaction between the anharmonie oscilla-
tor and the applied field is given by Eq. (2) in the

It remains now to evaluate the commutators on
the right-hand side of Eq. (B2) using Eq. (A15) for
K, and Eq. (2) for H, . The result is

H:—U(j«.)H U(g) = jg «u gje «o + ji'«u e «o (Sat —6atg —3 -g )
p

1 . . 1 A(d

+ h«u e '"'(-a'+ 2a~' —6a~g —6a)+ j«&u, e ' "«(6g~' —Bgt'a+ 30a"g' —Bat+ 30a —Sg3)-«n«
@co " (h«u)'

+ j««u, e ' "'(124 —309a~'+ 10a~'+ 648ata —198at 'a + 75a'+ 312at'a'+ 50ata' —6a')~ (h«u)'

+H.a. +O(y') . (B4)

We observe that both a~e '"' and its Hermitian
adjoint (H.a.) undergo secular variation, i.e.,
variations over a time scale which is much longer
than the optical period. Next, we notice that the
terms of order (p/j««u)' in Eq. (B4) are all secular
terms, while the terms of order P/h«u, y/KIu, and

py/(j««u) ' are all rapidly varying terms. The terms
of order (P/h «u)' are in part secular (-Bgt'g —Bat
+ H. a.) and in part rapidly varying. The secular
terms, however, are &uz/«u times smaller than

the second-order contributions of the unperturbed
Hamiltonian H,' and (P/j«&u)' times smaller than
the main secular contribution to H', . Thus to an
excellent approximation we can tyke

H', = H, + (rapidly varying terms) . (B5)

The effect of the rapid variation, of course, aver-
ages out to zero over times which are longer than
the optical period.
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