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Collision-induced absorption in atomic electronic transitions

Alan Gallagher
Joint Institute for Laboratory Astrophysics, National Bureau of Standards and University of Colorado, Boulder, Colorado 80309

T. Holstein
Physics Department, University of California at Los Angeles, Los Angeles, California 90024

(Received 16 Jube 1977)

The collision-induced absorption and emission coefficients for electric-dipole forbidden atomic transitions
are calculated for weak radiation fields. The approximations used are valid for Ace near A'coo, the atomic
energy differences. The example case of S-D transitions induced by a spherically symmetric perturber (e,g.,
a noble-gas atom) is treated in detail and compared to measurements. The case of "radiative collisions, " in

which both colliding atoms change their state, is included in the theory and is also compared to experiment.

I. INTRODUCTION

0('D) + Xe('S,) -0('S) + Xe('S,) + h &, (1a)

for which a very thorough but specific theory has
been developed. ~ The second' is the first quanti-
tative measurements of the process in Eq. (1). An
example case from Ref. 5 is

Cs(6 'S) + Ar('S, ) + h&u -Cs(5 'D) + Ar('S, ). (1bj

The third is a more recent quantitative measure-

This paper calculates electric-dipole absorption
(emission) coefficients for electronic transitions
that only absorb (emit) radiation during a collision
between two atoms. We treat the weak-field limit,
with absorption proportional to the radiation in-
tensity, and restrict the calculation to frequencies
near w„where 5&, is the energy spacing of the
separated atomic states. %e interpret this pro-
cess in terms of radiative transitions, generally
free-free, between electronic states n and o." of a
diatomic molecule. The dipole forbidden -char-
acter of the transition for the separated atoms is
.then transformed to an electric-dipole transition
moment of the molecule p, (R) . which becomes
zero as the internuclear separation R- ~. Two
classes of forbidden transitions of the separated
atoms are treated equivalently in this model, yield-
ing the same basic line-core shapes. The first
class in which only one atom changes state is

A(n) + B(n~) -A(n') + B(n, ) + he,

where A(n) -A(n') is not a dipole-allowed transi-
tion; n is an abbreviation for the quantum number
n, L, S,J,M~; and we neglect nuclear spin. This
process has been observed in absorption and emis-
sion' and has been qualitatively explained for a
long time, ' but three recently observed cases sti-
mulate interest in a general, quantitative theory.
One of these is the laser transition'

ment for the process in Eq. (1b) with Ar('S, ) re-
placed by Cs(6'S, &,).'

The second class in which both atoms change state
was called "radiative collisions" in the original
articles, ' i.e. ,

A(n) + B(n~) -A (n ') + B(n,') + hu.

The basic description of this process is given in
Ref. 7, and it has also received considerable at-
tention recently. ' " Measurements have been re-
ported for '

Sr(5 'P) + Ca(4 'S) + h&u - Sr(5 'S) + Ca(5 'D or 6 'S).

Equation (2a) is clearly representative of a wide
range of mixed atom-pair absorptions, such as the
reverse of the reaction in Eq. (2b). To observe
the process of Eq. (2) in emission is difficult due
to competing collision processes, but an example
which should be observable at visible wavelengths
1s

Ca(4 'P, ) + Tl(6 'P, i,) -C a(4 'S,) + Tl(6 'P, (,) + h&u,

(2b)

where any group IIA and IIIA elements might be
substituted for Ca and Tl.

To calculate the line shapes and intensities for
the processes of Eqs. (1) and (2), which are dipole
forbidden at large internuclear separation, we
have utilized the traditional method, based on the
Born-Oppenheimer approximation and Franck-
Condon principle, that is used to calculate col-
lisionally-broadened line shapes of dipole-allowed
atomic transitions. " For either the present di-
pole-forbidden or the normal dipole-allowed cases
the far wings, at

~

&g —&u,
~

» 1jr„where T, is a
characteristic time of collision, are described by
the quasistatic theory, which is equivalent to using
the classical Franck-Condon principle. " For both
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the dipole-allowed and forbidden cases the line wing
intensities are proportional to [A(n)][B(n,)], where

[ ] refers to species density. . For the dipole-al-
lowed case, the line core at ~~ —~,

~

~ 1/v, is
Lorentzian shaped with an area proportional to
[A.(n)]. In the present dipole-forbidden case the
line core intensity is proportional to [A(n)][B(n,)]
and its non-Lorentzian shape is the subject of the
present work.

Our molecular state model is equivalent to the
previous qualitative description' of process (1b)
as due to excited P-state components collisionally
mixed into the ground S state, allowing an electric-
dipole transition to an excited D state. The exist-
ing theories of "radiative collisions" use a different
language to describe process (2), but also consider
the same interactions as those evaluated here.
Thus we arrive at equations for line shape and
cross sections that are similar to those in Refs.
7-9; the primary differences are due to a more
detailed treatment of M dependence and molecular
axis rotation here. In addition, the equations are
numerically integrated.

We believe that for low light intensities or spon-
taneous emission there are distinct advantages to
the molecular-transition language and model for
these processes. This model treats the line core
and wings of class (1) and (2) processes in a con-
sistent fashion, points out the equivalence of these
two classes of processes and their line shapes,
and fits this description into the familiar, highly
developed, and very universal theories of line
broadening and molecular radiation. In fact, the
class (1) process has already been calculated for
the case of electron perturbers" by this "tradi-
tional" method, resulting in the same character-
istic type of line-shape equations that are obtained
here for both, class (1) and (2) cases. Within the
framework and approximations of the present theo-
ry, a great variety of specific type (1) and (2) cases
have either of two line-core shapes, one due to the
long-range dipole-dipole interaction and one for
thy dipole-quadrupole interaction. We have nu-
merically evaluated the line-shape triple integrals in
order to provide tabulations of these. two very gen-
eral theoretical line shapes and to allow quantita-
tive comparisons with experiments.

II. THEORY

A. Approximaiions

The several approximations used are (i) the
Born-Oppenheimer approximation, with neglect of
nonadiabatic terms between nondegenerate states;
(ii) the long-range multipole expansion of the elec-
trostatic interaction between atoms A and B is used
as a perturbation to obtain the molecular adiabatic

states and their potential energies, and only the
leading terms are included; (iii) straight-line-path
collision orbits; (iv) no nonadiabatic mixing of mo-
lecular M levels (this is the most important ne-
glected nonadiabatic term at large R, as these
states are nearly degenerate); (v) no change in nu-
clear angular momentum in the radiative transition,
as is implicit in the straight-line path assumption
(this is equivalent to neglecting the differences be-
tween P, Q, and R branches); (vi) no change in
L Scoup-ling scheme (Hund's case), which is con-
sistent with assumption (iv); and (vii) weak radiation
field, no radiation induced level shifts or satura-
tion.

The first approximation is quite valid in this
treatment of thermal vapors and transitions between
electronic states that are isolated at large R. The
second and third assumptions. are appropriate only
for calculations of the line core and near wings, as
these are primarily due to weak large-R interac-
tion energies. As ~a& —&u,

~
increases, the domin-

ant R region responsible for each +-w+d& por-
tion of the spectrum generally decreases. We use
a large R approximation for' the molecular adia-
batic potentials and transition moments, which
breaks down as R decreases. Thus our results are
only valid within a limited

~

&u —&o,
~

region. This
range of validity depends on the specific case; cri-
teria and examples will be discussed below. As-
sumption vi also breaks down when R decreases to
a value where the interaction energies are non-
negligible compared to fine-structure splittings.

Assumption ii also limits the applicability of the
present results to transitions where n and'n' (and
n, and n,') have the same spin. Approximations
iv and v are traditional in most line-shape calcu-,
lations for allowed lines due to the complexity in-
volved in removing them and the supposition that
they have a minor effect." They have been included
in some calculations (e.g. , Ref. 14) but it is not
easy to generalize from these. The effect of M
mixing on the broadening of an allowed transition
with a long-range Van der Waals interaction has
been shown to be minor. " It is unlikely that the
inaccuracies arising from assumptions iv and v
exceed those from assumption ii, which can only

. be improved by using more accurate molecular
states and potentials, as in Ref. 4. The present
theory, although less accurate, is intended to have
general applicability.

The evaluation of a molecular free-free transi-
tion probability as occurring between electronic
states which result from an orbit R(b, v, f) can be
shown to be equivalent to evaluating Franck-Con-
don factors using WEB wave functions for the nu-
clear motion (b is the impact parameter and v the
initial interatomic velocity). Thus it is valid when
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R'dK/dR «1, equivalent to (&„dV/dR)/ksT «1,
where SK is the internuclear momentum, R '=&&,

k~T is the characteristic collision energy, and
V(R) is the adiabatic molecular potential. For
~d V~ ~R~, where b, V= V(R) —V(~), this reduces
to (~N!R)(

~
&V~ /ksT} «1, which for thermal col-

lisions between heavy atoms at typical distances
of 5 A becomes )AV(cm ')

~

«10'. In the present
work, ~b V(cm ')

~

«10', so this condition is well
satis fied.

Transitions from weakly bound states also con-
tribute to the measured intensities. Their contri-
bution to the continuum intensity distribution is
insignificant for ~b. V~/ksT «1, which character-
izes the line core of the present calculations. Thus
they are neglected in the line-core calculation.
These contributions a,s well as curvilinear tra-
jectories are significant in the far wings, and they
are included in the exp(-hV/kT) factor of the quasi-
static theory that is used here for the far-wing in-
tensities. "'"

B. The model

In our model the large R adiabatic molecular
states are expanded as a sum of atomic basis states
~A(n)B(n, )), and we take

t e t ~i,
——V„+ Vs+ U'(R),

with V,. the electrostatic potential for isolated atom
i, and

V'(R) = V~~+ V„,+ V,~+

V„=(r„r, 3—(r„A)(r, R)jR-

is the familiar dipole-dipole interaction potential
with r„=Zr& over electron coordinates of atom A,
Vqg+Vgq~R'are thedipole-quadrupole interac
tion potentials, etc." We use perturbation theory,
with perturbation V'(R), to obtain each adiabatic
state as a sum of ~A(n)B(n, )) basis states with R-
dependent coefficients from first order and elec-
tronic potential energies from second order.
Straight-line collision orbits are used to obtain
R(t) and thereby the time dependence of the coef-
ficients and electronic state energies. A weak
electric-dipole radiation field perturbation [V„(t)
=(E,cosset) er] is then introduced as a, perturba-
tion between two of these time-dependent electron-
ic molecular states and the net transition proba-
bility for a single collision is calculated (r repre-
sents a sum over all electrons r,.). The collision-
al average over b, v of the absorption (emission)
then yields the absorption (emission} coefficient.

The dominant molecular electronic transition mo-
ment between adiabatic states occurs between the
initial product basis states and those that are mixed
in by V'(R), so that the transition can be considered
as arising from the successive application, in
either order, of V'[R(t)] and V„(t) perturbations.
The V„(t) perturbation is a one-electron operator,
so it only changes the electronic state of one atom.
For the example in Eq. (1b) the transition can be
shown diagrammatically as

Cs(5'D~)Xe(k, 'P )

Cs(6 'S, t,)Xe(5 'S,) Cs(5 'D~) Xe(5 'S,), (1b')

g Cs(6'S„,)xe(k,"P,

where both channels add coherently; and for the example in (2a) as

Sr(5 'S,)Ca(k, 'P, )

Sr(5 'P, )Ca(4 'S,) Sr(5 'So)Ca(5 'D, or 6 'So). (2a')

Sr(S 'P, )Ca(k,"P,) V„

This successive application of collisional and ra-
diative perturbations is essentially the same pic-
ture involved in Ref. 1 to explain collisionally in-
duced S-D absorption. It has also been used to ex-
plain the "radiative collisions, " for the case of a
weak V„as well as the high-power case where V„
cannot be treated as a perturbation. ' ', Here we

l

identify these collisionally mixed-in atomic states
. as parts of the initial and final molecular adiabatic
states. In the language of line-broadening theory
they could be identified with the upper-state and
lower -state interactions.

The molecular-state pictures for these two ex-
ample cases are shown in Figs. 1 and 2. The en-
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ergies of these states are generally attractive and
proportional C,R at large R, with increasing C,
coefficient for decreasing atomic binding. The
Ca(4'P„) Sr(5'S,) state in Fig. 2 is an exception due
to its proximity to Ca(4'S, ) Sr(5'P~). This pair of
product states are mixed by the V«(~R ') interac-
tion and their energy levels are repelled ccR '
(i'rom second-order perturbation theory). ln ad-
dition to the initial and final states of the optical
transitions, the figures include some of the mole-
cular states associated with atomic product states
that contribute to the transition moment, i, e. , those
indicated in (1b') and (2a'). Other molecular states
are indicated as unlabeled lines at the separated
atom limits, as these will normally influence the
transition less directly.

The present theory is closely related to the tra-
ditional theory of collisionally broadened dipole-
allowed atomic transitions. For the idealized case
of two isolated atomic states, each of which forms
a single molecular state V, (A). or V,(A) with V,(~)
—V, (~) = he„ the intensity f(&u) for the dipole-al-
lowed case results from"

E

O

K 2—

4977 k

6 S, 5S
(p ) D, 5S
4 D, 5 s

5's, 5 s

55I3A

4'p, 5 s
4S, 5P

4607K

T

pj2 exp i et —iS
T

14600—

f(]d) ~2T
1

2

x [ df'(V, [Z(f')] V, [A(f')])
& -T av

(3a')

1

DS/2
2

o 4S, SS

FIG.. 2. Ca-Sr adiabatic potentials responsible for
the CaSr*—Ca*Sr (A, - 4977 A) absorption coefficient,
or "radiative collision. " In the experiment the 5513-A
fluorescence is detected and the Sr(5'P) is optically

0
pumped - 50 cm ' on the wing of the 4607-A resonance
line to avoid a background signal due to two-photon ab-
sorption by. Ca.

5/2
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FIG. 1. Cs-Xe adiabatic potentials responsible for the
Cs 6 Sf/2 5 DJ absorption coefficients. The C6R 6

approximations used in the long-range theory (dashed
lines) is compared to the potentials of Pascale and
Vandeplanque (Ref. 22) (solid lines).

Ch e„]jj(j)] exp (ieC -elf '
& ~oo

2

df'(V, [~(t') ] -V, (&(&') ]]'
a OO av

(3b')

where the average is over b and v, and p» is the
electric-dipole moment, which is assumed inde-
pendent of R. Here T must formally be longer than
the time between collisions since the atom radia=
tes between collisions. The impact approximation"
yields

~ (,'Zy~)/[( 2Z)2-+ („-
where the shift 4 and width I are given in terms
of an integral through single collisions. This is
valid for the central portion of the line, such that

~
&u —e,

~

& ~, , where ~, is the characteristic time
of collision. The "static" far wing, where

~

~ —~,
~» 1/v, also comes from the collisional portions of

the above integral, with the dominant contribution
from the "stationary-phase" times when the ex-
ponent traverses zero. In the dipole-forbidden
case, the two-level approximation leads to a very
-similar expression, i.e. ,
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Here p, »(R) is the (collisionally induced) electric-
dipole moment between molecular states 1 and 2.
Since the atom does not radiate between collisions,
the time integral can be immediately restricted to
the time of one collision (-~ to ~) for a single
b, v collision. Just as for the allowed case, the
stationary phase times t„when he= V,(t,) -V, (t,),
dominate the integral in the far wings ( ~(d —(d,

~

.
& 1/7, ). The following theory keeps track of the
molecular axis rotation and M dependences for de-
generate atomic levels, but is basically repre-
sented by this simple expression.

C. General theory

We will label the adiabatic molecular states with
quantum numbers +MM„and atomic states, as
previously, with quantum numbers nM
= n, L, S, J,M, sometimes for convenience with K

used in place of M. The molecular state nMM,
is that which connects adiabatically with the se-
parated atomic states A(n, L, S, J, M) a.nd

B(n„L„S„J„M,), with n representing the
L S J sy Ly Sj' Jy quantum numbers. Note that,

as explained in the approximation section, we do
not-include the mixing of these various MM, states
by the rotation of the molecular axis. Thus we are
effectively in the Hund's case (a) coupling scheme.
The absorption or emission of Eqs. (1) and (2) cor-
responds to the ~- a' transition and has contribu-
tions from the (2J+ 1)(2J,+ 1)(2J'+ 1)(2J,'+ 1) dif-
ferent ~MM, - ~'M'M, ' combinations of adiabatic
states. As noted above, these calculations only
apply to transitions between states of atom A (and
B) with the same spin, since otherwise the transi-
tion moment induced by the electrostatic perturba-
tion V'(R) is zero. The adiabatic electronic state

~

o.MM, (R)) and its electronic energy V» (R) are
then given, to first order by

) ~ ((A()K))(kit() I)"(H) (A(nM)))(nM))) ~~(„) ( ))
kkl

BTL BR/

(2a)

I (A(kOIl)B(k, Ã, ) I V'(R) IA(nM)B(n, M, )) I

'
/ n n~ k k~

9R Wv ]

(2b)

For convenience we will delete the vectors on

R, b, and v, as these are only relevant to the mo-
lecular-axis rotation section. In the absence of a
radiation field, the time-dependent electronic-
state wave function

~

nMM, (t)), subject to the col-
lision orbit R(b, v, t), can be calculated by time-
dependent perturbation theory, using time-depen-
dent basis states given by Eq. (Sa) with R=R(t).
When the nonadiabatic mixing is neglected, as as-
sumed here, this yields

~
nMM, (t))

t
=

~

o.MM, [R(b, v, t) ])expt dt' k
m OQ

~V», [R(b v t')1

where t= 0 is defined to be at the time of closest
approach.

The probability P(b, v, (d) that an o. o(' transi-
tion occurs during a single collision due to the
presence of the radiation-field perturbation V„(t)
=E, er cosset is

P(b, v, &u)
= g — dt(o(MM, '(t)

~

"
~

o. 'M'M, '(t))
hfM' ~+ 1

M M

(4)
Here g = (2J+ 1)(2J,+ 1), and we have averaged
over initial and summed over final M values since
the present experimental observations, in which
polarization information is neglected, -correspond
to transitions from an initial statistical distribu-
tion of M -levels to all final M levels. It can be
shown that Eq. (4) also results from taking the
Franck-Condon factor between stationary-state
WEB nuclear wave functions of energy separation
h&, changing the integration variable R to-t using
dt=dR/v„(b, v), where v~(b, v) =hk(b, v)It(, , and
neglecting the difference between the R component
of velocity in the initial and final-state potentials
(e.g. , see Ref. 17). This cori esponds to the pres-
ent classical-orbit- approximation.

The transition rate per unit volume T((d) is given
by

T(ur) = [A(n)] [B(n,)] [ 2mb db p(v)vdv P(b, v, a),
J0 0

(5a)
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k„= 8~A~T(e)/&Oc. (6)

The spontaneous emissionI„and stimulated emis-
sion cross sections G„are given in terms of k„by
thermodynamic relations equivalent to the Einstein
A/B relations, i.e. ,

G„ e-h (v-vo) / k JBT

. and I,= 8wG„/X .
The process under consideration is effectively

a three-body collision process, but one can define
a collision cross section Q(e, I) for the transition
in the presence of a given radiation intensity I, as
has been done in descriptions of "radiative colli-
sions":

where p(v) is the normalized thermal interatomic
velocity distribution, with p, the reduced mass:

p(v) = (4/v m)(p, /2kT)' 'v exp( p.v-'/2kT) . (5b)

The absorbed power per unit volume is h&uT(&u),

the radiation field intensity is I = E,'c/8v, and the
absorption coefficient k, (v = +/2m = c/X = ck) is giv-
en by their ratio:

Thus D(R) ~ R ' for the ns -n's case.
The form of the process in Eq. (2) being con-

sidered here is

A(n, L, S, J) + B(n„I „S„&,)
-A(n', L ah, S, J')+B(n,', L, + A„S„J,') abc'.

(2')
As indicated in the Eq. (2a') example this transi-
tion is induced by the V«gart of V' for the case
6 = 1,6, = 0 or 2, so that D(R) ~ R '. ( V„can also
yield a small contribution for some 1., L„6=1,
D, =2 cases. ) It is induced by the V,„part of the
V for cases ~= 6, = 1 and 6 = 0, 6, = 0 or 2 re-
sulting in D(R) ~ R '. The exception is again the
nS- n'S transition on either atom, which requires
two applications of U' and one of V„(t), resulting
in D(R) ~ R '(R ') for the V„„(V,„) case. We will
show that almost all the D(R) ~ R " cases with a
particular n will have nearly the same character-
istic line shape for small

~
~ —&u, ~, with certain

exceptions that will be described below. Since
the dipole radiation operator connects product
states of opposite parity, the V„„case applies to
transitions in which the total parity of atoms A

T((u, I)
[A(t)] [B«)](v~s& ' (7)

and B changes, and vice versa in the U„, case.
This can be a convenient bookkeeping aid.

where v„s = (8ksT/v p.)'t' is the mean interatomic
velocity, T(&u, I) is T(&u) for intensity I, and
[A(i) ] and [B(i,)] are the initial-state densities.

To obtain solutions of Eqs. (6) and (7), Eqs.
(3a) and (3b) are used in (3c), which is then used
in (4) to obtain P(b, v, &u). Equation (5b) and the
solution of Eq. (4) are then substituted into (5a) to
obta. in T(&u) for Eqs. (6) and (7). This procedure
is carried out in the Appendix.

The transitions that have been studied [e.g. , Eqs.
(la), (lb), and (2a)] are those in which ~t L

~

~ 2

on each atom. As the generalization from this re-
striction is straightforward but time consuming,
we will limit most of the discussion to this condi-
tion. The form of the process in Eq. (1) being con-
sidered is then

D. Quasistatic ming

Before. obtaining general solutions to Eqs. (3)—
(7), considerable insight can be gained by con-
sidering the

~
e —a,

~

» 1/v, limit, for which the
stationary phase solution of Eq. (4) yields the
quasistatic intensity distribution. [That Eqs. (3)—
(7) reduce to this approximate result is verified
in the Appendix below Eq. (All). ] The quasistatic
theory ' ' predicts an absorptj. on coefficient at
frequency v in the line wing of the n to ~' transi-
tion given, for negligible excited-state population
and a = 2w v = 2mc/X, by

k„= [A( )][B(,)]3ASg„g„

A(n, L, S, J)+B(n,) A(n', L +6, S, j')+B(n, ) +k&,
AfM'M M' R(v)

1 1

X 8-~ Vf. R (v ) 3 / kB T (8)where ~ = 0 or 2. This is induced by V„(t) plus the
V,~ part of V' as indicated in the Eq. (lb') example,
with the result that the transition moment D(R) is
proportional to R '. The 6=0, L =0 case (an ns-
-n's transition) is an exception which can only be
induced by V„(t) between the mixed-in portions of
both (o.'MM,

~
and

~

n' ' M'M) in Eq. (4), equivalent
to successive application of V«, V„, and V,„. This
is necessary since the matrix element of all the
multipole operators is zero between two s states.

where@„=(2J„+1), R(v) =R»i(v) is obtained
from kv= V„,s, , (R) —V s~ (R) = 6V(R), and D(R)
= (nMM, (R) I er 1 o. 'M'M, '(R)) is the transition-di-
pole moment. Equation (8) is a sum over final and
average over initial molecular states which can
contribute to the line profile, combined with the
usual quasistatic assumption that the photon ener-
gy due to a transition at separation A is given by
the potential difference at R. The exp(-d V/ksT)
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factor in Eq. (8) is part of the interatomic dis-
tribution function"; for ~k(v —v, )

~
«kT it is nor-

mally about 1 and we will generally delete it be-
low. The straight-line collision path assumption
used for the line-core calculation forces this fac-
tor to equal 1."

In most cases,

(9)

in the large-R region responsible for the line
shapes under investigation. (C» is evaluated
in the Appendix. ) Thus k[v~~x(R) —v, ] = (C „„

the constant D v~™(will be given below Eq. (20),(z NNi
and deleting the exponential factor Eq. (8) becomes

k„16m'
[A(n) ] [B(n,) ] 9'„g„

Cauv -C~~svy'x ' ' (10)
k(v —v, )

The quasistatic absorption coefficient of Eq. (8)
applies when

~
v —v,

~

»1/2vv, on the "static" wing;
that for which kv= V» (R) —V,„,v, (R) for each
combination of M values. The absorption coeffi-
cient of Eq. (10) requires the additional validity
of Eq. (9) and D~R ~. If Eq. (9) is valid at R&R„,
where this defines R„and hv(R ) = V .„',„.(R„)I—V» (R„), then Eq. (10) applies to the wing re-
gion ~ & co —&u, [

& )co(R„) —&u, ). As will be noted
in the examples below, the V(R) usually differ
from Eq. (9) before they change from V(~) by even
10 cm '. Thus Eq. (10) generally loses validity at,
~k —k,

~

&10 cm ', where 2vck= to and 2mck, =&a,.
Nonetheless we use it in most of the examples be-
low even in the

~
k —k,

~

& 10 cm ' region since it
represents the leading term for the general case,
while the correction is specific to each case and
usually uncertain.

In Eq. (10) the static wing is that for which the
term inside the parentheses of Eq. (10) is
positive. Thus if C,», —C» is positive, cor-
responding to an increasing separation of the mo-
lecular potentials, it applies on the positive v —v,
(blue) wing, and vice versa. If some C „„e MNi
—C,~,~, combinations are positive and others neg-
ative, both wings will have such quasistatic con-
tributions. If C» —C,~,~, have the same sign
for all M, M„M', and M,' the static wing will be
much stronger than the other "antistatic" wing,
with the latter expected to be exponentially small
for

~
v —v,

~

» I/2wr, Examples of th. ese line
shapes and the successes and inadequacies of the

approximations are given in the comparisons to
experiment in Sec. III.

For the transitions of Eqs. (1') or (2') without a
change in total parity, P=4 in Eq. (10) and the
quasistatic wing fa.lls off as

~

v —v,
~

't'. For the
transition in Eq. (2') which changes the total parity
P= 3 and the quasistatic wing falls off as

~
v —vo~

't'. For the case of an nS n'S transition
on either atom, P 6 and the quasistatic wing in-
creases at least as rapidly as (v —v,)'t'. Thus in
the nS-n'S case we typically expect a broad mo-
lecular band which terminates in the neighborhood
of vp with only a weak electric quadrupole line
proportional to [A(n)] at v, for the class of transi-
tions in Eq. (1). This type of behavior is general-
ly, but not a.lways, seen in the nS (n+ 1)S transi-
tions of the alkalis reported in Ref. 5. We will not
evaluate the line core (

~
&u —~,

~

& I/~, ) portion of
the line for this S-S case as it is very weak ac-
cording to the present theory. For the other cases
we expect k„or I„ to be peaked near v, and de-
crease rapidly on the antistatic wing. Note that
the 6 = 3 case in Eqs. (1') or (2') would result in
P= 5 and the band should be observable to v, . For
6~4, P~ 6'and again very little intensity is pre-
dicted at v, .

E. Line core

The line-core shape results from Eq. (3) in (4),
which is then substituted into (5) and (6). The de-
tails of this calculation are given in the Appendix,
and we will only outline the salient points and re-
sults here.

We eva, luate the ~o.'MM, (R)) of Eq. (3a) and

V,», (R) of (3b) in the molecular-axis reference
frame. We retain only the leading C,R ' term in
the interaction potential of Eq. (3a), but include
its M dependence. For the parity conserving (or
changing) transitions we reta. in in Eq. (3b) only the
states mixed in by the V„~ (or V~, + V,„) interaction,
as these are the dominant terms responsible for
the induced transition moment. The rotation of
the radiation field relative to the molecular axis
during a collision is then included in the V„(t)
radiation perturbation [Eqs. (A7) and (A8)]. After
averaging over collision-frame angles, we obtain
a single-collision line shape [Eq. (A8)], in terms
of a sum over initial and final M states of line-
shape functions ~Z( ) ~, weighted by M-depen-
dent terms ~E( )

~

. The sum also extends
over three separate line-shape terms q = -1,0, 1,
corresponding to U, = 1, cos&(t), and sin8(t) terms
in the Z( ) time integral, where 0(t) is the ro-
tating angle of'the molecular axis during the col-
lision(see Fig. 3). Except for these rotation
terms, the Z( ) time integral is very similar
to that in Eq. (3b').
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Ya Y

FIG. 3. Rotation of the unprimed laboratory axes
through Euler angles n, I8, y to the primed collision
frame, and then through Euler angles 0, 0(t ), 0 to the
rotating, double-primed frame.

The complete l= 1 (or 2) line shapes will be given,
from Eq. (11), by q-weighted sums of these three
L(D, l, U,) functions. The relative weighting comes
from the ~E( ) j factor, summed over M val-
ues, and the a, fraction which results from the
angular average discussed below Eq. (A8). The
sum over I= 0, +1 comes from the projection of
the three independent polarizations onto the elec-
tric vector of the incident radiation field (assumed
linearly polarized). The relative weight assigned
to ea.ch of the three L(D, f, U,) line shapes thus de-
pends on the particular I or J values of the atomic
states involved in the n - n' transition. Further-
more, the e —&u, scale is given by e —&u, = Dv, /
(C/hv, )'~', where C=—C„,„,„,—C» is different
for different contributions. Thus there is no sin-
gle universal line shape for all V~~- (or V~, -) in-
duced transitions. Equation (ll) covers all nL
—2 cases of type-1 and type-2 line shapes. The

The single-collision line shapes are averaged
over impact parameter b and impact velocity v,
Eq. (A10). Combining Eq. (A10) with Eq. (6) yields
the general result for the absorption coefficient:

16m'~ '(e'/bc) (u

v,(C/ev )"~'g g
2

x g Q E( ) a L(D, l, U,). (11)
mq

1 j.

Here the L(D, f, U,) are line-shape functions with
magnitude -1 at (d (dp 0 they are expressed in
terms of a dimensionless frequency variable D
=((o —(o,)(C/hv, )'~'/v, =-((o —co,)v„where w, is the
"collision time" discussed in Sec. II F. These
L(D, f, U, ) for q= 1,0, -1 are given in Table I and
Fig. 4(a) for the l = 1 (V~„-induced) case, and in
Table I and Fig. 4(b) for l= 2 (V~, -induced) ease.

N
V)
w — (0)

l.2—
M

LLI

O 08—

n 0.4—

I

-2

(b)

I

-I 0 I

0 ( D1ME N S!ONL E SS)

D
1

q=0
l=1 l=2 l=2

TABLE I. L(D, l, U, ) of Eq. (A10).

l=2
q= 1

V)
M
41

Z0
M
Z
LIJ

O p

3
2
1
0.5
0.25
0.0

-0.25
—0.5
-1
-2
-3

0.54
0.64
0.88
1.08
1.22
1.36
0.80
0.50
0.22
0.058
0.019
0.008

0.35
0.42
0.56
0.68
0.74
0.78
0.54
0.38
0.18
0.054
0.018
0.007

0.17
0.21
0.26
0.28
0.28
0.27
0.25
0.22
0.13
0.048
0.018
0.007

0.75
0.77
0.79
0.77
0.74
0.65
0.50
0.36
0.20
0.058.
0.026

0.495
0.505
0.51
0.49
0.47
0.41
0.33
0.26
0.16
0.057
0.024

0.235
.0.24
0.22
0.20
0.185
0.17
0.15
0.135
0.10
0.045
0.022

Al
II

Clg

O

I I I I

-3 -2 —
I 0 I 2 3

D (DIMENSIONLESS)

FIG. 4. Dimensionless line-shape function & (D, l Uq)
for the l =1 case (a) and l =2 case (b). The parameters
are defined in Sec. IIE and Eq. (A10). ,Thj.s converges
to the quasistatic limit (dashed lines) at large positive
D
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three additional L(D, I, U,) functions for ~L = 8 can
be obtained by obvious extension of the formulas,
while dL& 3 yields negligible intensity near +,.

The sum over M's and m = 0, +1 in Eq. (11) or
(A10) does not reduce to a simple form due to the
M dependence of C in the L(D, l, U,). It can be
simplified considerably by using an M-averaged
C in L(D, I, U,). A further approximation, equiv-
alent to ignoring the molecular axis rotation, is
to use only the U, = 1 or q= -1 line shape, properly
weighted as given above Eq. (A11). A much sim-
pler approximation to the line core shape results
[Eq. (All)]. The accuracy of this approximation
will be noted in the following examples.

These general equations (A10) and (A11) are re-
duced in the Appendix to expressions for k, [Eqs.
(A12) and (A16)] for the (class 1, I = 2) case of nS

nD transitions of atom A with atom 8 an L = 0
ground state atom, a.s in the examples of Eqs. (la)
and (1b). Next, Eqs. (A10) and (All) are reduced
in the Appendix to Eqs. (A18) and (A19) for the
case of a, (class 2) "radiative collision" in which
hL = 1 for atom A and hL = 2 for atom B. This
will be applied to the Sr*, +Ca- Sr+Ca~ problem
in Sec. III.

F. Stationary-phase limit
6

For positive (~ —~,)/C, the argument of the ex-
ponential in Eq. (A9) can be expanded as a quad-
ratic about the stationary phase point x~. The re-
sulting stationary phase solution for Z yields
SL(D, I, q = 1) = 1.5L(D, I, q = 0) = L(D, I, q = -1)=

—,
' m' 'D"' " ' in Eq. (A10). Then Eq. (A10) yields,
with Eq. (6), the quasistatic wing intensity given
in Eq. (10) where P= I+ 2, yn =M, —M,'+M —M',
and

~D.'"'":(2= (F(~M~,M„~'M'n,'M;, mf) ('. (l2)

The exponential factor is missing in this quasi-
static limit of Eq. (A10) because we have assumed
straight-line paths. That this relation should hold
is apparent from comparing the definition of
E( ) below Eq. (A8) to Eq. (A5) or (A6) and
noting the identification of D ~~~ & below Eq. (8) as
the transition dipole moment. These stat;ionary-
phase limits to the L(D, I, U,) are given as dashed
lines in Fig. 4. It can be seen there that the exact
line shapes converge to this limit in the neighbor-
hood of D= 1. These stationary-phase limits are
the foundation of the quasistatic approximation,
so the agreement is not accidental.

The exact solution [Eq. (A10)] thus converges to
the quasistatic limit [Eq. (10)] for D» 1, with the
transition from the quasistatic to "dynamical"

'portion of the line at D—= 1. This corresponds to
~&u —uo~ = no/(C/hv, )'~', as could have been pre-

dieted by dimensional analysis. This transition
frequency is the same as the transition frequency
between the quasistatic and impact limits for al-
lowed-dipo1e transitions in a CA difference po-
tential. " This transition frequency is generally
called the Weisskopf frequency, and its inverse
is often identified as "7„"the characteristic
"collision duration time. "

III. COMPARISONS TO DATA

A. Class]

The only data we are aware of for class 1 col-
lisions are for nS-n'D transitions of atom 4,
~ith atom B in an S state. The following cases
have been measured.

IO

8
lA

CP

O

I
C)

k- kp (gm )
2 0 -2 -4'.

I I I I y
I I

Cs (6 S )/p ) Xe ('Sp) ( y~ c QUAsI- sTATIc

-Cs(6~Dq} Xe('Sp) g~ Cef f QUASI - STATIC
i~z05iz]

-6 -8
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o5rZ] ~

4

0 ~i I I
'l

-I 0 I

X- Xo (A)

FEG. 5. Theoretical coefficients for Cs(6 S&&z 6 Dz)
absorption in the presence of Xe. For the J =2 case
the more-exact theory (solid line) is compared to the
quasistatic limit using an effective C(short-dashed line),
and to the approximation of Eqs. (A11) and (A17) (long
dashed line). This describes the 6 8&&2 5 Dz absorption
as vrell if the k ~ scale is multiplied by 32 and the k -ko
scale by 1.70 (see text).

Cs-Le

Equations (A12) —(A15) have been used to obtain
k„for the Cs O'S-O'D& and O'S-6'D~ absorption
coefficients due to Xe. In Fig, 5 the line-center
shapes for O'D, &, and 6'D, &, are given, and the
approximation of Eq. (A11) as given in Eq. (A16)
(long-dashed line in Fig. 5) is also given for the
J= & case. This approximation uses

C = nx,((r'„.~) —(r'„,))
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from Eq. (A15), underestimating the effective C,
for the D state because smaller M values have-
larger transition moments and larger C, coeffi-
cients. The line shape in Fig. 5 also applies to
the O'Sz/2 5'DJ absorption coefficient if the k„
scale is multiplied by 32 and the k —k, scale by

k(nm)
FIG. 6. Cs(6 8&&2

—5 DJ) absorption coefficient due to
Xe as calculated and as measured by Moe et pl . (Ref. 5}
at [Xe] =- 10 /cm . The intensity measured at A, ~ 684 nm
is the beginning of a band that dominates the spectrum.
It is attributed to a transition to the strongly repulsive
0 =

~ molecular adiabatic state, associated with
Cs(5 D)Xe( So) separated limit.

1.70. This results because changing from O'D
to 5'D only affects the size of 4.„~ „,~, and of C in
Eqs. (A12) -(A15).

The absorption coefficients to 5'DJ and O'D J
are compared to experiments in Figs. 6 and 7.
We have used S„~ „,D=24a', for n=5 and 16a', for
n= 6, obtained from Ref. 6. (In cases without ex-
perimental data, Ref. 20 gives a Coulomb approxi-
mation for R„z „,~.) The absolute absorption coef-
ficient measurements of Ref. 5 are extremely val-
uable for these comparisons, as there are no ad-
justable terms. This comparison indicates that

. the present approximations are fairly good for the
5'D J states, particularly since the experimental.
data are somewhat broadened by high Xe density
and experimental resolution. The theoretical pro-
files will drop more rapidly with increasing X —Xp,
as in the experimental data, when the R ' and
higher terms are included in V(R), i.e. , Idv/dRI '
in Eq. (8) decreases with increasing

I
v —v, I, cor-

responding to smaller R. Note also, that Eq. (A16)
predicts Ik, I

o- (o.'~)", which is consistent with
the results iri Fig. 5 of Ref. 5.

The two measurements of the O'Sz/2 6 DJ ab-
sorption coefficient, shown in Fig. 7, can be rec-
onciled by noting that the [Xe] = 4 amagat (1 ama-
gat = 2.7 x 10"/cm') measurements of Moe, Tam,
and Happer' are reasonably consistent with a
broadened form of the lower-pressure Kielkopf-
Gwinn measurements. ' Thus if the latter, rela-
tive measurements are normalized to the former
as indicated in Fig. 7, they probably represent the
low-pressure normalized line shape. The theo-
retical profile compares very poorly to this, both

/

~ IP—
F
EJ

4

2

I I

Cs {6 SI/2) Xe( So)
—Cs (6 ~Dq } Xe ('SD)

M, T, 5 H

(EXP ERI

ll
l I {Ex&

/

FIG. 7. Cs(6- S«2-6 2D J)
absorption coefficient due to
Xe as calculated, as mea-
sured by Moe et al (g,ef 5)
in absolute units at [Xe]

20=10 r'cm3, and as measured
by Gwinn et al. (Ref. 2) at
much lower tXe]. The latter
measurements were in rel-
ative units and have been ar-
bitrarily normalized.
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in magnitude and shape. . The difference in mag-
nitude, the rapid drop of the experimental red
wings, and nonstatistical D, i, .D,i, intensity ratio
implies that for the n'= 6'll~ states the b, V
= C,~~ ' assumption. of the present, small

f
v

—v, f
theory breaks down at quite small

f
v —v, i,

invalidating the theory. This is also indicated by
the scaling of fk„ f

for different noble gases in Fig.
6 of Ref. 5, which does not follow (a~)".

In these examples we expect fine-structure re-
coupling (change of Hund's case c to case a) to oc-
cur when h fb, e i

is comparable to the fine-struc-
ture energy DE». The effect of this on 'D~ ener-
gy levels has been given by Nikitin" and the effect
on the Cs-Cs spectrum by Niemax. ' It is also ap-
parent in the Cs(5'D)-Xe potentials calculated by
Pascale and Vandeplanque (Fig. 1),

" in the red
satellite in Fig. 7, and in the strong blue-wing
bands in Ref. 5, which are attributed to a Z level
that is weakly attractive at large A but becomes

, strongly repulsive at small R. The simple long-
range. approximation of the present theory does not
describe any of these effects, and can only be ap-
plied across a range of h fb, ~

f
«4E». In the

Cs(6'S, i, -5'D~) case, EE»»h/7„and our as-
sumed V„.„.,(R) are fairly accurate for &u —' &u, (1/7„
yielding reasonable'fits to the experimental 0„ in
the neighborhood of each fine-structure line. In
the Cs(6 'S, i,- 6'D~) case r Ers - hv, ', severe de-
partures from the assumed V,„„(R)occur with-
in the core of the lines (~ —&u, (r, '), and very
poor agreement is obtained. Kielkopf" as well as
Pascale and Vandeplanque" have provided sets
of potentials for 'the 6'D~ and O'Sz/2 states. These
could be combined with the M-dependent transi-
tion moments of the present theory to obtain im-
proved theoretical predictions, but this is beyond
the scope of the present paper. If the fine-struc-
ture splitting AEz~ (0/v, (which does not hold for
Cs) fine structure can be ignored and the present

theory applies until the long-range approxima-
tions break down for other reasons such as proxi-
mity to other levels, CQ ' terms, and repul'sive
terms in V*(R).

Cs-Cs

The Cs O'S-5'D~ transition due to Cs collisions
has been measured with very high resolution,
and in absolute units. ' For this particular transi-
tion, the approximations for f(E) below Eq. (A13)
and the similar energy approximation used to ob-
tain Eq. (A16) are inaccurate by almost a factor
of 3 and must be replaced by the actual atomic-
state energies. In Fig. 8 we compare the evalua-
tion of Eqs. (A12), (A13), and (A15) to this k„da-
ta, . As in the above Cs(6'S, i,)Xe('S,)- Cs(5'D) Xe('S,)
case, 4E~s» Av', ' and the assumptions of the pres-
ent theory appear to correctly represent many fea-
tures of the observations. Again, this comparison
is on an absolute scale, with no adjustable param-
eters.

0-Ar

The oxygen 'S-to-'D transition collisionally in-
duced by a noble gas has received considerable at-
tention recently due to its potential as a high-pox, er
excimer laser and/or gain cell (see Refs. 3 and 4
and references therein). The spectrum of 0-Ar has
been calculated in Ref. 4, using the long-range di-
pole-quadrupole interaction to fix the transition
moment. Our model uses the same transition mo-
ment [E( )/R', with E( ' ) given by Eq. (A14)],
but our assumption V*(R) —V(R) = (C,» —C „,)R~
is exceedingly inaccurate for this case. The C pp

and C» Van der Waals coefficients are nearly
identical for this transition between ~'='S, and
+='D, states of the same configuration, whereas
the 'D, state has a C,~A

' interaction that is not
balanced in the 'S state. ' Thus in the 8 = 8-12ap
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FlG. 8. Cs(6 ~f/2 6 D~)
absorption coefficient due
to C s collisions. The
theory, using only Cz&R
potentials, is compared to
the measurements of Nie-
max (Ref. 23). The mea-
surements and theory are
in absolute units.
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FIG. 9. Spontaneous emission coefficients ([Xel[0(S)]
x 8m /A. times the stimulated emission coefficient) for
0('SZ)-0(DZ) in the presence of Xe at 300 K. The
quasistatic theory (long dashes) and present approximate
dynamical theory (short dashes) utilize the potentials and
transition moment given in Ref. 4. Inclusion of quasi-
bound SZ states in the quantum mechanical calculation
of Ref. 4 {solid line) is expected to remove the small
discrepancy in the 20—200-cm ~ region.

region responsible for the line core arid near wings,
the various V*(R) -V(R) are predominantly due to
attractive R ' terms and repulsive overlap terms.

The quasistatic theory in Eq. (8) applies to any
potentials, whereas the line-core shapes of Sec.
IIE are specific to C,R interactions and are not
applicable here. Nonetheless, one can estimate
that the result of applying the present line-core
theory to V*(R) -V(R) ~ R ' and a transition mo-
ment D(R)'~ R ' would resemble the U, = 1 curve
in Fig. 4(a) since this applies to D(R)'~ R ', V*(R)
—V(R) o-R . The transitiontothequasistatic wing
thenoccurs atD= 1 or

~
k —ko~ = h 'c 'no[(C,*—C,)/

hg, ] '+ =—l3 cm ' for the 0(S,) Ar-0('D, ~) Ar
transition at 300 K. In Fig. 9 the 0-Ar quasistatic
spectrum for the dominant M = 0 term (labeled 2Z
-1Z in Ref. 4) is calculated using the potentials of
Ref. 4 in our Eq. (8). A short dashed line indi-
cates the Eq. (All) approximation for the line-core
and antistatic (red) wing behavior. For compari-
son the 2Z- 1Z spectrum reported in Ref. 4, obtained
from Franck-Condon factor calculations using the

same transition moments and potentials, is shown
in Fig. 9. In the 50-250-cm ' region the quasista-
tic spectrum is about 15/o larger than the quantum-
mechanical spectrum of Ref. 4 due to the omission
of quasibound-state contributions. in the latter cal-
culation. When these are included" the quantum
results oscillate only a few percent above and be-
low the present quasistatic spectrum for

~
k —k„~

& 20 "cm ', as we expect for molecular bands which
average over many vibrational and rotational
states. Thus the present theory accurately fits
these very complete calculations. This supports
our supposition that the above disagreements
between the experimental and theoretical k„(for
Cs-Xe and Cs-Cs) are primarily due to departures
of V*(R) and V(R) from the assumed long-range
form. Comparisons to experimental 0-Ar spectra
are made in Ref. 4, so are not discussed here.

The present calculations have ignored the M mix-
ing by the nuclear axis rotation. Consequently we
obtain transition moments E( )/R~ which connect
the 0 '8 state only to the 'D, ~ state with M = 0, +1
[see Eq. (A14)]. In Ref. 4 an equivalent assump-
tion was made by the use of Hund's coupling
scheme (a) to describe the 'D states as 'g, 'lI,
and '~ states. For thermal collisions of O-Ar,
the rotational-mixing perturbation between 'D, ,
and 'D, , state is comparable to their -10-cm '
splitting at R=7-8a, . This mixes the wave func-
tions and thereby the transition moments. The ef-
fect of such mixing will often largely average out
of the final spectrum, but in this ca,se V*(R) -V(R)
exceeds Av, for the 'D, , a.nd 'D, „states but falls
below hv, for the 'D, „states. Thus the rotation-
ally induced transition moment to the 'D, „states
contributes "quasistatic" intensity on the red w'ing.
Since the above theory without inclusion of this
mixing predicted quasistatic intensity only on the
blue wing and an exponential decrease on the red
wing, this causes a major increase in the red-
wing intensity. This effect is being treated very
thoroughly by the authors of Ref. 4,"so. we will
not discuss it further here.

B. Class 2—"Radiative collisions"

The only line-shape measurement is that of
Falcone et al. ' on the Sr(5'P, )Ca(4'S, )

Sr(5 'S,)Ca(6 'S,) transition at 497.7 nm.
Since a D final state of Ca is a somewhat different
case that may be measured soon, we also include
it. The absorption coefficients, or equivalent cross
sections obtained with Eq. (A18) or (A19) in Eq.
(6) or (7), are given in Figs. 10 and 11 for the
cases of 6'8 and 5'D fina. l states on Ca. For these
cases 80/o of the transition moment comes from
the k, = 4 term in Eq. (A18), for which fairly relia. —
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FIG. 10. Absorption coefficient, or collision cross
section at 1-MW/cm. light intensity, for the
Ca(4 S)Sr(5 P) Ca{5~D)Sr(5~S) transition at Q
=471.1 nm. The long-dashed line is the approximation
of Eq. (A19); the solid line is the more exact (A18).
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FIG. 11. Absorption coefficient, or collision cross
section at 1-MW/cm light intensity, for the
Ca(4'S)Sr(5. 'P) —Ca(6'S)Sr(5'S) transition at A,
=497.7 nm. The experimental measurement of Ref. 9
has been normalized to the theory.

ble N, values are available (Table II). The approxi-
mation of Eq. (A19) is compared to the more exact
Eq. (A18), which includes the molecular axis ro-
tation. The measured line shape for the O'S state
case, from Ref. 9, is compared to the calculations
in Fig. 11. The measurements which yielded a
lower bound of 2 && 10 "cm' at 1-MW/cm' laser .

power have been normalized to the theory, as it
would be expected to appear in the peak region if
broadened by the -2-cm ' laser linewidth in the ex-
periment. The more rapid drop in the measured
cross section at X —X,& 2 A is expected to be due to
the C,R ' and higher terms in the Ca(6'S)-Sr(5'S)
interaction potential, which could readily be in-
corporated into the quasistatic theory [Eq. (8)].
However, the present theory fails to explain the
intensity observed on the blue wing. This is not
due to resonance broadening of the Sr(5'P) level,
which is only 0.2-cm ' full width at the experimen-

tal densities; also the broadening of Ca(6'S) is an
order of magnitude smaller.

The theory given in Ref. 9 for the peak cross
section for this process would yield quite similar
results to the present Eq. (19) approximation if the
energy shifts (C,*A~) of the Sr(5'S)Ca(6'S) final
state were included in their calcul'ation. However,
the calculated cross sections and equations in Ref.
9 include only the energy shift (C,R ') of the
Sr(5'P)Ca(4'S) state. Since C,*»C„ the magni-
tude of the cross section and the sign of X -X, im-
plied for the larger static wing (blue versus red-
wing) are incorrect in Ref. 9. The original theory
of Ref. 7 for this "radiative collision" process is
also very similar to the present calculation [e.g. ,
Eq. (2.1) of the second paper is equivalent to our
Eq. (3b') and their Eq. (2.7) is the quasistatic li.-
mitj. As noted in Sec. I, the present calculation

TABLE II. Calcium radial integrals (R.

5 S 6 S 7iS -4~D 4 D'

(33 317) (41 786) (44 276) (37 298) (40 720)
5~D ' 6~D

(42 919) (44 940)

4~P(23 652) b

'P'(36 731)
5'P. (41 679)
6'I (43 933)
7 'P(45 425)

4.94
0.090
0.58
0.72
0.49

(1.1)
(2.2)
(-2 1)
(1.0)

3.05
(4.1)
(»)
(16)
(-2.5)

(-1.8)
(6.7)
'(29)

(24)

0.9
(10.4)
(3.6)
(-1.2)

4.1
(»)
(14.6)
(2.9)
(-1.7)

2.65
(4.3)
(21)
(17)
(~0)

1
(-2.8)
(4.5)
(28)
(3o)

The integrals are in uo units. The value labeled T is from Ref. 25, the unlabeled values are
from Ref. 26, and those in parentheses are from the Coulomb approximation. Of the latter, only
the large values may be reliable.

The energy of each level, in cm, is given next to the assignment.
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differs primarily by the inclusion of the molecular
axis rotation, M degeneracy, and actual integra-
tion over b, v, and the collision time without intro-
duction of cutoffs and approximations. The calcu-
lation of Ref. 10 does not include the effect of the
R dependence of V*(R) and V(R); thus it obtains a.

quite different low-intensity line shape than that of
the present calculations.

IV. CONCLUSIONS

The present calculations represent the first gen-
eral but quantitative theory of collisionally in-
duced dipole-forbidden atomic transitions. It has
utilized the concepts and methods of the tradi-
tional theory of line shapes for dipole-allowed
transitions. As with the latter, failures of the
present calculations are most often due to inac-
curacies in the interatomic potentials used in the
calculation. To avoid excessive detail at this stage
in the theory, we have utilized only the leading
long-range terms C» R~ for the potentials. The

1
one exception is the 0-Ar case where we utilized
a set of theoretical potentials in order to make
comparisons with the molecular spectra calculated
by the more exact Franck-Condon factor theory.
The favorable comparison obtained here is the
best indication that the present theory correctly
treats some aspects of the problems. As noted in
that section, however, this case is an example of
where our neglect of rotational mixing has a major
effect on one wing, and both the present theory
and Ref. 4 must be corrected for this in order to
compare favorably with experimental spectra.

It is clear from the successes and failures in the
above comparisons that the next round of improve-

ment to this theory is to use improved potentials.
This requires evaluation of R ' and higher terms,
repulsive terms, fine-structure recoupling, sa-
tellite and wing-shape data, and many forms of po-
tential calculations. Every case must be treated
on an individual basis, utilizing a full array of ex-
perimental and theoretical information to optimize
the potentials. Except insofar as the transition mo-
ment may also differ significantly from its long-
range form, this makes the present problem the
same as that of interpreting the shapes of collision-
ally broadened allowed t;ransitions.
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APPENDIX: LINE-CORE CALCULATION

In evaluating Eq. (3) for V' = V«or V~, + V,„ it is
convenient to quantize all electronic states along
the internuclear axis R. This has the advantage of
making the energies V ~~ (R) in Eq. (3b) depend
only on R and the mixing in Eq, (3a) similarly de-
pends only on R and is diagonal in the tot&1 elec-
tronic M~ of the product basis, states. However,
the radiation field E, is along a fixed laboratory
axis, so we will include below its effective, rota-
tion with respect to A. For this quantization axis
and V„q —V„, Vqq

=—V„

( -1)'(~ + 1)!
[(1 —p.)!(1+ p.)!(I—!i)!(l !i)t ]' ' 2l 1 ~' " 3

p, =0,+1
(Al)

where we use the notation g„(x)[Eq. (5.1.2) of Ref. 27] for the spherical harmonics M;(r) of Ref. 18, and

(—', m)'ng, „=x„. We define

R ' V(l)"„~ „'g~i = (A(n, L, S, J, M—)&(n» L» S» J» Mi) ~,V& i ~A(n', L ', S,J', M')B(n,', Li, S» J,', M,')). (A2)

Then upon substitution of V» from Eq. (A1), V(l)~~~„'y"i is given by Eq. (A1) with each (4m/2l+ 1)'~"JJ,„(P)
replaced by

Z/2

(n', L ', s, z',
M~( qg, „4)

~
n; L, s, J, M)

(J J' S /L' I L)
( 1)J~ bP+ I~+ s+ J+ i

~ ~
(2Jg 1) ~2(2J'y 1)i~ (2L'y 1) n(2L+ 1)'~ [ca„,, „„

(—M' p, Ml J L I (0 0

(A3)
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where

(R„,~, ~ = R„,~,(r)r'R„~(r) dr,

and the appropriate qua, ntum numbers in Eq. (A2)
are to be used for atoms A and B. Equation (A3)
follows from Eqs. (5.4.1}, (7.1.7), and (5.4.5) of
Ref. 27.

We will use only the leading Van der %aals term
in the energy U ~~ (R) of Eq. (3b), which corre-

1
sponds to replacing

I
(&(nM)fl(n, M, )

I
V'(H) IA(kÃ)fl(k, 3}1,) & I

with R 'V(1)E~p„1~1. Thus Eq. (3b) becomes

UMu)E (R}= +E+ EE CM1nr R

where

C..„=g (E„.E„E-. &-.,) 'I U(1)'„~'„~ I'. (A4)
kkg

DR&i j

Also taking only the leading term in U'(R) of Eq.
(3a) leads to R ' ' V(l)„'~i"„1~1for the matrix element
in Eq. (3a), where l= 2 (or 1) for the case of a
change (or no change) in the total parity of the ini-
tial n and final ri' adiabatic states. The mixed-
in atomic product states of course have L'= L
+1,L,'=L, +1 for the l=1 case and L'=L+2 or 0,

+ Lg + 1 for the L = 2 case. The labeling of atoms
A arid B has so far been arbitrary. Hereafter, to
avoid unnecessary terms we will include mixing
by the V,„operator and not V„,, No generality is
thereby lost, but the redundancy in the labeling of
atoms A. or B for the l = 2 case is removed. Sub-
stituting these modified Eqs. (3a) and (3b) into Eq.
(4), abbreviating A(gM)R(n, M, ) as nM, n, M„ in-
cluding the l index in P(b, 1), (d), and dropping the
2E,e"'"' part of E, cosset then yields

n(b, n, n l)= Y Cr (nM nM I+ Y „,"""" ' ' '„, )"-™
1 1 1' "-1

(A5)

Since r= Zr; is a single electron operator, the radiative perturbation only connects product states which
have the same quantum numbers for one of the atoms. Specifically, either kK=nm' or k,GR, =n,'M,', and
&M=k'll' or n, M, =k]5K,' is required in Eq. (A5). The above choice of only the V,„operator requires that for
the l= 2 case we identify atom 8 as off-diagonal with respect to V„(t). This convention can be taken for
l=1 as well; then only terms kK=n'M' and k'K'=nM contribute to Eq. (A5), which reduces to

e'/5' "" dt . "', C M11
—C,„,M,P(k l) -g — ex~ (v —e,) t — dt'4g„g„„„R(t)'" ', „@RE(tl)

, ,„„., „, (EEI, IE, 'rin'M') . .. n, „.„. (n M, IE, rlk'lK')) '
(

X jnM, fl N E +E —E,—E ~ ~ k~~~ E, +E, -E —En n&
n' n' n& n k&

(A6)
Note that the expression in large parentheses is the pair of consecutive collisional and radiative perturba-
tions which induce the transition, as indicated diagrammatically in Eqs. (1b') and (2a').

We will now consider the effect of the molecular axis rotation. For E, directed along z', the laboratory
. z axis, E, r=Eor( —4Em}'~'Y1O(8, $), where 8 and (t) are laboratory frame angles. We perform two successive
Euler angle rotations, first through angles +, P, y to a primed collision frame with b along x and v along
z', then through angles o.",P', r'=0, 8(t), 0 to a double-primed frame with z" along R(t) (see Fig. 3). Due
to the transformation properties" of the Y, , we then have

(nLSZM
I E. ' r

I

~'L'S'&'M'& = Eo g &',„.( tio, r)n'„,„[0,8(t), 0] (nLSJM
I
r

I
n L'S'J'M'& (A7)

m, m'
~()n

Here r„r( Em)' 'Y=—, (8—",(1)") is in the Z" =R frame in which the atomic basis states are quantized, so that
Eq. (A3) applies in Eq. (A7) with r = (—4Em)'t'y, (r).

Taking the angular average of Eq. (A7) in Eq. (A6) yields
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- "do. " ' —sinPdP ""dy

+ Q
tt 4 Q- J Q

7t

2 2

g F(nMn, M„~'M'n, 'M,', t, u.,', mt)
figN'M M'

1 ]. 1
m=&&Qy-&

where

&& Q a~
~

Z((o —(()(), l, C,„dd —C,dd,dd, , U,)
~

q=&yQp-&
/

(A8)

Z(e —e„, l, C, U)—: ' ...U, exp l(( e—e„)(—Oy l l () R t (+Z U

~t
dt'

bR'(t') '

and

a, = -', [(2+q —q')(1 —m')+m'], U, = 1, U, = sing(t), U, = cosg(t),

fl fly f1 ky

with 3R, =M+M, —M' and 3RLv=M'+M, ' —M. Here a, times U, (t) U, (t') is the angular average of

g n'...(~, p, y)m.',„[0,e(t), 0] g n,'„„(~,p, y)~'„„„[0,g(t ), 0],

where terms of m'&m" angular average to zero. Also the same rn occurs after angular average in the re-
maining two &'( . ) and in both terms of F( ), since 3R, —M, =M', -3K,' is required in Eq. (A5), from
the diagonal property of V(l) with respect to total M. If the U, (8(t)] are removed from the time integral
Z, 5 d8a, U, = ~ is obtained, corresponding to the averaged projection of E, along the molecular axis. The
V(l) are given by Eqs, (Al) -(A8). Note also that only m = (M, —M,') + (M —M') contribute with m = 0, +1.

Equation (A8) with the C„and V(l) given by Eqs. (Al)-(A4) is the general result. The F(. ) part of
Eq. (A8) determines the amplitude of each MM, M'M,' contribution to P(b, v, (d, l)„, while the spectral shape
is fixed by the remaining time-dependent terms or Z(&u —&u„. . . ). Six different forms of Z(a) —&„.. . ) oc-
cur on Eq. (A8), those for q= -1,0, 1 and for l=1 or 2. Thus for the hV(R) ccR ' case under consideration
the b and v averages [Eq. (5)] of only these six Z((d —co„.. . ) are sufficient to describe the line shape for
all tdL —2 cases of Eqs. (1) and (2).

We can reduce Z, in which R(t) = (b'+ v't')'~ ', to a dimensionless form Z'((() —(d„ l, C, U, )
= b'"vZ((d —(v„ l, C, U,) in terms of dimensionless variables

5 =—(&u —&,)b/v, x =—cos&(t) = vt/(b'+ v't')'i',
I

y = C/hb'v, where C = C „~ —C,~,~, and y-=y'~„ l is implied, and U, =x, U, = (1-x')'~', U, = 1:

~1
2 (l-X)/2

~X

Z'(b, l, y, U)= dx(l -x')" L)t'U, exp i I»&, +y dy(1-y )'t
1 1

Equations (A8) and (5b) in (5a) yield

T((d, l) 2&me'E',

MMMM Mg l 1
1 1

where

L(D, (, U)—= L(e —te„C, ), U)= „„dVVe" Z' e=, l, y=B 'V', U)
"dB " ~~, DB

Q 0

(A9)

is a dimensionless line shape with order of magnitude 1 at &= &Q-or D=0. %e have defined dimensionless
variables

V= v/v„D = ((d —(uc)(C/Rv, )'~ 'v„and B= b(C/hv, ) '~ ',
where v, = (2kT/p)'t ' is the natural unit of velocity and (C/kv, )'t ' of length for collisions with C,R ' inter-
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actions. A set of nMM„n'M'M, ' indices are implicit on B, C, and D S. ubstitution of Eq. (A10) into Eqs.
(6) and (7) then yields k„and Q(u&, I)

Equation (A10) can be simplified considerably by using the approximation of an MM M,M, averaged C in
L and taking Z, a, L(1d —&0„C,l, U, ) = 2L(a —&0„C,l, U, = 1). Then with k„L,",J,",M," quantum numbers
implied by k, (the intermediate state of atom B) and noting that the k, refers to the same set of states as
k„Eq. (A10) becomes

T(1d, l) 2V We2E20

[A( )] [B( ) ] 3 (C/k )21/5@2 01 t 1 ( 11 1
fl tl1

where

(A11)

F(nn„n'n, ') =— g g F(nMn, M„n'M'nfM, ', k,L,"J,"M,",ml)

L''J"M''
1 1 1

]L J S' L l L'
= (l+ 1)(2Jy 1)(2J'+ 1)(2L + 1)(2L'+ 1)

)

(2J,"+1)(2J,+ 1)(2Lf'+ 1)'(2L, + 1)(2J,'+ 1)(2L,'+ 1)
X

-J"L"
1 1

IL, J, S,
I

fL,' J,' S,I'(I, , 1 L,")'(L,' 1 L,")'

e2 e2 2

g g + g E g g + g g &1J1~ k1~1
. k

The terms in the first large square brackets reduce to

2J1+1 L' 1 1 '
3 0 0 0

for the common ease of L, = 0, as occurs in the examples.
I

Class 1: ns-n'D transitions

We now consider a nS-n'D transition of atom A, where I3 is a noble gas or other L, = 0 atom as in the
examples of Eqs. (la) and (1b). The particular components of the adiabatic states responsible for the (1b)
transition are given in Sec. GAIA. For an atom A of spin S and B a noble gas k„ is, from Eqs. (6) and (A10)
with l= 2,

16p / 01(e /@e)
[/1( ) ] [B( ) ] ~ (C/k~ )4/5(2S~ 1) g Q 1 1 1 1 q 0 MO 'M'0» q

MM~ k k~
mq

(A12)

where C M, for the S state is independent of M and C„,M~ for the D state is a function of ~M'~. From Eqs.
(A1) -(A3) and (A8),

e' 2Jr+1 ' ' S 2 J'
(A13)

where

-f(E) = +
1 1 2

(E E ) (E E ) (E E )+(E E )

~ l. ,s, u, s I' 3~,
k1 n1

1

and o.'M is the noble gas polarizability. " This approximation is in error by (E„—E„,)'/(E2 —E„)', which
k1 n1

js small when Ek —E„refers to a noble-gas perturber. As an example, for S= 0 as for group-II atoms
or Eq. (1a), Eq. (A13) yields
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~
E(nQn, 0, n'M'n, 0, k,k,', m 2) j

' = &(m —M') (A14)

where h(m -M') is 0 for m -M'c 0 and only m = 0, +1 occurs.
From Eqs. (A1) (A4), the energy approximation in Eq. (A13) and the expression for na below Eq. (A13)

we obtain the C, coefficients of an jzLJM state against a noble gas

C ~0= e'(r'„~) o!ah(J, I,M),

where

(A15)

J' 1 J '(2J+1)(2J'+ l)(2L+1)(2L'y1) ]L' J' S ' I, ' 1 L '
-M' p. M 1+3'' [J L 1 0 0 0

all I, 'O'M~

p, =O, yl

and (r'„~) = 5 A'„~r'dr. This energy approximation is appropriate for predominately single-electron states, '4

including most excited states. For an S state on

atomic,

h(Q, J,M) = 1, while for L&0 the M average of
h(L, J, M) is also 1, i.e. ,

(h(L, J, M)) =—(2J+1) ' g h(L, J, M) = 1 and C„~=e'(r„'~)ct.a. (A16)
M

For the case of an nS-n D transition against a noble gas the approximate Eq. (A11) in (6) reduces to

(Al t)
k„16m "(u(e'/hc)

/ fl a1t D B

where g(J') = (2J'+ 1)/5(2S+ 1) is the fractional strength of the J' component of the D-state multiplet and

o'~ is the noble gas polarizability.

Type (2) or "Radiative collisions"
I

We choose the Ca+ Sr example of a "radiative colli.sion" since this has been observed. Here atom B,
the Ca, undergoes an electric quadrupole transition and atom A, the Sr, an electric dipole, as in Eq. (2 )

with b, =1,6, = 2. The components of the molecular adiabatic states responsible for the transition are in-
dicated in Sec. IIA. The quasistatic wing intensity is given by Eq. (10) with P=3 and D ~~~~~ given below
Eq. (A10). The line core is given by Eq. (A10), where n refers to Sr(5'P, ), n, to Ca(4'S, ), n' to Sr(5'So),
n,' to Ca(6'S, or 5 'D,), and k, and k,' to Ca('k, 'P, ) or Ca(k,' 'P, ):

T(~) 2&me'EO2(R,'~,p
[Sr(5 'P, ) ][Ca(4 'S,) ] u, (C/hv, )'~h'3

e' e2

1

4(2L,'+1) 1 1 L,' ' 1 1 L,'

—NM'~a
1

For comparison, the approximation in Eq. (All) reduces to Eq. (A18) with the expression in the second
square brackets of (A18) repla. ced by

2(2L,'+ 1) L,' 1 1
9 Q 0 Q

07 7 (A19)
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