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We show that the presence of an oscillating electromagnetic field can induce a new avoided crossing
between true crossing electronic energy surfaces of molecules without actual absorption or emission of
photons. This avoided-crossing energy gap and the field-dressed energies and states are functions of the field
intensity, frequency, and yolarization, Thus the elastic and inelastic- probabilities across these energy regions
can be controlled by tuning these field parameters. This mechanism can be used to enhance or suppress field-
free transitions by orders of magnitude. More importantly, the field can open up new inelastic channels so
that the field-induced transitions, free of any competing field-free transitions, can be readily detected. We
apply these new effects to molecular dissociation and predissociation and to atomic (ionic) and molecular
collisions. The field-induced probabilities of these processes are studied as functions of the (quasi) molecular
electronic energies, relative velocity or vibrational energies, laser field frequency and intensity. It is shown
that far-away nonresonant states can contribute significantly to the field-induced avoided crossing and
transitions. We give approximate but accurate formulas which enable rapid calculation of all these eA'ects.

Our method of solution of the charge-field interaction includes the stationary perturbation theory in the weak-
field limit. Our modified Landau-Zener formulas of transition probability include the time-dependent
perturbation results, the adiabatic limit, and the field-free limit. Improvements over earlier methods of
solving the adiabatic eigenvalue problem are given, especially for charge systems with definite "parities. " It
is shown that the radiative-induced predissociation of I2 in the B 0+u('Il) state into the repulsive 1u('ll) state
.can broaden its vibrational spectrum and quench its fluorescence. The same mechanism can be used to
increase the enrichment of laser isotope separation of Br, involving the same states. Formulas for field-
induced predissociation rate per second without or with tunneling are given. In these case's, the small laser-
induced coupling controls the large internal energy flow as fluorescence or as kinetic energy. In other
situations such as dissociation and collisions, the laser field is also a means of switching on the exchange of
electronic or vibronic energies internally and/or externally as kinetic energy. All these are achieved at no
expense of photon energy since no actual photo-absorption or -emission is involved in these nonresonant
processes.

I. INTRODUCTION

In earlier publications' we studied the radiative
control of collision-free and collisional processes

, in atomic and molecular gases without actual ab-
sorption or emission of photons from the applied
laser fields (to be called "nonresonant"). One of
the results shown is that if no other states are in-
teracting with them, two degenerate states coupled
by an oscillatory electromagnetic field remain de-
generate at any strength of the field. Thus, unlike
the case of static field interaction, ' a true cross-
ing' of electronic energy levels or surfaces of
molecules remains as true crossing in the pres-
ence of the oscillatory field. We have also proved
that radiative interaction through other states of
the correct symmetries can, however, remove the
degeneracy and thus lead to neu avoided crossings.
This new avoided crossing is a function-of the field
parameters (intensity, frequency and polarization)
and can thus be varied by external control of the
field parameters.

In the absence of the field, transition between
the two states forming the true crossing may or

may not be possible. Figures 1 and 2 illustrate
the two cases respectively. If there is field-free
transition possible through angular coupling, we
shall show that the addition of the oscillatory field
induces formation of avoided crossing and can
enhance or suppress the corresponding field-free
transitions. This switching on and off of the inter-
and intramolecular processes by varying the field
parameters can lead to observation of phenomena
previously too weak to detect or disappearance of
undesirable strong transitions.

More interesting are the situations (e.g. ; Fig.
2) where in the absence of the field there was no
transition possible between the two states, whether
by angular or radial coupling. Without any actual
absorption or emission of photons, the laser field
can induce formation of avoided crossing and non-
zero transition between these states. The signif-
icance of such a class of situations is that com-
pletely new transition channels are opened that
were clo,".ed without the field. Thus, without any
competing field-free transition into these channels,
the effect of the field is significant even at rela-
tively weak fields.
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Our work is generally motivated by the use of
laser radiation to initiate and to control nonre-
active and reactive molecular processes and to
direct energy-flow pathways, especially those
that involve electronic transitions. We suggest
here two specific systems illustrating the kind of
situations analyzed in this paper. The first is the
use of the electromagnetic radiation to control the
predissociation of the B 0'u('ll) state of iodine
molecule into its lu('Il) state. . See Fig. l(b).
Spontaneous predissociation' and hyperfine pre-
dissociation' of this state into the same 1u state
are already known to occur. Interference terms
arising from the radiative- induced predissociation
proposed here with the other field-free predissoci-
ations can also be observed. Predissociation
involving the same states in Br, has been used
as an extraction mechanism for isotopicaI-selec-

u)

\ i

tivity photoexcited Br,.' We propose that it is
possible to enhance the enrichment of the process
by increasing the predissociation rate through
nonresonant effects of the already present or
additional laser field.

In this 'paper, we analyze the field-induced for-
mation of avoided crossings and new transition
channels opened by the field and apply them to
(i) molecular dissociation and molecular colli-
sions, (ii) atomic collisions, and (iii) predissocia-
tion, as examples of processes, involving, re-
spectively, one, two, and many field-induced
avoided crossings. These are done in Secs. IV, V,
and VI, respectively. For weak fields, the energy
gap in the field-induced avoided crossing is small,
and, hence, the field- induced transition probability
(per traversal of the crossing) to the other state is
small. For predissociation, however, a small
transition probability per oscillation in. a molec-
ular-vibrational state can lead to high probability
of dissociation and tunnelling after many osci:lla-
tions during its lifetime. ' '

The method of solution of the adiabatic (i.e. ,
fixed internuclear frame 8) eigenvalue problem
for the charge-field system given .in Sec. III is
addressed to (quasi) molecules whose n states
under consideration. can be separated into two

= R

WITHOUT LASER

(a)

WITH LASER ON

(a) DIATOM OF UNEQUAL NUCLEAR CHARGES

I I u(q)

R R

FlG. l. Examples of. situations where there is field-
free nonadiabatic transition between the crossing states.
'@lith the laser field on, the field induces an avoided
crossing whose energy gap is controlled by the field
parameters like intensity and frequency. Thus the field-
induced inelastic probability is controlled by the field
and can be equal or become much larger than the field-
free inelastic probability. (a) For diatoms of unequal
or equal nuclear charges. (b) For iodine molecules,
the corresponding energies for bromine molecules being
similar. The vibrational spectrum is broadened due to
field-induced predissociation.

g(u)

R

WITHOUT LASER

R

WITH LASER ON

{b) DIATOM OF EQUAL NUCLEAR CHARGES

FIG. 2. Examples of situations where there is no
field-free nonadiabatic transition between the crossing
states because 4A=+2. Thus even a small field-induced
coupling (or energy gap) can produce inelastic transi-
tions into the new channels that ar'e readily detected.
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groups such that states of one group interact only
with states of the other group. For such charge
systems of more than two states, ' the method
presented here is more efficient than the more
general method developed by Lau" in the studies
of single- andmultiphoton transitions in atoms
and molecules during or without collisions. " For
strong radiative interactions, separate iterations
to calculate the two new eigensolutions arising
from degenerate charge-field levels are proposed
to replace the earlier method.

Section II summarizes the general theory and
shows the important separation of the effect of the
field into avoided-crossing formation and residual
radiative dressing of states. A modified Landau-
Zener formula, is given for the new situation and it;

has the correct field-free limit. A brief discussion
is given in Sec. VII.

where the general state 4 (f) is expanded in terms
of the charge-field adiabatic eigenstates 4„. The
resulting equations [Eqs. (2.10) in Ref. 1j are then
solved analytically or numerically for the ap-
propriate initial-value conditions to give the final
transition probability and hence other quantities
such as the cross section and transition rates.

The kinds of situations analyzed in this paper are
illustrated in Fig. 3 where many notations are also
defined. Without the radiation field, the energies,
se, and zv, of the fast-motion states y, and cp,
form a true crossing. ' In the presence of the
field, a new avoided crossing is induced between
them through radiative interaction. In this sec-

II. GENERAL THEORY Sp

We follow the general theory and notations in

Ref. 1. Essentially there are two parts in the
theory. The first is the solution of the time-in-
dependent eigenvalue problem, "

H4 = SE4, (2.1)
Rc

for the entire system of the field and the fast (e.g. ,
electronic) motion of the charge system at a fixed
(i.e. , adiabatic) frame R of its slow (e.g. , inter-
nuclear) motion. Section III is addressed to this
problem. As the charge-field interactions go to
zero, the labeling of the solution 4„ for one fieM
mode is such that it approaches the photon number
state IN —p) and the charge state y, of the fast
motion. N is the initial mean number of photons
in the coherent electromagnetic field.

The second part of the theory is to calculate the
transition probabilities between these eigenstates
P

4 of H due to the slow motion. There are num-
erous classical, semiclassical, and quantum tech-
niques developed in theories of field-free inter-
and intramolecular processes to treat this slow
motion. "' They can be adopted by replacing the
corresponding field-free quantities with the new
quantities based on the solutions of Eq. (2.1). The
classical trajectories or quantum energies and
wave functions of this slow motion based on the
new field-dependent eigenenergies E in Eq. (2.1)
can be very different from its corresponding field-
free values. "

It is adequate for many applications to treat the
slow motion classically. Then we solve the time-
dependent Schrodinger equation,

(2.2)

(a) WITHOUT THE FIELD

R(-r- j Rm R(v )

(b) WITH THE FIELD ON

- FIG. 3. Typical configurations with and without the
field. Besides producing the new avoided crossing, the
field also optical-Stark shifts the energy levels so that
(a) the relative slope. between the radiative diabatic
levels H;; is different from that of the field-free levels
se, and w~ (see Table VI); (b) the new energy mini-
mum point B can be to the left or right of the original
crossing point [see Eq. (3.62)];,(c) the new "center of
levels" is shifted up or down depending on the nonreson-
ant states y [see Eq. (3.58)]. p and 7' are the elastic
and inelastic probability with the field on.
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tion, the theory applies to cases where all states
are radiatively coupled as well as to those that y,

do not radiatively inter act via an electric di-
pole moment. Actually Fig. 3(b) gives the field-
induced energy configuration for the states 4p,
and 4'„with p =0 only. If 4'„has been '

populated (e.g. , by single-photon absorption
earlier) before traversing the present field-in-
duced avoided crossing, the same analysis applies
to transition between 4„and C„as well. In this
paper, we always consider transition between 4's
of the same p because no real photon absorption or
emission is involved.

Due to our convention of labeling the charge-field
adiabatic states at each R, as explained below '

Eq. (2.1), the same eigenenergy arid eigenstate
may be labeled as E„at one R and as Ep at'

another R, as shown in Fig. 3(b). Near the cross-
ing, the two states 4 's contain roughly equal ad-
mixtures of y, and y, . Therefore in the entire
region of transition, it is convenient to call the
upper energy and its state E„and 4„, respectively,
and the lower one as E, and O', . Away from the
crossing, they may also be called either E„or
E„depending on their weak-field limits.

Assuming that it is necessary to consider simul-
taneous transition between only two" charge-field
adiabatic states, we let the general state 4 (f)
=B,(t)4', +B„(t)@„,and from Eq. (2.2) we obtain
the coupled equation governing the time-develop-
ment of the probability ainplitude B,(f) in the state

radiative-dressed diabatic states are"

. dD,' = H~~D~+ (H~2+ C~~)D2,

. dD2
g d]' =H„D, + (H„+C,",)D, )

where
~h,

dCj
tj (2.4)

—U + (U'CU)„, (2.5)

since according to Eq. (2.12) of Ref. 1, C„,=C,„
are chosen. to be pure imaginary.

As the field intensity becomes very weak, the
field-induced avoided crossing becomes the field-
free true crossing between zo, and zU, . In such
case 4', and 4„ approach P, and g„, respectively,
where g, = (y, for R ~R, ; y, for R & R, ) and

g„=-(y, for R ~R, ;y, for R &R,f. Also the unitary
transformation U expressible in terms of the field-
dressed quantities H, j approaches U' expressible
in terms of the field-free quantities m, , Ml, and an
aribitrarily small (fictitious) energy gap. There-
fore we have 4, = U»4, + U„& g„—U0»g, + Uo&g„,

which is y, . Hence in the field-free limit,

If we choose U to be real, then H»=H» are real, as
seen in its definition Eq. (2.20) of Ref. 1. Also
C' j is pure imaginary,

. dB,
LBl + CluBu &

(2 3)
C,",- Ce, ~

—= —z &a (2.6)

. AB„

where the nonadiabatic coupling C,„between 4,
and 4„has been defined and examined in Eqs.
(2.10)-(2.12) of Ref. 1. We point out that for the
present configuration, both sums in C,„ in Eq.
(2.12) can be nonzero, and have to be evaluated
explicitly in general.

A. Separation of the effect of the field into avoided-crossing

formation and residual radiative dressing of states

We can (in some ca,ses discussed below) cir-
cumvent the more tedious task of evaluating C,„
(and then integrating Eqs. (2.3)] by transforming
to the radiative-dressed diabatic states 4, and 4, .
With the same notations, this was done in Eqs.
(2.19)-(2.23) of fief. 1 with a, general unitary ma-
trix U. Being entirely equivalent to Eq. (2.3), a
set of equations describing the coupling between
the probability amplitudes D, (t) and D, (t) in the two

(2.7)

Thus when the field-free nonadiabatic coupling
is significant, '.C,", should not be taken to be

negligible for the correct weak-field behavior of
Eq. (2.4) and of its solutions.

From the above, it is also seen that H» and H»
become zo, and ~, , respectively, in the field-
free limit. It is reasonable then to require
(H» —H»)' to vanish at some point R, which in

general is not R, . According to Eq. (2.23) of Ref.
1, this occurs at the minimum, (E„—E,) „,of
the field-induced avoided crossing (see also be-
low). The value of H» is given by

H'„= 4 (E„—E,)
Hence H» goes to zero as the field vanishes. ,

The physical meaning of the coupling term, H»
+C,",, in Eq. (2.4) is now clear. The coupling H»
between 4, and 4, is due to the formation of the
avoided crossing (i.e. , nonzero energy gap) pro-
duced by the effective radiative coupling between

4, and 4,. On the other hand, the coupling C,", is
the residual nonadiabatic coupling between 4, and
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4, with the effect of the energy gap subtracted out.
With the field on, the difference C,",—C,', is due
to radiative dressing of states of 4, .

When the field free nonadiabatic couPling C',
is not negligible, it is useful to think in terms of
several cases. In case (a) of the "weak-field"
domain, characterized by

(a) C,",=C,', and IC.', I'»IH„ I', (2.8a)

we can simply'ignore the effect of the field and
analyze the transition probability identically as the
field- free case, since now H» = u, and H„= se,
also. In case (b) or the "moderate-field" domain,
characterized by

(b) Q'2 =C,', and
I C,', I' comparable to IH„I',

(2.8b)

we need not calculate C,", by Eq. (2.5) but have to
take both H» and C,', into account. The calcula-
tion H» from the energies E„and 8, is simple. In
case (c) or the "strong-field" domain, defined by
the failure of C,",= C, , to be a good approxima-
tion, i.e. ,

(c) C;;~C.', and IC.'„ I' comparable to IH

(2.8c)

C,", has to be calculated as in Eq. (2.5) after C is
evaluated and an explicit function of the unitary
matrix elements are chosen. In this case, the
more tedious task of differentiation of the co-
efficients a„" (P) may have tobe performed in evalua-
ting C,„. If so, the computational advantage of
separating out the effect associated with the field-
induced energy gap and the effect of the residual
radiative-dressing of states is lost and it may be
simpler to integrate the original Eq. (2.3) instead.
Finally in case (d) or the "very-strong-field"
domain, defined by

(d) C,",wC,', and IC,",
I

« IH„ I, (2.8d)

we do not have to evaluate C,", for each calculation.
but a typical value can be estimated or checked. ,

In this case, Cf, can be neglected in Eq. (2.4) and
the calculation is again simple.

When the nonadiabatic transition between y,
and y, is negligible in the absence of the laser
field, we have Co, = 0. It is then physically cor-
rect to choose the unitary transformation such that

B. A modified Landau-Zener model for the field-induced crossing

In order to study the effect of the field on a true
crossing by a simple formula, we use a modified

I,andau- gener model. Like the usual La,ndau-

Zener model for the field-free crossing, we as-
sume in Eq. (2.4)

Hg2- Hgg--™T~

where n is a constant and

(2 9)

H» = const, (2.10)

(2.12)
IB {T-)I'= ID.(T-) I'=1 e"'=T—-

where

p -=(-,' ~'..
I
C„-, I')f

A A

d(H„—H„) d, ~, ),t,

(2.13)

(2.14)

(2.15)

—:(E„—E, ) (2.16)

In writing Eqs. (2.13) and (2.14), we have made use
of the fact that H» is real, that C„ is purely
imaginary, and of Eqs. (2. 10) and (2.7) above and

Eq. (2.23) of Ref. 1.
As the field intensity becomes zero, we recover

the field-free results:

C,",= const, (2.11)
I

in the entire transition region (-w„, r„) such that,
r2„»

I
n

I

'. For the physical reason discussed in

the last subsection, we do not assume C,", to be
zero in general and this differs from the usual
Landau- Zener model.

If the charge system in the absence of the field
is prepared in the state p, at —T„, then after the
field is turned on adiabatically, the charge field-
system is in the state 4„(=4', at —T„). Note that
due to state-mixing, 4„contains probability am-
plitudes a„"-(r ) in y, Q(N —v), ao'-(o, ) in

q&, G(N- u), etc. Analysis of nonadiabatic transitions
using C„and 40, then in effect considers sim-
ultaneously the array of transition between pairs
of corresponding sidebands from C„and 4„.' "'

For the initial-value conditions that B,{ 7„)
= D, ( 7.„)= 1 an-d that B„{-r„)= D, (- r„)= 0, the
asymptotic solutions to Eq. (2.4) and hence also
to Eq. (2.3) a,re

(e) Cf, =0. (2.8e) IB.(r-) I'=1- IB~(r-) I'-e ""=-s.
where

(2.17)

Then any nonadiabatic transition induced by the
nonresonant field is due to the formation of avoided
crossing, H» c0, and is free of any field-free
competing effect. Thus the field opens up new

channels of transitions that cari be readily detected
and identif ied.

p, -=IC.' , I fin,
dg

C,', = i —
~ (9,-, VP, ),

(2.18)

o', = ——(~, —tc, ) = — —
~ V(nr, —nr, )', (2.19)

dg
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and S, is the field- free probability of the charge
system staying in the state y, [see Fig. 3(a)].

For small gap due to nonstrong-field and small
field-free nonadiabatic coupling, the above
Landau- Zener formula gives results in agreement
with time-dependent perturbation theory, '

I&.( -) I'=1-2 P (2.20)

III( ) I'=2 P.
In the adiabatic limit 2'» 1,

I
B„(T„)I' = 0 and

lfli(~-)I' = 1
For use in subsequent sections, we rewrite p in

Eq. (2. 13) as

p=~ ln. I

'

where

q=-(-'s'. + Ic. I')x ',
and

(2.21)

(2.22)

) n ) J d(n~ 6'„)'~'/dt) [—
[ no i i d(su, w, )/dt i

Thus the entire effect of the field in this model is
contained in the factor q, and g is the ratio of the
temporal relative slope between the radiative di-
abatic levels to that of the field-free true crossing.
As the field vanishes, y approaches unity. In
general, it can be greater than or less than unity
when the field is turned on.

The readers who are not so concerned with the
theoretical methods of calculations in Sec. III
may go directly to Sec. IV-VI for physical results.

III. EXACT EIGENSOLUTION FOR THE CHARGE-FIELD

SYSTEM

A. New method of solution

Considerable simplifications of the previously
give@. method"" of eigensolution result when the
charge states y„can be grouped into two groups,
such that states of the same group do not radiative-
ly interact with each other, but only with states of
the other group. For electric-dipole interaction,
examples of two such groups of states are states
of even parity and states of odd parity in atoms,
gerade electronic states, and ungerade electronic
states of diatoms of equal nuclear charge, and lone
Z' state, and onea state) and (oner state) for diat-
oms of unequal nuclear charges. "

With the states of the two groups labeled by + and
—and the number of states in each group denoted
by n, and n, the eigensolutions (E,g) satisfy the
following system of equations resulting from Eq.
(2.1) [see Eq. (2.5) of Ref. 1]'2:

Za, (n, ) = W„(n,) a, (n, )
n

+ P G(n, , P )[a, ,(P )+a, ,(P )], (3.1)
8 =I

Ea, (n ) =W„(n )a, (n )

+ g G(n, P,)[a (P,)+a, (P,)l

-M & @&M, (3.2)

where M is some positive integer and where a, (n, )
are the coefficients (probability amplitudes) in the

expansion

4 = Qa, (p) yaQ(N —v) exp(ivy/2),

Dv av GO(av -a+au +I) ~ (3.3)

(3.4)D„a, =G,(a„,+a„+,),
where a, and a, are, respectively, an n, — and n-
dimensional column vector; D,,(n, ,n,') —= [E
-Wp (n,)]5~,~~ and Dv, (n, n')=[8 —Wr, (n )]5~,a'
are n, xn, and rs xn diagonal matrices, respec-
tively; and G,(n+, n )=G(n, , n ) and G, (n, n, )
=G(n, n ) are n, xn and n xn„matrices, re-
spectively Subst. itution of Eq. (3.3) into Eq. (3.4)
yields

Dv +v =Gv -I &p -2+Gp +I &p +2 ~

where

(3.5)

Dp =—Dp Ge Dv I Gp Ge Dv +IGp &

-I
Gv, -I=- Ge Dp, -IGp i

-I
Gp, +I-=G, Dv, ,I Gp )

are all jz xn nondiagonal matrices. For p, ~2,
we define T, by

-gp —Tp Qv 2 ~—e —e —e

sati.sfies recurrence relations obtajned from
Eq. (3.5),

(3.5)

A A A

T. =(Du, -G. ,i Tv, ,2) Gp, -i. (3.7)

With G defined as the largest matrix element of
G(n, , n ), it has the limit

T„-constant-in-v, matrix x G'/v, (v, —1) &g'

=0, (3.8)

and G(n, , p ) =G(p, n, ) are the radiative interac-
tion matrix elements, which are chosen to be real.
It is seen that a, (n, ) of odd v are coupled to a„(n )
of even v only, wherea's a,(n, ) of even v are coupled
with a, (n ) of odd v. Therefore any 4 would con-
tain nonzero coefficients of one set or the other.

Without loss of generality, suppose we want to
calculate +p =a '-. Then the relevant set of equa-
tions in matrix notations is
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for a sufficiently large integer p, =M +2 such that
v, (v, —1)»G'/v'. " Similar recurrence relations

'and limit are obtained for T, defined by a„

The significance of this new method is this: To
obtain T„ from T, „in Eq. (3.7), we have to in-
vert one n xn nondiagonal matrix, (Ij,
—G„„T,„),whereas in applying the more gen-
eral method"" to the two groups of states treated
together, one would inve'rt two larger (n, +n ) by
(n +n ) nondiagonal matrices, (D, „-GT, „)and

(D, -GT„„),as given by Eq. (3.6a) of Bef~. 9.
Since this statement is true for each M ~ p, ~2 and
-2~ p, ~-M within each iteration, the computation-
al efficiency is significantly improved. For the
same reason, if n, &n, we could substitute Eq.
(3.4) into Eq. (3.3) to obtain recurrence relations
for 7, with g, cutoff value M =Odd integer. In such

0
recurrence relations, we would have to invert a
smaller n xn (instead of n xn ) nondiagonal ma-
trix. This idea is used in Sec. IIIB; but in the rest
of Sec. IIIA, we continue to assume Eqs. (3.5)-
(3.8) to be adequately efficient, for example if n

The nondegenerate case When . y, Q(N) is not
degenerate with any other p„Q(N -p), the eigen-
value E„and the eigenvector a' — are determined
by letting

following Eq. (2.1), the two charge-field eigen-
solutions at w, = w, , are best called (E„,4„) and

(E»g, ) rather than (Eo,go ) and (Eo, , go, ),
because +„and +, contain approximately equal ad-
mixtures of y, and y, even. at the weak-field lim-
it. To obtain these eigensolutions, we let

a, ( o) =d„(o.) a 0((r ) +s, (o ) ao(z ),
which implies

d, ( o) =1, d, (~ ) =0,

(3.12)

(3.13)

E„=-,'[W', (~ )+W', (o )]+-,'([W', (~ ) -W', (o )]'+4G']'t',

(3.15)

(3.14)

With the relations (3.13), all other d, ( )care found
by substitution of d„(n) a,(o ), which are indepen-
dent of a, (w ), in place of a, (n) in Eqs. (3.3)-(3.8).
The resulting equations are solved without the two
(v =0, o =o, and z ) equations (3.2). Similarly
all s, (a) other than so(q. ) and s, (o ) are found.
Then the expressions for the roots of the charac-
teristic equation resulting from the use of the (v =0,

=o, and ~ ) equations are

a„(n)-=d, (n)a, (o ), (3.9) Eg =-.' [Wo(~ ) +Wo(&x )] --,'([Wo(~ ) —W', (o )]'+4G']'t',
where a, (o ) is the norm'alization constant. Then
from the v =+1 set of Eq. (3.2), we find d„by

d„=D,,'G, (1+i-„)d, , (3.10)

where T» are given by Eqs. (3.7)-(3.8) and the
corresponding equations for v, ~-2, where do(o ) = 1
and where the other d, (o. g o ) are obtained from
the v =0 set of Eq. (3.2) whose o. +o . Finally, the
right-hand expression of the (v =0, o =o ) equation
(3.2),

E=W, (o )+gG'(o, P,)[d,(P,)+d,(P,)], (3'll)
8~

is calculated iteratively to give a convergent valueE„. The initial trial value E may be W, (o ) for a
weak field. Or it is obtained by an approximate an-
alytic formula or appropriate extrapolation for a
very strong field.

The degenerate case . The state .y, Q(N) may be
degenerate with another state q, Q(N -p, ) of even

p or another state q&, Q(N-po) of odd p. Since we
are not interested in 'photon absorption or emission,
we shall consider p, =0 here. However, the cases
with p, g 0, 'or pogQ can also be given as before, '
with modifications arising chiefly from consider-
ations connected with Eqs. (3.1)-(3.8).

Due to our labeling convention of + discussed

(3.16)

where

W:(. ) -=W.(~ ) +g G( o, P,) [d,(P,) +d, (P,)l,

W, (7 )=W,(~ ) +g G(~, P,) [s,(p,) +s,(p,)],

G=-g G(o, P,) [s,(P,) +s,(P,)l,

=Q G(7, P,) [d,(P,) +d, (P,)l . (3.17)

Thus the minimum of ~ —= 1."„-E„
= (E„—E,),„+&(2G), (3 18)

is nonzero, and tli e field induces a new avoided
crossing between the two states of t&e same (Paw

ity) group.
SePaxate iteration to obtain E„and E, . We shall

calculate (E„,+„) using Fq. (3.15) for iteration and
obtain (E„4,) separately using Eq. (3.16) for iter-
ation. This is a departure from earlier methods, '
where only one expression, Eq. (3.15), is used4or
iteration to obtain E„, a", and hence the values 9„'
and Q„ for the W' and G. Then a value E»& is cal-
culated from Eq. (3.16) using these W,' and G„. On
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the other hand, if we use Eq. (3.16}for iteration,
we obtain &r, ar and hence values 5", and G, for
5"s and Q. For very strong interaction, g, („) dif-
fers significantly (but of the same order) from E,
owing to G„cG» W„'g%",. Hence formulation and
calculation in terms of the- less physical quantities
W' and G lead to different results depending on
which of the two sets of values (W,'s, G„j and

JWfs, G, i are used. This was noted in footnote 18
of Bef. 9. The formulation in terms of the more
physical quantities (E„,y„), (E„4,) here and of

(E~„@~,) in Ref. 1 removes this ambiguity, pro-
vided E„and E, are calculated separately by iter-
ating, respectively, Eq. (3.15) and Eq. (3.16). The
E„and E, thus calculated (and not Z, @&

for example)
are the true eigenvalues because each of them, be-
ing now nondegeneeate, satisfies the nondegenerate
solution Eqs. (3.3)-(3.10).

Therefore, analysis of transition probability
across field-induced, field-dressed, or charge- .

field'7 avoided crossings should be formulated in
ferms of radiative diabatic states as in Sec. IIB
of Ref. 1, rather than in terms of the perturbed
states of Bef. 9. The main difference is that the
radiative-dressed diabatic energy difference II»
-H» and coupling II» are calculated from unique
values of Z„and E„whereas the Ws and t" are
given in. the calculation of E„or E, .

We emphasize, however, that the difference in
the results based on the two formulations differs
only for very strong interaction (see below), and
is not too significant for. the range of interaction
in the explicit numerical calculations of Ref. 9
and even less so for those in Bef. 10. To conclude
this discussion, we point out that separate iter-
ations for each expression of the eigenvalues should
be carried out also for cases involvirig more than
two near-degenerate levels, such as in the situ-
ation of double resonance discussed in Ref. 10.

The connection bet&veen the nondegenerate case
and the degenerate case. The distinction between
the two cases is not a sharp one. The degenerate
case was needed to take into account the fact that
when ur, = zo, and when the radiative interaction
is small, the factors Z —W, (a ) and Z -W, (y ) are
approximately zero so that we cannot divide the
two (p =0, a =o, v } equations (3.2) by these fac-
tors. In computation this means that the method
for the degenerate case provides stable and con-
vergent iterations where the nondegenerate solu-
tion would diverge. Therefore the degenerate case
is also useful to find eigenvalues of nondegenerate
levels when the nondegenerate method diverges.
The eigenvalue g„or E„depending on the actual
expression used for iteration, can be easily identi-
fied as Ep or Ppp clue to the smooth variation of
the latter with the interactions G(o. , o, '). It can al-

ways be tested by using E„or p, as a trial value in
the nondegenerate solution to obtain Ep or
This is possible because according to Eq. (3.11),
the factor E —Wo(a ) =+G(a, p, ) [d,( p, ) +d, (p,)]
for strong interaction [G(o,p„) not small] is in
fact not close to zero. Indeed, the correct "trial"
value E„or Z, (with relative error & 10 'o) always
converges to the true value with the same accuracy
upon the first iteration using the nondegenerate
method.

The addition of an oscillatory radiation field does
not induce an avoided crossing between takeo cross-
ing levels so and se a@hose states y, and y, be-
long to different (Parity) grouPs Th. e proof of this
statement is that effective coupling G through other
levels must involve even numbers of virtual photon
emissions and absorptions and hence the opposite
"parities" of the two states require that their radi-
ative coupling must be identically zero. But the
field does. shift the two levels relative to each oth-
er, and dress-the states. If the field-free states
do not have parity symmetry such as gerade un-
gerade symmetry, the terms (yz, des /dt, ) are
not necessarily zero. Then the field-dressed non-
adiabatic coupling G„„[Eq.(2.12) of Ref. 1] is
nonzero,

,. =-i g ga„"-(p )a,".(p,)
8 8+

Thus we see that the field couples in the nonadia-
batic transitions between states of P go and P„
o+. However, when the states y8 and y8 have
definite parities so that all (y8, dye /dt) are
identically zero, then the field-dressed nonadia-
batic coupling is zero also.

B. Prototype configuration for numerical study

We study the prototype field-free configuration,
shown in Fig. 3(a), of a charge system consisting
of three states y, , y, , and y, whose energies

a ~ &7. ~
and ~a and whose radiative inter-

actions are G, —= G (o,o,) g 0, G, = G (g, o,) g0 and

G(o, w ) =0. Since G(a, y ) =0, the formation of
avoided crossing is necessarily due to radiative
interaction through other states. Four dimension-
less ratios characterize the adiabatic eigenvalue
problem for such charge system interacting with
one field of angular frequency . They are"

6, /&u, G, /&u, W/&u
—= (I, -zv, )/~, and w, /v .

(3.19)

The field intensity I and the field polarization de-
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pendences are contained in the radiative interaction
G (P =o, ~):

GB/~ = 5.8577x10 'X~BI't', (3.20)

where the wavelength A. is in pm, I is in W/cm2,
and p, 8 in a.u. is

G2
V, „= Q .

(p)
~ (328)

To examine the limiting values of T, , two cases
0

are of interest to us. The first is when (M, +2)&u/

zg, ) 1 for chasen value of Mp such that

us= -&-~sI +4~r;Iv. &'
(E —wa)/[(M, +1)(u]«1, (3.30)

for electric dipole transitions or possibly higher
multipole moments. ' ' Since we consider only the
class of situations where no photon emission or ab-
sorption is involved, ranges of the parameters of in-
teresttous are iWi/~&2; and (w, -~, )/&sand
(nr, -w, )/+are notclosetoanoddinteger. Inorder
to examine the effect of far-lying off-resonant
states, the values of to /&u considered may be

+
large, e.g. , 100.

The system of equations (3.1) and (3.2) appropri-
ate for this case is

[E —W, ,„,(o )]a, „(g ) = G, [a,,(o „)+a„ „(o,)],
(3.21)

G28/[(M, +2)(MD+1)u) ]«1, P =g, z, (3.31)

T~ +, has the limiting value
p

G8
~0+' (M, +2)(M, +1)~'

and similarly,

(3.32)

(3.33)

(E —ms)/[(M, +1)(u]«1, (3.34)

,=0.
p

Depending on the accuracy desired and the values
of G &/up, Mo is usually an odd integer between 3

and 7. Another case is when mr, )(M, +2)+ for a
chosen Mo value; then if

[E-W, „(v. )]a, „(~ ) =G„[a, (o,)+a„„(o,)],
(3.22)

[E —W„(o,)]a, (g+) =G [a„,(g ) +a, „(g )]

G+„[a, ,(r ) +a, „(w )],
(3.23)

-Mp & go&Mo,

GB/[go (u(M, +1)]«1, P =g, g

then

-G 2
8 0~o" ~ (o(M +1)

and similarly

(3.35)

(3.36)

where M, is an odd integer. Since we have only one
state g, , we shall substitute expressions of

a, »(g ) and a», (T ) obtained from Eqs. (3:21) and

(3.22) into Eq. (3.23) and obtained recurrence re-
lation for the scalar quantities T, defined by

0

a„„(g,)=- T, „a, (g,), 3 & v, &M, ; (3.24) E = Wo(g ) +G (D»+D» —2Di2)/D, (3.38)

T „,=0. {337)
0

The nondegenerate case. Suppose (E„,4 „)is
desired. Then letting a, (n) =d, (n) a, (o ) and using
the remaining equations (3.21)-(3.23) with p =+2,
~1, and 0, we obtain

a, ,(o,) —= T, ,a, (g,), -3)v, ) -M, . (3.25)

Such a procedure gives the following recurrence
relations for T,,:
T~ = V„ i/[E —W, (g~) —V, , —V„+i(1+T, i2)],
3 & po &Mo, (3.26)

Tv = Vv |/IE -Wv (g,) —Vv +i —Vu -|(1+Tv -2)] ~

3)goo Mo (3.27)

where

(3.28)

where

D»=E -W, (g+) —V,(1+T,) +Dr (3.39)

D» ——E —W, {g+) —V 2{1+T, ) +D,2, (3.40

D|2=—-G|./(E —to~ ) ~ (3.41)

D=- D~xD2a —Dx2 ~
(3.42)

and T~, are obtained from Eqs. (3.26) and (3.27).
Equation (3.38) is iterated by starting with T„„

0~ p ~ 2 0j and a trial value for E. The pro-
p

cedure gives both Ep and g„=a
The degenerate case. The eigensolutions

(E„,4„=a"-) for the configuration of Fig. 3 are
obtained by writing Eqs. (3.12)-(3.14) and solving
for the unknown d's and s's. Finally, Eqs. (3.15)
and (3.16) are obtained. But by substituting ex-
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plicit expressions for d„and s„, the Wo(o ),
W,'(7 ) and G are given by the following simple
relationships:

Wo(o') —Wo(o ) Wo(T ) -Wo(r ) G

where

(3.43)

1 1
E —W (o,) —V,(1+@ ) E —W, (o', ) —V (1+1') '

E„=~[w, + w, + k(G', + G',)]

1{[W+k(G2 G2)]2 ~4k2GRG2PI3 (3.45),

(3.44)

with T„obtained from Eqs. (3.26)-(3.33). Thus
once the single quantity k is determined either by
numerical iteration or by. analytic expressions
given below, the other quantities W,'(o ), W,'(r ),

'

G, and hence E„orE, can be calculated from the
given parameters. In fact from Eqs. (3.15),
(3.16), and (3.43), letting E„&E,we obtain

(3.46), (3.48), and (3.50), are different.
Some exact values of the ratio of the minimum

energy gap" of the field-induced avoided crossing
to the photon frequency ~ are given in Table I."
It is seen that 4 /&o can be greater than 1. Non-
adiabatic transition from the populated state 4„
to the unpopulated state 4'„ is highly probable.
There is still no real photon absorption or emis-
sion associated with the transition in this energy-
surface region. But state-mixing effect will pro-
duce significant probability amplitudes in various
sidebands of q, and y, as well as of y, in 4„.
It is seen from Table I that even very-far-away
nonresonant states (w, /&o & 5.5) can produce sig-
nificant field-induced energy gaps.

Anal' tie expression fox k enabling direct eval-
uation without numerical iteration will be very
useful since then all the above quantities can be
easily calculated. If we write out the definition
of Eq. (3.44) for k, we see that the only unknown
quantity in the entire expression is E. However,
at w, =w, , according to Eqs. (3.47) or (3.48) one
eigenvalue Eo is known for any interaction strength
and ~, . Therefore exact values of k, can be cal-
culated directly by substitution of this value into
the definition of k, Eq. (3.44). We obtain"

E, = —,
'

[w, + w, + k(G2+ G',)]
—-'{[W+k(G' —G')]'+ 4k'G G'}' (3 46)

At W'-=so, -zv, =0, the above expressions simplify
individually to

1
(u —w„—(G', + G',)(1+f,)/2(o

1
a)+w, —(G', +G',)(1+P,)/2(o ' (3.52)

E„=2(w, +w, )+-,'(k+ lkl)(G,'+G', ) (3.47) where T, and T, are calculated from Eqs. (3.26)
.and (3.27) with the known value Eo.

and

Ei=l(w, +w. )+-'(k- lkl)(G', +G ) ~ (3.48)

Thus, without any calculation, one charge-field
eigenvalue [call it E, =--,'(w, + w, )] and all those
differing from it by +2v(d are known exactly. e At
W= -k(G, —G2),

E„=~(w +w )+—'k(G +G )+ lkl lG G l, (3.49)

Eg- —'(w +w )+ —k(G y G ) —lkl lG G
l
. (3.50)

Note that the pha. ses of y, or q, can always be
chosen such that G, and G, are of the same sign.
For the special case that G, = G„

TABLE I. The ratio of the minimum energy gap 4
of the field-induced avoided crossing to the photon fre-
quency ~, given as a function of the radiative interac-
tion G, = G, and the position of the nonresonant level
~, , as illustrated in Fig. 3. There is no radiative in-
teraction between the levels gg, and sv, forming the
field-free true crossing, i.e. , G(cr, ~ ). = 0. The values
of 4 /v for G,/co & 0.001 can be obtained by scaling 4 /
v ~ (G,/~)(G, /~~) for given cu and ur„. The relation of
G&/co to the transition moment, field intensity, and fre-
quency is given in Eq. (3.20). No exact results are ob-
tained for entries marked by "~ ~ ~ ".

Wo(o' ) - Wo(o ) = Wo'(7' ) —Wo(r ) = G = G2k, (3.51)

and expressions (3.45) and (3.46) simplify fur-
ther.

In general, we calculate E„and E, (and their
wave functions) by numerically iterating the ex-
pressions (3.45) and (3.46) separately. For initial
trial values, we may use Eqs. (3.56) or Eqs.
(3.53). Thus the values k„of k appearing in Eqs.
(3.45), (3,47), and (3.49), and k, for k in Eqs.

. G,/

0.001
0.01
0.05
0.'1
0.5
1,0
1.5
2.0

1.5 5.5

4.800 (-6) 7.521(-7)
4.795(-4) 7.521(-5)
1.172(-2) 1.879(-3)
4.398(-2) 7.505(-3)
5.014(-1) 1.790(-1)

6.403(-1)
1.267

10

4.040(-7)
4.040(-5)
1.010(-3)
4.038 (-3)
9.951(-2)
3.821(-1)
8.115(-1)
1.350

100

4.000 (-8)
4.000 (-6)
1.000(-4),
4.000( 4)
1.000 (-2)
3.998(-2)
8.989(-2)
1.596(-1)
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In general when zv, 4w, or when the other value
of k 4 ko at w, = zv, is desired, we obtain approxi-
mate formulas for k„and k, . By keeping terms in
the denominators of the expression (3.44) correct
to second order in G, and G„we have'

1 1k~=
a —w, +5„—V„u+w —5„+V„'

1 1
kr

(3.53a)

(3.53b)

where

= ~ k&(G2+ G2) + 2 J[W+ k&(G2 G2)]2+ 4y&2G2G2]1/2

(3.54a)

G2

——,
'

I W I —wa +2'

(3.55a)

(3.55b)

and

2(w, —~ IWI)
u&' —(ur, ——,

' IWI)'

2(~„+—
I W

aP —(u/„+ ~ IWI)2

(3.56a)

(3.56b)

Clearly k„' and k'r are simply the weak-field limit
of k„"and kr', respectively.

6 -=-,'a'(G2+G')--.'([W+/'(G —G)] +4k''G G]' '
(3.54b)

By making a second-order approximation in the
denominators rather than in the power series ex-
pansion of the terms in Eq. (3.44), the values k„'
and k, are much more accurate than second-order
in G, and G,. Table II compares k„" with the cor-
responding exact value of k„." Table III makes a
similar comparison for k", . It is for convenience
of tabulation that we give the results for the spe-
cial case G, =G,. It is seen that both k'„' and k",

are accurate (&1%) even for strong interaction,
G,/~ s0.5, in the case of close-lying nonresonant
levels, m, /~= 1.5. Therefore accurate values of
E„and E, are obtained by substituting k„and kr'
into Eqs. (3.45) and (3.46), respectively, with the
approximation lying only in k„" and k", .

We have not tried to compute E„orE, with G,/m
and/or G,/&u having values greater than 2.0. It
is noticed from Tables II and III that with other
parameters being the same, iteration with E„is
convergent at stronger interaction G,/&u than that
with E,. This is due to the fact that in all cases
shown, w, & &u and therefore [see Eg. (3.57) below]
k„and k, are both negative. Then for values of
W/u& not close to unity, Egs. (3.47) and (3.48) hold
approximately and therefore E„——,'(m, + w, ) is
(much) smaller than E, ——,'(zv, +u/, ). Incidently
the exact values of these two quantities can be ob-
tained by using the analytic values k„" and k", and
the errors shown in these tables.

The accuracy of k„' and k'„which are even simp-
ler to use, is given iri Table IV."

Level separation for the field induced avo-ided
cxossirg. In those ranges of interaction G~ and
w, for which the differences in k„and k, are neg-
ligible, separate iteration of Eqs. (3.45) and (3.46)
is not required. Then E, can be calculated from

TABLE II. Comparison of the approximate values k„" of Eq. (3.53a) with exact values k„
calculated by numerical solution. The relative error, defined as (k'„'/k„}—1, is given as a
function of the energy difference 8'=—ce, —zv, between the true-crossing levels ze, and so~,
of the third level go~, and of the radiative interaction G, = G,. The entries marked "w.s."
mean k„" has the wrong sign compared to the exact k„value. The entries marked " '" mean
that the numerical iteration to obtain the exact k„was not convergent. It is seen that k„" re-
mains accurate (&1%) up to strong interactions and that its accuracy is only weakly dependent
on W.

gg~ /co Wj 0.01 0.05 0.1 0.5
G,/cu

1.0 1.5, 2.0

1.5 0.4 —1.5(-6) -8.0( 4)
0.04 -2.4(-7} -8.6(-5)

—8.O3(—3)
-1.53( 4)

4.89(—2) 0.712
5.56(-2) 0.786

w.s.
4.040

w.s.
w.s.

5.5 0.4 -3.0(-9) -2.0(-7)
o.o4 —3( 1o) -2.1(—v)

3.1(-6)
-3.4(—6)

-1.6V(-3)
—2.v4(—3)

2.42(-2)
-3.52(—2)

-0.174
-0.197

10 0.4 -1(—10) -9.9(-8)
0.04 -2{-11) -1.5(-8)

-1.6(-v)
-2.7 (—7)

1.49( 4}
—5.O3(-4)

—4.52{-2)
-9.33(-3)

-3.68 (-2) —0.256
-5.64(-2) -0.271

10 0.4 1(—14} 1(-11)
0.04 -1(-15) -1(-12)

1{ 1o)
6(-11)

2.69(-8)
-v.v6(-v)

-3.53{—6)
-4.15(-5)

-5.12(-5) -3.07 (-4}
-3.29(-4) -1.26 (-3)
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TABLE III. Comparison of the approximate values k", of Eq. (3.53b) with exact values k&

calculated by numerical solution. The relative error defined as (k ~'/k ~)—1 is given as a func-
tion of the energy difference W —= zo, —se, between the true-crossing levels zo, and zu, , of
the third level w„, and of the radiative interaction G,= G~. The entries marked "w.s."mean
k,"has the wrong sign compared to the exact k, value. The entries marked "' '" mean that
.the numerical iteration to obtain the exact k, was not convergent. It is seen that k", remains
accurate (&1 lo) up to strong interaction and that its accuracy is only weakly dependent on W.

0.01 0.05 0.1
G,/u)

0.5 1.0 1.5 2.0

, 1.5

5.5

0.4 -4.9 (-8) -3.1(-5) -5.04(-4)
0.04 -1.8 (-7) -1.5(-4) -3.53(-3)

0.4 -3(-10) -2.3(-7) -3.58 {-6)
0.04 -3(-10) -2.1(-7) -3.26 (-6)

-6.09 (-2)
-1.86(-1)
-1.5V (-3)
-9.52 (-4)

-v.s5(-3)
=1.84(-3)

1.79(-3).
1.60(-2)

10 0.4 -3(-11) -1.9(-8) -3.04(-7)
0.04 -2(-11) -1.5(-8) -2.06(—7)

-1.06 (-4)
2.05 (-4)

1.15(-3) 1.59(-2) 6.55(-2)
5.26 (—3) 2.82 (-2) 8.96(-2)

10 0.4 -7 (-15) -5(-12) 1.2 (-11)
0.04 ' 0 -1(-12) 2.1(-11)

8.83(-s)
v.51(-v)

5.41(-6)
4.11( 5)

6.O1( 5) 3.25(-4)
3.27 (-4) 1.24(-3)

the k„obtained in iterating the expression E„. In
this domain, many interesting results can be de-
rived. To give a representative indication of this
domain, the ratio k,/k„as a function of G, = G,
and w, is given in Table V."

It can be seen from Egs. (3.53)-(3.55) that the
inequality of k„and k, is due to the inequality be-
tween 6„and 5, . We note that the difference,
5„-5„ is of the same order of magnitude as 5„
and 5,. Therefore the same value is obtained for
k„and k, only if 5„and 6, are negligible compared
to ao,. That 16„/I/, I

and I6r/w, I
are smau also

implies that IW/zo, I
and l(G', +6,)/(&o' —av', ) I

are
small. In this domain, an approximate expression
for k„=—k, is"

226~

CO 6+
(3.57)

Thus if m, is positive, k, ~&0 for v +gsv-, .
Thus employing Egs. (3.45) and (3.46) together, the

following relations useful in subsequent sections are
derived. The new "center of levels" ateachR [or
equivalently W(R)] is shifted up or down relative
to the field-free center according to whether k is
positive or negative,

,'(E„+E,) ——'. (—W, + W, )= —,'k(G,'+G',). (3.58)
The new level separation is given by

{jW+k(G2 G2)]3+ 4k2G2G2}l/2 (3 59)

where k, G„and G, are evaluated at each W. At W = 0,

TABLE IV. Comparison of the approximate values k„' and k', of Eqs. (3.56) with exact
values of k„and k&, respectively. The relative errors („'=k„'/k„—1 and (', =—k&/k& —1 are
given as a function of the third-level position se, and of the radiative interaction G~= G,.
The dependence of P, „' and $', on W is again very weak for W/ur ~ 0.4 and is not shown. The
entries marked "' ' " mean that the numerical iteration to obtain the exact values k„or k&

was not convergent. It is seen that k„' and k', are accurate in a large domain of parameters.
They are simpler to use than k„" and k&' although they are not so accurate, as expected.

0..01 0.05 0.1 1.0 1.5 2.0

1.5

5.5

10

10

1.4(-3)
3.4(-4)

1.3( 5)
1.5( 5)

3.2(-6)
5.o(-6)

6( 14)
-1( v)

3 3(-2)
8.5(-3)

3.3(-4)
3.8(-4)

s.o( 5)
1.3(-4)

—. 1.6(-6)
3.6( 6)

0.118
3.4(-2)

1 3(-3)
1.5{-3)
3.2(-4)
5.o(-4)

-6.4(-6)
1.4(-5)

1.12
0.895

2.4(-2)
3.8(-2)

6.5(-3)
1.2 (-2)

-1.v(-4)
3.5(-4)

3.48

2.1(-2)
1.5(-1)
v.5(-3)
4.9(-2)

-7.6(-4)
1.3(-3)

2.82

-0.21
3.o( 1)

-5;1(-2)
1.1(-1)

-2.1(-3)
2.8(-3)

8.70

-0.343
1.8(-1)

-4.v(-3)
4.6(-3)
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the level separation is

~, -=(E„-E,),= Ihl(G'. + G',) . (3.60)

The minimum value of the energy difference of
the field-induced avoided crossing is given by

~.-=(E.-& )..= 2 IhG.G. I

and occurs at

W= -h(G2, - G~) .

(3.61)

(3.62)

Thus this minimum occurs to the left or right of
the field-free crossing point depending on the sign
of k and the relative magnitude of C', and G',. For
low intensity, the field-dependence of k is negli-
gible. From Eq. (3.20), it is seen that the mini-
mum 4 scales linearly with field intensity I and
the product of transition moments p,,p, Results
(3.61) and (3.62) satisfy the requirement 4, ~ 4„.
From Eq. (3.62) and numerical results for very
strong interactions, the minimum of the field in-

- duced avoided cxoss21zg aE&ags occuxs af zo = sv,

f IG, I=IG. I ~

Since k = k, is known exactly at av, = w, , and
since ~ =4, for the ease G, = G„an exact result

~.=2lh, lG'„ if G, =G. , (3.63)

is obtained in the domain k, =k„without any itera-
tive calc.ulation. However, if in the general case
G, & G„ao approximate expression valid in this
domain ls

(3.64)

s(g2 g2 )I/2
X egg

(3.65)

u ~ 2 and possibly higher values. An examination
of Table V shows that this is also the domain in
which the relative differences between k, and k„
are less than 1%. Furthermore, this is also the
domain in which the quantity g satisfies Eq. (3.66)
and Eq. (3.68) with a relative error less than 1%
(see Table VI). From previous results, ' it is rea-
sonable to assume that the relative difference be-
tween Cf~ and C,', , is also less than 1%. There-
fore to use the formula Eqs. , (2.12)'and (2.21), the
only effect of the field is the transition associated
with the energy gap &„given by Eq. (3.64).

Values of the ratio y can be calculated exactly
according to the definition in Eqs. (2.23) and by
using definitions (2.15) and (2.16) for 6 and 6 .
A simple approximation to y can be given (i) if
the relative kinetic energy is high enough or the
optical Stark shifts are small enough so that the
field-free trajectory s of the relative motion is
not affected significantly by the field, and (ii) if
the B dependence of (w, + w, )/co, w, , G„and G, ar e
weak compared to that of W. Condition (ii) can be sat-
isfied for some molecular systems since the "region
of transition" around the crossing is relatively "nar-
row." Condition (i) also implies that the velocity
with the field on is approximately the same as the
field-free velocity. This is of course consistent
with the classical-motion approximation. Then
the approximate formula for evaluating y is

1

Comparison of the approximate values of 4
given by Eq. (3.64) for G,/&u ~ G,/&u with exact nu-
merical values shows that the relative error is
less than 1% (i) for w, /ur = 1.5, if G,/m ~ 0.05;
(ii) for w, /&@= 5.5, if G,/+ &0.3; (iii) for w, /&u

=10, if G,/ur &0.5; and (iv) for w, /v = 10', if G,/

TABLE V. The ratio of the exact value k& to the exact
value k„, given as a function of the radiative interaction
G,=G~ and of the third-level zv~, at the true-crossing
point W = 0. Deviation of the ratio from 1 indicates the
extent of the necessity for separate iteration to obtain
E„and E, . When this ratio i:s close to 1, many simple
results in Eqs. (3.58)-(3.64) are valid.

Using this formula to evaluate y for given w, ,
G„and G„we found that to an excellent approxi-
mation,

TABLE Vl. Typical values of p, the ratio of the rela-
tive slope of the radiative-dressed diabatic levels to that
of the true-crossing levels in the absence of the laser
field, given as function of the position of the third level
and of the radiative interaction G,= G,. The number of
significant figures shown gives an indication of the ex-
tent of constancy of X as a function of W. Those entries
marked with "*"mean there are values of X at some
W/'z that deviate from the values shown by 1% to 10%.
The entries marked by " ~ ~~ mean no exact values
are computed. For G,/a =G,/+& 0.01, y=1.

G./

0.01
0.05
0.1
0.3
0.5
1.0
1.5
2.0

1.5

0.999
0.980
0.932
0.718
0.594

5.5

1.000
1.000
0.999
0.987
0.963
0.848
0.587

10

1.000
1.000
1.000
0.996
0.989
0.946
0.840
0.557

100

1.000
1,000
1.000
1.000
1.000
0.999
0.998
0.995

m~ /
Gg/co

0.01
0.05
0.1
0.3
0.5
1..0
1.5'

2.0

1.5

1.000
0.990
0.966
0.865
0.784

5.5

1.000
1.000
0.999

-0.993
0.982
0.92
0.75+

10

1.000
1.000
1.000
0.998
0.994
0.973
0.916
0 75+

100

1.000
1.000
1.000
1.000
1.000
1.000
0.999
0.9,98
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X = coristant, (3.66)

as a function of W/&u varying from 0.4 to —0.4.
If the statement (3.66) holds, then the dressed
diabatic energy levels have constant reLative slope
(o.'= const) if the field fr-ee trae crossing does
(o.', = const).

Examination of the analytic expression for y
-shows that if

then

nr G2
IJ4 8 (( ~W~ P

ty~

(3.67)

(3.68}

IV. MOLECULAR COLLISION AND DISSOCIATION

During the course of molecular collisions and
molecular dissociations in the presence of the
laser field, one field-induced avoided crossing
may be traversed. After the crossing, the final
elastic and inelastic probabilities in the field
dressed states such as 4'„and 4„ forming such
a crossing are, respectively,

S=e "~and T =1-S (4 1)
in the modified Landau-Zener model [see Eq.
(2.12}and Fig. 3];

If the charge-field system is probed for proba-

x

for a wide range of W/tu. Condition (3.67) says
the physically expected result that W at each R
does not change in the weak-field limit or a far-
away third level in the strong-field limit. Note in
connection with Eq. (3.67) that v' =tv2 is ruled
out for this study on nonresonant effect and that
for evaluation of y, W has rionzero values.

For G,/v and G,/&u ~ 0.05, we found that both
Eq. (3.66) and Eq. (3.68) are satisfied to an ac-
curacy of four significant figures over the para-
meter ranges W/&o = 0.4 to -0.4 and for ev, /&u =0
to 100. For higher values of G,/&u and G,/ur, Ta-
ble VI gives the values of X for different sv, values
and also notes the extent of deviation from con-
stancy with respect to variation in TV.

To conclude this section, we emphasize the im-
portance of knowing the accuracy of various quan-
tities 4, g, etc. to be used in calculating the
transition probabilities. In the modified Landau-
Zener model, Eqs. (2.12)-(2.16) and (2'.21)-(2.23),
any error 5 in the values p is magnified by a fac-
tor of 2m in the exponent [i.e., ratio of inaccurate
value of

~
B„(v„)~' to its exact value = exp(-2v6)].

This sensitivity of the transition probability on
the energy differences and coupling between states
is expected to be independent of models but to
hold generally.

Note that the explicitly written (d factors in the ex-
ponent actually cancel out, but they are used for
convenience of dimensionless representation of the
minimum energy gap n and the field-free param-
eter ~o.,~. Compare this with Eqs. (2.12) and (2.21).
The dimensionless ratio ~o., ~/&o' is given by

(4.3)

in terms of the wavelength A. (in pm) of the laser
field, the relative velocity v (in cm/sec) at the
crossing region, and the force difference (in eP/
a,) F—= s ~ V(w, -w, ) along the trajectory s. The
experimentally interesting range of values is
10 '-10'. Figures 4 and 5 plot the exact values of
I' as a function of the radiative interactions and
the ~e,(/&u' parameter. The case G, =G, is chosen
for pres entation.

The quantity I' h3s the field-free limit of zero
since then the energy gap of the field-induced
avoided crossing vanishes, 4 ~0. At high inten-
sities that are achievable at laboratories, I' reaches
its maximum value 1. The intensity at which
the saturation behavior sets in depends on the
quantity ~a, ~. It is seen that lower intensity is re-
quired to induce the same value I" for smaller
va. lues of

~
o, [, i.e., smaller relative velocity and

smaller force difference between the true crossing
energies.

In the intermediate domain described below Eq.
(3.64), in which k, is a good approximation to ob-
tain 6, we have

(4.4)

where

2(coo, /(o)
1 —(zv, /(u)' ' (4.5)

Therefore when the exponent in Eq. (4.2) is small,

bility P(r ) in the charge state y, at the positive
asymptotic time t;, the value of P(r ) is Tp„(T )
+SP„(r ), where P„(r ) is the probability of
finding the charge system in the state y, and its
sidebands if the charge-field system is in the
state 4„.' If the charge-field system is probed af'-
ter the field is turned off, P„(r )~1, whereas
p~ (r }~0,sothat theprobabilitiesof populating
thestates y, and y, aresimplyT andS, respect-
ively. Measurements of fluorescence from excited
atomic and molecular species after irradiation with
laser pulses of time duration short compared to rad-
iative lifetime (s) fall into this category.

We define a quantity I, whose physical meaning
depends on the cases to be discussed in Secs. IVA
and IV 8:
F =1 —exp[-l&«. /~)'X '(l~. I/~') 'l-o.
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tion sets in (e.g. , the linear portions in Figs. 4
and 5) and for

y212 2 2
M) GO= 3 6570 x10 I —x

vF 1 —(ta, /ai)'

(4 6.)

(go, /&u)'» 1,
'I

it is seen from Eqs. (4.5) and (4.6) that"

r~(M„) '.
(4-1)

(4.8)

where the various quantities and their units are
defined in connection with Eqs. (3.20) and (4.3).
We see that I'~I' and v '. For (ie, /~)'=o(I),
I' o- A. ; but for (ta /&u )» I, I"is independent of X. It
is also seen from Eq. (4.6) that I' is proportional
to the fourth power of the field amplitude, explain-
ing the linear slope of 4 in Figs. 4 and 5.

In Figs. 4 and 5, we plot I for the cases ta, /&u

=1.5 and 5.5 only. In the domain before satura-

Therefore plots of I' for to, /e &5.5 have not been
given. In any case they can be easily calculated
from the values of X (e.g. , Table VI) and the ana-
lytic formulas for k'„' and Vf (or A„' and k,') which
according to Tables II and III remain accurate
(error &1%) up to G /&u =G, /+=1. 5 form /&v=10
to 10 . From these results or Fig. 5, it is seen
that even very-far-away nonresonant states can
produce important field-induced transitions.

10 "

10 2

A. New transition channel opened by field

For the case of the new transition channel repre-
sented by Eq. (2.8e), the inelastic probability T is
simply I" of Eq. (4.2). Small transition probability

10 3

1O-4
10 "

1O-5
10-2

10-6
10 3

1O-4

10-8

1O-9

1O-5

10-6

10-1O

1Q-11

10 "2

10-7

10-8

1O-9

1P-10

1P-14
1O-4 1O-3 5 10

lffl
5

1P-1 1

1Q-1 2

FIG. 4. Plots of I' defined. in Eq. (4.2) as a function of
the radiative interaction ratio G /~ [see Eq. (3.20)] and
the field-free parameter Ioo I/a& [see Eq. (4.3}l for the
prototype configuration of Fig. 3 and Sec. III 8 with

G~ = G~, m~, /co = 1.5. For a new transition channel
opened. up by the laser field, I is the inelastic transi-
tion probability after one traversal of the field-induced
avoided crossing. For cases with significant field-free
inelastic transitions I is the fractional peg'FeCge of
the elastic channel probability due to the presence of the
field t.see Eq. (4.9)].

]0-13

1P-14
1O-4 1O-3 1O-2

G 0/62

10-1

FIG. 5. Plots of I' as mentioned in Fig. 4 except now

so~, /co= 5.5. In both Figs. 4 and 5, saturation of the in-
elastic channel or equivalently the complete depletion of
the elastic channel is shown possible. For larger gg /

I" tx:so~~. Therefore very far-away nonresonant levels
can be significant for field-induced transitions.
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induced by a field of moderate intensity can still
be readily detected since there is no competing
fieM-free transition into this new channel. De-
pending on the parameter ~o., ~/uP, sufficiently
intense field can nonresonantly redirect all trans-
itions into this new channel.

a~e monotonic. The physical explanation is that
as the field intensity is increased, the dominant
effect is the increase of the field-induced energy
gap so that the process becomes more adiabatic
along the new charge fiel-d adiabatic eigenenergy
E).

8. Cases with non-negligible field-free inelastic transition

For these cases, the quantities that best char-
'acterize the effect of the field on the field-free
elastic and inelastic probabilities S, and T, are
the fractional dec~ease of elastic probability,

(S0 —S)/Sa = 1' —S/S0, (4.9)

and the fractional inc~ease of inelastic probability

(T —TD)/Ta = (1 —S/Sa) Sa/T0 . (4.10)
'l

This last expression states that the significance of
field effect on the inelastic channel is a product of
the fractional decrease of elastic probability and
the ratio of the field-free elastic probability S,
to the field-free inelastic probability T,. For ex-
ample, for a small depletion qf the elastic proba-
bility 1 —S/S, =10, transition probability into the
inelastic channel is increased tenfold if the field-
free ratio S,/T, has a value of 10'. For this case,
experimental detection of the field-induced change
of events (e.g. , fluorescence) associated with the
inelastic channel can be more readily demonstra-
ted than those with the elastic channel. On the
other hand, if S,/T, equals 10 ', even though there
is complete depletion of the elastic channel (i.e.,
1 —S/S, = 1), the fractional increase of probability
in the inelastic channel is only 10 '. Assuming
the original field-free signal of the elastic channel
is strong enough, experimental demonstration of
the field-induced effect should detect the change
in the elastic channel.

In the domain of a moderately~intense field as
characterized by Eqs. (2.8b) and (3.68) [see also
discussion following Eq. (3.64)], then, the Ifraction-
al decrease of elastic probability defined in Eq.
(4.9) is simply equal to I' if the modified Landau-
Zener model in Eqs. (2.12)-(2.19) is used,

1-S/S, =r. (4.11)

Some cases are plotted in Figs. 4 and 5. It is
seen that the characterization of the field-induced
effect by Eqs. (4..9) and (4.10) is independent of
Sp and Tp and is the refore rather gene ral.

To conclude this section, it is seen from Eq.
. (4.2) that I' is always positive in the presence of
the field. Therefore the addition of the field al-
ways decreases the field free elastic proba-bility
(i.e. , S &S,) and increases the inelastic probability
(i.e., T & T0). Furthermore, these dependences

A. New transition channels

For the case of Eq. (2.8e), we have

p =a'/4y (a, ( and p' =a"/4y'(a, (. (5.2&

Again we note'that the effect of the field is more
readily detectable for smaller values of ~n, ~. In
the domain described following Eq. (3.64) and if
2'«1 and 2wp'«I are valid, then

f —2vh 2 [G2 GB + GI2gl2] ~~
~

I

u 2
=3.6570 x10 "

vF 1 —(w, , /ur)'

(6.3)

in the same notatioris and units defined in Eqs;
(3.20) and (4.3). The dependence of f on various
quantities in this region is similar to that of l in
Eq. (4.6). Outside this region, the dependence of
f on various parameters is exponential. -For
2'»1, and 2''»1, f=e '" +e 2'

The maximum value off is in general found by
graphical method. But for the special symmetri-
cal case that p=p', the maximum of f occurs for
the value of 6

V. ATOMIC COLLISIONS

In atomic collisions, the sqme true crossing'is
traversed twice in one encounter, once during the
incoming transit and once on the outgoing one.
The same holds true for the corresponding field-
induced avoided crossing. However, because of
the rotation of the nuclear frame with respect to
the space-fixed polarization of the field, the radi-
ative interactions at the two crossings are differ-
ent. Thus, effectively two different field-induced
avoided crossings are involved. The final proba-
bility in the initially unpopulated channel is given
simply in the Landau-Zener model by

-2&P (1 2%0')-+ 2&0'(1 -. 2&P )-
aside from an interference term that averages
out in the integration over impact parameter to
find the total cross sections. The p and P' for the
two crossings are defined in Eq. (2.13). Again
note that f is the inelastic probability in a field-
dressed state (say, 4~~ ) if the measurement is
taken in the presence of field. Otherwise it is the
final probability in the charge state (say, rp, ).
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= (2x Io. o Iln2)'t'/s'

In the domain described below Eq. (3.64), the
above equation implies that the intensity I at
which the maximum of f occurs is given by

„(vg)'/' n~„,/~I = I.3767 '& I0"--
1 —(~., /~)'

(5.4)

(5.5)

10 "

10 2

10-3

where the quantities and their units have been de-
fined in Eqs. (3.20) and (4.3).

Figures 6 and 7 plot f as a function of the di-
mensionless parameters G s/&v and

I a, I/e' for
the respective cases ur, ,/v = 1.5 and 5.5 « the

10 1

10 2

10 3

1O-'

U 1O-'

z
10 6

XI-

10 7

I-

„— 1O-'

0
1O-9

10-10

~ 10-4
' z

10-5

z
1Q-6

I-
10-7

I—

10-8

O
fL 10-9

z 10-~ 0

10-11

10-12

10-13

10-14
1O-4 .5 1p-3 1O-2

G 0/ CrJ

10,1 5

FIG. 7. Plots of the inelastic probability f [Eq. (5.1)]
in the net channel opened by the laser field after two
field-induced crossings. See caption of Fig. 6. Here
zp /u= 5.5 and it shows that significant field-induced
transition can arise due to coupling through far-away
nonresonant levels.

10 "

10-13

10-14
1O-4 1O-3 5 jp-1

prototype configuration. For a given Io., I/uP
value, f initially increases as a fourth power in

G,/e„reaches a maximum, and ultimately drops
exponentially (= a fourth power of G, /&u in the
exponents). The maxima of f are also indicated
for these cases where PIP'.

FIG. 6. Plots of the inelastic probability f [Eq. {5.1)]
in the nese channel opened by the laser field after two
field-induced avoided crossings, as in atomic collisions.
The numerical values off are calculated for the proto-
type configuration of Fig. 3 and Sec. III B with G, = G,
= 10G~ = 10G, and u /(d =1.5. The dimensionless ratios
G~/&u and

I no I/a&2 are given in terms of intensity, velo-
city, etc. by Eqs. (3.20) and (4.3). The position of the
maximum of each curve is marked by arrows labeled
I &OI/w . That f can he greater than ~z is due to 0,
&G~ and/or G, &G, . Unlike the case of one crossing,
further increase of field intensity after the maximum
can lead to rapid decrease of inelastic probability due
to adiabatic behavior associated with two increasing
energy gaps.

B. Cases with non-negligible field-free inelastic transitions

p =th, '„/4
I o., I

+p, (5.6)

(5.7)

where p, is defined in Eq. (2.18). As the field
vanishes, b, and a' approach zero so that f be-
comes the field-free function,

We shall study these eases for the domain char-
acterized by Eq. (2.8b) and that X =X =1. Then it
is best to write P and P' in Eq. (5.1) as
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3 -2wP, (1 -2wg, ) (5.8)

lh'e know that f, is a function that peaks at p,
=. 0.1103. As seen in Egs. (5.6} and (5.7}, the
field indu-ced energy gaP is in effect to increase
the size of the exponents.

Therefore one expects that for p, &0.1103 (see,
for example, Fig. 8), adding on a field would at
least initially increase the inelastic probability
(f &f,). , Further increase in intensity increases
f until the new maximum for f is reached. For
the p =P' case, these maxima are given by P
=0.1103. .Furthermore, since P, can be small in
this domain, sufficiently intense field can produce
the conditions

I

t'/4I~, I»p, and ~"/„4I+, I»p, .
If so, f becomes independent of P„but depends
on a'/4In, I and h"/4jo. , I only. Its values are
essentia. lly the same as those of the new transition
channel (P, =0). This explains the ultimate merg-

ing of f cu rv'es for various P, (but of the sa, me

In, ~/&o') into one curve in Fig. 8. One notes also
that for smaller Po values, the field-induced con-
tribution is significant relative to the field-free
value at smaller field intensity. This is in addi-
tion to the greater sensitivity of the field-induced
effect for a smaller Io., I

value. See Eqs. (5.6)
and (5.7).

The new maximum of f for a nonzero field in-
tensity always occurs at a p, value &0.1103.
Therefore, for all cases p, ~0.1103, f must de-
crease with increasing field intensity. Further-
more, since f~f, as the field vanishes, the in-
elastic probability in the presence of the fieM
must be less than its field-free value (f & f,). For
"large" po values such that e "«& 1,

f 1 ~ 6'„' v b.„"
exp —— +exp -- --), (6.10)f, 3 2Io., I

2 Ia,
so that the relative significance of the field is in-
sensitive to P,. Figure 9 illustrates the above
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FIG. 8. plots of the i.nelastic probability f [Eq. (5.1)]
after two field-induced avoided crossings. in atomic col-
lisions for cases zenith non-negligible field-free iri elastic
transitions [po& 0 in Eqs. (5.6) and (5.7)]. The actual
numerical values off are calculated for the prototype
configuration. of Fig. 3 and Sec.IIIB, with G~ = GO=10 G~
=10G,' and m„/co=1. 5. This figure illustrates the
cases po& 0.1103 for which the addition of the field al-
ways initially increases the inelastic- probability until
the new maximum is reached. Many behaviors of the
curves are explained in the text below Eq. (5.8).
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FIG. 9. Plots of the inelast&c probability f as in Fig.
8 but for po» 0.1103. For these cases, addition of the
field always decrease the inelastic probability. See
text near Eq. (5.10).
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points. The appearance of flat "shoulders" on
some curves in Fig. 9 is due to the two exponen-
tials in Eq. (5.10). Since we assumed G =10G',
there is a region of t" such that the first exponen-
tial vanishes whereas the second is still close to
unity.

VI. RADIATIVE-CONTROLLED PREDISSOCIATION

Due to the large number v, of oscillations per
second in the i th vibrational state, even very
small field-induced inelastic transition probability
per oscillation, 2F;, can lead to. a significant
field-induced predissociation rate per second,
y(i). Therefore only very moderate field intensity
is needed to produce observable field-induced ef-
fect. The domain of field intensity characterized
by Eq. (2.8b) and the discussion following Eq.
(3.64) is adequate for analysis. When the field is
so intense that field-induced predissociation is
probable with one or a few transits of the crossing,
then considerations are similar to those of Secs.
17 and V.

Predissociation induced by static fields has been
studied, for example by Zener, ' whose analysis and
results using %KB approximation for the internu-
clear motion we follow and use by analogy.

If y, (i) denotes the field-free predissociation rate
for the i th vibrational state, then the total pre-
dissociation rate is

The quantity I"; is the inelastic probability for
one transit of the field-induced crossing and is
therefore very much like I of Eq. (4.2). Defining
an equivalent velocity v, in cm/sec at the cross-
ing by

v; = 1.3841 x10'[aE(i)/m„]'I', (6.4)

Wr W(i

E (I}

the correspondence of I;,and I' of Eq. (4.6) for
F«1 is most transparent.

Our writing of Eq. (6.1) as a sum of two rates
without interference term is based on the results
of Eq. (2.13) under the assumption of real wave
functions and linear polarization of the field. In

general, one may expect interference terms due
to different competing processes (i.e. , the hyper-
fine and the. spontaneous as well as the field-in-
duced predissociation from the B state to the iu
state of the iodine molecules).

For field-induced predissociation rate y(i } small
compared to 1/T„where 7, (in sec) is the field-
free lifetime of the ith vibrational state, bxoaden-

igg of the vibrational spectrum is expected to be
proportional to the square of the intensity. In the
extreme case, for a molecule in the i th vibration-
al state with energy E„(i}&E„ the field-induced
predissociation is certain if y&T; =1. The field in-

r~(i) =r(i)+w, (i), (6.1)

Kg+�/A

i~) (6 2)

R

A. I E (i)
y(i) =2v&I',. =1.2777 x10 '

[—

10~+ /&d

t )') (6.3)

Wo

In these equations, the laser intensity I in W/cm',
its wavelength A. in p, m, the force difference F in

eV/a„ the transition matrix elements y, in a.u.
and the dimensionless ratio of the off-resonant
energy u, to the photon energy u have already
been defined [see Eqs. (3.20) and (4.3)]. E„(i) in
eV is the vibrational energy of the ith vibrational
state AE(i ) in. eV is the ma, gnitude of energy
difference between the ith vibrational energy and
the energy at which the attractive and repulsive
electronic energies cross. See Fig. 10. The re-
duced mass m„of the vibrating particles is in
units of proton mass.

Rc

= R

(b)

FIG. 10. Badiative-induced predissociation of vibra-
tional states with energy E„(i) of the attractive elec-
tronic states y, into the repulsive state y, . (a)
E„(i)& E~. (b) E„(i)&E~. With the laser field turned
on, the new electronic-field potential surfaces corres-
ponding to these true crossings would exhibit avoided
crossings.
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tensity I, (in W/cm') at which this complete pre-
dissociation occurs is given by

ac
't

t =exp -2
R~

k dR —2 k, dP
Rc

hq =(2m„[E„(i) wq(R)]/h)-' ', P =o, v. (6.6)

Therefore the field induced Pre-dissociation rate
per sec saith tunneling is given by

X'PE„(t )t,
; t, I; =6.3665 10

(6.7)

VII. DISCUSSION

We have analyzed a new situation where the os-
cillatory coherent radiation field provided by mod-
ern lasers induces avoided crossing and opens up
new channels of transition in atomic and molecular
gases. Not all the field-free true-crossings' be-
come avoided crossings in the presence of the
field. Only those true-crossing states that radia-
tively couple to each other through other inter-
mediate states by an even number of virtual pho-
tons do form avoided crossings for their field-
dressed levels. See the end of Sec. IIIA. It is
shown that the field induces significant transition

I) = 8.8468 X10'

F'"[t E(i )/m„]"
"~E'„"(t )r,'" p,, g.(w.,/~)/[I —(w.„/&)']

'

All vibrational states j with energy E„(i) & E„(j)
~zv„are also expected to predissociate with cer-
tainty at this intensity. Fluorescence from these
states are expected to be quenched. In the iodine
molecule, the g states closest to the crossing be-
tween the 8 0'u('v) state and the lu state are the
Ig('w) and Og'('x) states. " Our rough estimate

' (due to the lack of knowledge of the p, 's) of the in-
tensity I; for the. vibrational states around i = 25
is of the order 10' W/cm2. At this intensity y»
=0(106/sec) and is therefore about the same to
four orders of magnitude larger than the hyperfine
predissociation rate and spontaneous predissocia-
tion rate, depending on the rotational angular mo- .

mentum J.
For.the vibrational states whose energy E„(i) lies

b, E(i ) below the predissociation energy E, [see
Fig. 10(b)], the probability of predissociation per
oscillation is given' as t&t;, where I; is the same
electronic transition probability defined before for
the vibrational state whose energy is by the same
amount ~E„(i) above E, ; and t; is the tunneling
probability given by"

probability so that the cross sections for such
collisions and predissociation rates can be large.

Our theory given in Secs. II and IIIA, and the-
formulas inSecs. IV, V, and VI are quite generally
applicable to deal with collision-free and collision-
al processes of (quasi)diatom or (quasi)polyatoms.
The solution of the field-interaction with a finite
but large number of discrete charge states is ex-
act as long as the numerical iteration converges.
This in turn enables us to give approximate form-
ulas and determine their validity region, such as
those for the k values of the prototype configura-
tion in See. III 8. Although the numerical results
shown are limited. to the prototype configuration
(so as to elicit the various parameter dependen-
ces), the theory and many formulas are not. In
fact, in the moderate field region expressed in Eq.
(2.8b) and discussed following Eq. (3.64), the radia-
tive interaction of many (say, n, )y„states withthe
two crossing states y, and y, can be considered
as additive contributions. - This is reasonable be-
cause to the lowest order, the states y, do not
couple among themselves but each separately with

and y, . In this case, many of the formulas
in Secs. IIIA to VI are directly applicable if the
following implicit summation is taken over o,:

w+ /Q)
'1 —(w /u&)

This agrees with results2 based on stationary per-
turbative theory valid in this domain of moderate
field intensities.

In conclusion, the significance of the field in-
duced effects on matters without actual absorption
or emission of photons is that material properties
in large volume can be rapidly snritched on at no
expense of photon energy. In field-induced molec-
ular predissociation, the flow of internal elec-
tronic-vibrational energy as fluorescence, or al-
ternatively as kinetic energy, can be controlled
by the laser-field parameters. For atomic and
molecular collisions,

A+ 8+ BE~A. +8+,
AB+ C AC+ B+~,

and in molecular dissociation, association, and
inverse predissociation,

the laser field can be used to trigger the desired
rate of exchange of electronic-vibrational energies
internally and/or externally as kinetic energy at
no expense of laser photon energy.

f
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