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Multidetector photon statistics
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It is theoretically shown that detector quantum-noise-free measurement is feasible by a joint moment (JM)
method which utilizes many photodetectors. The quantum/shot noise disappears in the statistical moments of
JM photon counting. The statistical error in the JM measurement is calculated for light with Gaussian
statistics and a Lorentzian spectrum and compared with that in the usual factorial moment method which
utilizes a single photodetector. The JM measurement is shown to be useful for the measurement of very
weak light with a wide. spectrum.

I. INTRODUCTION

P(n) = 8 ~P(w) dwn!

where W= for V*(t)V(t) dt, and a is a constant char-
acteristic of a photodetector. V(t) is the analytic
signal' of a light field. From the above basic
equation, we obtain directly the relation between
the 4th-order moment of 8' and the 0th-order
factorial moment (FM) of n,

( W~) = (n(n —1)(n —2) ~ .(n —k+ 1)); (2)

where (. . . ) represents a statistical average and
we assumed a to be unity for simplicity. Usually
one calculates the factorial moments of n from
the measured P(n) and thus obtains the moments
of W. When one is given a set of the moments of
8', one is allowed to identify the light field by the
uniqueness theorem for the probability distribu-
tion and its moments. '

The probability distribution of photoelectrons
counted during some time interval has been shown'
to reflect the probability density of light intensity
during the count interval. Much experimental
work has been done on the photon statistics of
various types of light. such as a scattered light, '
mixed light, ' and laser light, ' and several sum-
maries and reviews have been made on the sta-
tistical studies of optical fields. These experi-
mental measurements of the fluctuation of light
intensity are usually based on the factorial mo-
ments of photoelectrons counted by using a single
photodetector. In this paper we consider a new
method for the study of photon statistics by using
many photodetectors.

%hen one measures the statistical properties
of a light field, a photon counting method is usual-
ly employed. The probability P(n) that n photo-
electrons are detected in a time interval T is
given by the Poisson transform of the probability
density P(W) of the integrated light intensity W, '

T'he dispersion of counted photoelectrons is
given by

(n') -(n) '=(n) + ((w') -(w) ').
It is well known' that the first term on the right-
hand side of the equation represents quantum/
shot noise and the second term represents excess
noise. As can be seen from Eq. (2), in the FM
method the moments of R' are obtained by evaluat-
ing the factorial moments of n. Each moment
suffers from an experimental error caused by
both the excess noise and the quantum/shot noise.
The experimental error due to the quantum/shot
noise, however, becomes more serious when we
study weak light by the FM method. In the follow-
ing sections we consider the joint-moment (JM)
method with many photodetectors and it will be
shown to be free from the quantum/shot noise.
We apply these two methods to Gaussian light
and calculate the experimental accuracies of
these methods.

II. TWO-DETECTOR MEASUREMENT
1

It will be helpful to consider the following two-
detector measurement before we discuss the gen-
eralized case of the JM measurement with k photo-
detectors. Consider that the light beam is split
by a half-silvered mirror and the divided light
beams strike two detectors as shown in Fig. 1.
In the following, the two photodetectors are as-
sumed to have the same efficiency of photodetec-
tion. I,et n„n„and n denote the numbers of the
photoelectrons counted by photodetectors 1 and 2,
and 1 with the mirror removed, respectively. 'The
average number of photoelectrons counted by
photodetector 1 with the mirror removed should
be the sum of the average numbers of photoelec-
trons counted by the photodetectors 1 and 2, i.e.,
the conservation

(n) =(n, )+(n, )
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holds assuming that the half-silvered mirror only
splits the incident light beam into a pair of beams
of equal intensity and never makes any other dis-
turbance to the light beams. The statistical dis-
persions tP and y' of n and n, +n, are defined as

q'= (n') —(n) ',
y'= ((n, +n, )') —(n, + n, ) '

= (n', ) —(n, ) '+ (n,') —(n, ) '

+ 2((n,n,) —(n, ) (n, )) .

(4)

When the incident light beam is coherent, the
probability distribution of n, n, and n, are given
by a Poisson distribution. ' g' and y' are, there-
fore, given by

('=( ),
p' = ( n, ) +( n, ) +2 ((n,n, ) —( n, ) (n, )) .

(6)

(7)

Since tjt'= p', the reduced JM ttt», defined below,
vanishes:

tt„=(n,n, ) —(n, )(n, ) =0, (8)

from Eqs. (3), (6), and (7). This implies that the
quantum/shot noise does not appear in the joint
moments. Qn the other hand, when Gaussian light
beams strike the photodetectors, P and y' are
given by'

|'I=(n)+(n)',
y'=(n, )+(n, )'+(n, ) +(n, )'+(n, )'

+ 2((n,n, ) —(n, ) (n,)), (10)

where, for simplicity, the count duration is as-
sumed to be much shorter than the correlation
time of the fluctuation. Again from the require-
ment g' = y', g» is given by

(»=(n,n, )-(n, )(n, ) =(n, )(n, ),
by using Eqs. (3), (9), and (10). It is thus evident

that the reduced JM g» has nonzero value only

when the light intensity fluctuates, in contrast to
the dispersion of n. It will be shown later that

the reduced JM tt» represents only the excess
noise of light intensity.

V~(r(, t) = pJV(r~, t —r)}, (12)

at time t, assuming linear polarization. Here,
the analytic signal at the kth detector with all the
beam splitters removed is denoted by V(r„, t),
which is equal to the analytic signal of the inci-
dent light field at the first beam splitter except
for its phase. The time difference v'& is entered
in order to adjust the phase difference of the ana-
lytic signals at x& and z~, and is assumed to be
zero in the following by adjusting the location of
the detectors so that all the transit times of light
from the light source to the detectors are equal.
'The conservation of light intensity holds in gen-
eral,

I
I

(13)

The average number of photoelectrons registered
by the jth detector during T is proportional to the
light intensity 8'&, integrated during T, at the jth
detector,

III. MULTIDETECTOR MEASUREMENT

Now let us develop the previous two-detector
measurement to a k-detector measurement and
make a more detailed discussion of the JM mea-
surement. We suppose the measuring setup shown
in Fig. 2. We use k photodetectors whose effi-
ciencies of photodetection are, for simplicity,
assumed to be unity. It is again assumed that the
beam splitters do not cause any disturbance to
the light field other than splitting the light field
into 0 light fields whose fraction of the incident
field amplitude is, for example, p~ for the jth
beam. 'The analytic signal at the jth detector at
x,. is, therefore, given by

D
2
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D

FIG. 1. Two-detector scheme. FIG. 2. k-detector scheme.
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(n,. ) =(w, ),

Vf(r~, t)Vq(r;, t) dt

(14) P(n„n„. . . , n, )

P(w„w„. . . , w,)IIw,"'.-
~dw, .

6) ~

Then the conservation of the average number of
photoelectrons, 'The joint moment is, therefore, given by

(17)

(15) (n,n, ~ ~ n~) = g n,n, . . . n, P(n„n, , . . . , n~)
all nj

and

(16)

~ ~ ~ p(w„w„. . . , w, )

x ]Qw~dw~, (18)

(n) = U*(r», t)V(r„, t) dt

I

holds in general. Using the joint probability den-
sity P(W„W„.. . , W~) for the integrated light in-
tensities W„W„.. . , and W„ the joint probability
distribution P(n„n„. . . , n, ) is expressed as'

from Eq. (17). Since the beam splitters do not
affect the statistical properties of the light field,
P(W„W„.. . , W~) IIdw& can be reduced to the
probability density P(W) dW for W. Here W is the
light intensity integrated during T at the 4th de-
tector with all the beam splitters removed. We
obtain the reduced form

P(w„w„. . . , w„)dw, dw, dw. =P(w)5(w -I& I'w)5(w. -IP. I'w) . . 5(w„-IPal'w)

xdW, dW, . . .dR', (19)

from Eq. (12). Here 5 is the Dirac's delta func-
tion. Finally we obtain the simple expression for
(n,n, . . . n~) as

When 0=2, we obtain

e,.=&, .) -(,)( .)= I~, l' ~
I p. l'(&w') -&w)')

&~~, . . . ~,&=(iii», ~

)&w'&,

by substituting Eq. (19) into Eq. (18).
For Gaussian light, ' ( W~) is proportional to

( W)k

( w') =F(k)( w)'.

(20)
from Eq. (20). It is, therefore, evident that the
reduced JM g» involves only the excess noise;
i.e., the quantum/shot noise does not appear in
the joint moments. In this respect, the JM method
becomes advantageous to the FM method for weak
light.

IV. STATISTICAL ERROR IN JM AND FM MEASUREMENTS
.Here, F(k) represents the kth-order normalized
factorial moment of n,

(n(n- l)(n-2). . . (n- k+ 1))F(k) = (22)

(n,n, . . . n )=F(k)(n, )(n, ). . . (n ). (23)

Now we are given two basic formulas, Eqs. (2)
and (20), for the FM and the JM measurements
of the kth-order moment of light intensity. One
can see from Eqs. (2) and (20) that the joint-mo-
ment (n,n, . . . n~) in the JM measurement is sub-
stantially equivalent to the factorial moment
(n(n —1)(n —2). . . (n k+1)) in the FM m—easure-
ment. By substituting Eq. (21) into Eq. (20) and
using Eq. (16), Eq. (20) is rewritten for Gaussian
light as

((n,n, . . .n, )')= III',. l' (w")+ IIlp, l' (w')

=F(2k)(n, )2(n, )'. . . (n~)2

+F(k)(n, )(n, ). . .(n, ). (24)

In order to obtain the kth-order moment of light
intensity, we measure (n,n, . . . n„) in the JM
measurement and calculate (n(n —1)(n —2). . .
(n —k+ 1)) in the FM measurement. Assuming
the number of data to be unity, we estimate the
ratios of the amounts of these two experimental
averages to their errors. First we calculate the
error of the experimental value of (n,n, . . . n~)
in the JM measurement. From Eqs. (17), (19),
and (20),
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'The dispersion o ~2, defined by

', = ((n,n, . . .n, )') —(n,n, . . .n, ) ',
is, therefore, given by

(25)

o 2»= [F(2k) -E(k)']" &n/)'+E(k)~™(n ), (20)

from Eqs. (23) and (24). Then S „,«defined by
the ratio of the 0th joint moment to its statistical
error, S,~t; =&n,n, . . .nk)/(&k)' ', is

F(k) II(n, )
( [E(2k) —F(k)'] II & n/)2+ E(k) II & n/)}'/'

(27)

Next we consider the FM measurement of the
0th-order moment of O'. When one studies the
kth-order moment of W by the FM measurement,
one calculates (n(n —1)(n 2). . . (n —k+ 1)) and
then &Wk) with the aid of Eq. (2). The factorial
moment is evaluated from the measured P(n) or
directly obtained by the acquisition of the experi-
mental value of n(n —1)(n —2). . .(n —k+ 1). In
both ways, the original quantity measured is the
photoelectron count v. The finite number of sam-
ples inevitably introduces an error in the obtained
distribution of the photoelectron count. Such a
dispersion of the experimental value of P(n), in
turn, causes an error in the average of'the fac-
torial moment, which results in an error in the
calculated moment of 8'. lt is noted that these
errors are almost solely attributed to the quan-
tum/shot noise when (n) is much smaller than
unity. It is at this point that the FM method is
limited and replaced by the JM method. Iri this
case, each experimental moment of n has an error
of magnitude of same order as the lowest moment.
Therefore, the dispersion of. the factorial moment
of n will be approxiInately determined by the sta-
tistical dispersion of n. We can at least obtain the
lower limit of the dispersion of the factorial mo-
ment in the FM measurement in this way. For
Gaussian light, the dispersion of n, which is de-
noted by 0'„ is given by

o', = (n') —(n)' = (n)+ [F(2) —1](n)', (28)

from Eq. (22). Then we write the approximate
formula for the ratio of the factorial moment to
its error as

out of the high speed fluctuation. This disadvan-
tage becomes more serious for higher-order
moments.

Now let us calculate the ratio between S st,-

and S g~, . From Eqs. (27) and (29), the ratio
Sk —Smulti /S single is given by

(k —1)!II&n, )
&n)' '/2([F(2k) -E(k)'] II(n,.)'+E(k) II(n. )]'/2

When we adjust the ref lectivities of the beam
splitters so that

(n, )=(n, ) =. . . = &n, ) =(n)/k

(30)

(k —1)!
k [E(k)kk &n)k-1]1/2 ' (32)

By using the value of F(k) calculated for Gaussian
light with a I.orentzian spectrum in our previous
work, "S~ was plotted in Fig. 3 from k = 2 to 6
as a function of yT for (n) =0.01 and 0.1. Here
y denotes the spectral width of the optical field.
'The advantage of the JM method is quite apparent
for the smaller value of (n) and for the greater
value of yT from Fig. 3. The statistical error in
the data average will be reduced inversely pro-
portionally to the square root of the number of
samples. 'Therefore the value of S, at yT = 10
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regarding the conservation of photoelectrons [Eq.
(15)], then

(k —1)!
f[E(2k) -E(k)'](n) '" "+E(k)k &n)" ')'/'

l

(31)

If &n) =0.1, Eq. (31) i's well approximated by the
Simple for

(n(n —1)(n —2). . . (n —k+ 1))
(k I) t (o.2)1/2

E(k)(n)' E(k)(n)» ' '
(k - I)'(~')"' (k - I) 1

(29) 1
0,01

1 I

0, 05 0, 1 0.5 1

I

5 '10
I

50 100

where we used the condition (n) «1. For weak
light with a broad spectrum, S . ,~. is small since
(n) is small and E(k) is reduced by-the averaging

FIG. 3. Plots of the value of g& for the Gaussian-
Lorentzian light. The solid lines: (n) = 0.1. Broken
lines: (n}= 0.01.
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((n) =0.1), for instance, implies that we can ob-
tain the third-order moment with the same ac-
curacy by a JM measurement by measuring for
an order-of-magnitude shorter time interval than
would be required for a FM measurement.

The bunching pr operty of photons due to the
fluctuation of an optical field will be an alterna-
tive candidate utilized to reduce the effect of the
quantum/shot noise. Here, we consider some
remarks of the conditional probability (CP)
method. " The conditional probability P,(n„r:n)
describes the event that g photocount is registered
~ seconds after n, photocount was registered, and
is straightforwardly calculated from P(n, ) and a
joint probability P(n„r:n). For n, = 1 and v = 0,
for example, P,(1:n}is related to an unconditional
probability P(n) by the relation

1+(&) - ~ +2

P,(1:n)= (1+ (n)) 1 ( )
(n+ 1)P( ),

for Gaussian light. " The kth conditional factorial
moment E,(k) defined by

E,(k) =gn(n —l)(n —2), (n —k+ 1)P,(1:n),
0

is easily related to E(k) as

E,(k}= (k+ 1)E(k), ((n) «1),

for Gaussian light with low intensity. The A,th fac-
torial moment is enhanced by a factor of (k+ 1)
while the quantum/shot noise is unchanged. One
of the disadvantages of the CP method is the de-
crease of a sampling rate. The sampling rate
becomes P(n, ) times the rate which would be in the
unconditional counting measurement. It is evident
that the correlation between the two successive
events vanishes 'and such enhancement can not be
expected for 7 greater than the correlation time of
the optical field. The details of the dependence of
the enhancement factor on the time delay v, the
general form of E„(k) for various values of n„n&

and a comparison with the JM method are under
study and will be presented elsewhere.

V. CONCLUSION

The statistical average of the product of the
quantum/shot noises from photodetectors vanishes
while that of the self-product of the quantum/shot
noise from a single photodetector does not disap-
pear. By standing upon this distinction, the joint-
moment measurement was shown to be advanta-
geous for the study of the statistics of weak light.
'The joint-moment method could be successfully
applied to the investigation of photon statistics of
extremely faint light scattered from dispersed
matter.
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