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Two approximations, motivated by heavy-particle scattering theory, are tested for weak-coupling electron-
atom {ion) inelastic scattering theory. They consist of replacing the one-electron scattering orbitals by their

Langer uniform approximations and the use of an average. trajectory approximation which entirely avoids the

necessity for generating continuum orbitals. Numerical tests for a,dipole-allowed and a dipole-forbidden

event, based on Coulomb-Born theory with exchange neglected, reveal the error trends. It is concluded. that
the uniform approximation gives a satisfactory prediction for traditional weak-coupling theories while the

average approximation should be limited to collision energies exceeding at least twice the threshold energy.
The accuracy for both approximations is higher for positive ions than for neutral targets. Partial-wave

collision-strength data indicate that greater care should be exercised in using these- approximations to predict
quantities differential in the scattering angle. An application to the 2s S-2p P transition in Nevin is

presented.

I. INTRODUCTION

The application of weak-coupling theories to
electron-atom (ion} inelastic collisions has, in
principle, certain advantages over higher-order
theories. There are reasons to expect' ' that.
weak-coupling theories become more accurate
over a, broader range of collision energies (E') for
ionic than for neutral targets, at least for cases
of multipole- allowed transitions. Weak- coupling
methods also require less computer execution time
and programming effort. These attributes become
important if one wishes to survey a large number
of systems and transitions over E' extending from
threshold to the high-energy asymptotic region.
Such surveys are motivated by attempts to model
detailed aspects of high-temperature plasmas.
A specific example is the line radiation observed
from tenuous high-temperature Tokamak plasmas. '
Also the ability to extend the various weak-cou-
pling theories into the large E' asymptotic region
provides useful insights such as those discussed
in Sec. III.

The practical problems encountered in evaluating
the partial-wave treatment of weak-coupling theory
leads one to search for methods to treat highly
oscillatory iritegrands and to further reduce com-
puter costs. These are motivations for this study
of the Langer uniform approximation (U)' and the
average approximation (A) developed by Riley. '
The U approximation to continuum orbitals is
anticipated to be reliably accurate for all E' and
to provide one program capable of evaluating all
the weak-coupling theories. A useful numerical
check based on comparisons with traditional non-

partial-wave Born (B}data will thereby be avail-
able. This program should be a computational
method competitive with the standard Coulomb-
Born (CB) method' and be a less time-consuming
technique for evaluating the distorted-wave (DW)
predictions. The U approximation also has pro-
gramming advantages when applied to the DW
method and it avoids the necessity for a good
Coulomb function generator when evaluating the
CB cross section. The range of E' for which the
A approximation is useful is restricted to E lar-
ger than several times threshold, but it does
solve the oscillatory integrand problem and pro-
vides considerable savings of computer time. It
should also be noted that weak-coupling theories
are the most advanced to be applied routinely to
the ionization problem' and considerable explora-
tion remains to be done. The ionization problem
is beyond the scope of this work, but the techniques
being considered here appear well adapted to such
a study.

Section II of this paper defines the basic weak-
coupling equations being used and the specific
nature of the U and A approximations. To better
focus attention on these techniques, only direct
scattering will be considered. Section III presents
the results from a number of calculations on sim-
ple systems. These data will display the precision
inherent in these techniques as a function of excess
charge on the target, q, the collision energy, E',
and the partial-wave collision strengths for two
basic types of transitions. Cross-section data for
the 2s'g-2p'P transition in Neyyg are also pre-
sented. These data are used to amplify some of
the above discussion where special attention is
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given to the approach of the different weak-cou-
pling theories to their high-energy limiting be-
havior. This example is chosen because one ex-
pects exchange effects to be relatively unimpor-
tant. Although exchange for weak-coupling theories
should in general be included in a consistent way,
the study of the U and A approximations in this
context is deferred. '

II. THEORY

The generic character of weak-coupling theory
for electron-atom scattering is discussed in many
places.""Perhaps the best development starts
with the weak-coupling limit of the appropriate
strong-coupling theory, such as that given in Ref.
1 or in Ref. 11 for one-electron targets. Ignoring
exchange effects and treating certain couplings
associated with reorientation of the target as a
perturbation, the continuum electron orbital must
satisfy an equation having the form

, +p(r) F„(r)=0,

where

p(r) = k'y (2V, /k')[(Ze'/r) —V(r; v, v)] —I(l+ 1)r '

(2)
and

lim F»(r) —O(r "~), (3)

lim F»(r) - k ' ~' sin[kr+ c( ln(2kr) —(-,
' I v) + o,], (4)

T~ 00

o, =argl'(1+1-io. )+6 o. =qe'/av.

Heie, Ze is the nuclear charge of the target, v

is the center-of-mass collision velocity, l is the
angular momentum of the scattering electron and
5'k'/2p = E, where E is the center, of mass colli-
sion energy and p, is the reduced mass of the pro-
jectile plus target. The usual radial variable is x
and 5, is the residual phase shift. The abbreviation
v has been used for the target quantum numbers
and q is defined below.

In general, V(r; v, v) of Eq. (2) will depend on
the total 'angular momentum of target plus scatter-
ing electron, but it is often replaced by its spheri-
cal average in weak- coupling calculations.
The coupling to form the total angular momentum
can be ignored as a consequence of this approxi-
mation and the potential becomes

((rr, , r, r)—:(SLe() 'Y f f See(r„, ))re (r )( dr dr
(

(eSLMeSM) e(e )Ir; „„)
N I 1 =1

—= (SLe () ' PP f de, de„(Se(LMeSM'e)l''(e'&re ).
kfl s=l

(6)

q=Z —N, (8)

defines the net charge of the target nucleus plus
bound electrons.

An element of the 8 matrix in the weak-coupling
limit is defined'

S(kfv, O'I'v') = (4ip/k )

&& dr F~,(r)V(r; v, v')F, , (r), vw v'.
0

(9)

Here 4 describes an N-electron target with angular
momentum quantum numbers LM~ and SM~ for the
space and spin degrees of freedom. The abbrevia-
tion v represents LM~SM~ for this choice of target
description. The element of solid angle for the
unit vector r is dA(r) and Y, is a spherical har-
monic. The ith electron's volume element for all
degrees of freedom, including spin, is dw, The
distance between the scattering electron and the
ith target electron is r, „„=~r,. „„,~ and r, &

is the
greater of ~,. and xN„. Obviously,

lim V(r; v, v) -Ne'/r

results from Eq. (6). The quantity q,

The primed and unprimed quantum numbers define
the quantum numbers before and after the inelastic
collision, respectively. The transition potential
for the inelastic event is

V(r„„;v, v') = g dA(r„„)Y, (r~„)Y, (r„„)

x dT . dT&k+ p

x (e'/r, N„)4(v'. ), vs v',

where, as in Eq. (6) and for reasons discussed
below, the coupling to form the total angular mo-
mentum of target plus scattering electrons has
been omitted.

The use of the uncoupled representation, Eq.
(6), for the potential appearing in Eq. (2) obviously
produces a E„ independent of the total angular
momentum for the scattering system. " Conse-
quently, the total cross section for the uncoupled
theory, when appropriately summed and averaged

. over space and spin degeneracies, is equal to that
found by recoupling Eq. (10) to form the total an-
gular momentum. This circumstance can be seen
in the CB formulas given, for example, in Ref. 6
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and noting that the total angular momentum sum in
the total cross section can be done analytically.
Equation (6) is an approximation only in the con-
text of DW theory and one that should be carefully
checked for transitions dominated by a few partial '

waves, such as spin-forbidden processes.
To finish the definition of the cross section, 4

is taken to be a single determinant of one-electron
orbitals having the form

R„,(r) Y, (r)6(m
~

0'),

where R„, is an appropriately normalized radial
function and the Kronecker delta function 5 de-

scribes the electron spin. Both 4'(v) and +(v') are
constructed from different subsets of the same
list of orthonormal orbitals having this form. This
form for 0 will not in general be an eigenfunction
with the eigenparameters implied by l, v', but one
can always be constructed from linear combina-
tions of such determinants. This approach is ap-
plicable either to the usual Hartree-Pock method
or to configuration interaction approximations to

The appropriate changes in the following equa-
tions can be constructed on'ce the linear combina-
tion is defined. Designating the orbital excited
during the collision event by a, Eq. (10) becomes

'l g+ l'g

V(x; v, v') = dQ(r"')dQ(x) Y*,„(r)Y*, „(r')P~(cos8) Y, (r) Y, (r')
g-l '

/

d~'Rn l & & ~n l' ~
&

l'+~
0

(12)

Here 8 is the angle between z and r' and the &, &

subscripts indicate the lesser or greater of
~

r
~

and

~

r'
~, respectively. A few manipulations of the

standard cross section formulas, gives in Ref. 6
for example, show that the desired inelastic total
cross section is

o(LS, L'S')=(2L'+1} ' p o(v, v')

= mk' (2L'+ 1) '(2S'+ 1) 'n(n, l„n,'l,'),

where

(14)

0,, (n,l„n,'l,') = [16e'p'(2L'+ 1)(2S'+ 1)5 4]

x P (2l+ l)(2K+ 1) ' C(lkl', 00)C(l,kl,', 00) drdr' F»(y)R„, (x')(r&/r&")Fz;(x)R„. ;(r') ',
l, X 0 0

(15)

F»(r) = Wir[dy(x)/Ch] ~ A—i[ g(r)], —

where

(16)

and C is a Clebsch-Gordan coefficient. " Equa-
tions (14}and (15) define the dimensionless colli-
sion strength with the normalization used in Ref.
11.

The substitution of Eq. (6) for V(r; v, v) of Eq.
(2) defines our DW theory The use. of Eq. (7} to
define V(r; v, v) for all r produces the CB cross
section, and the neglect of V(x; v, v) plus taking
Z=O in Eq. (2) defines the B cross section.

The uniform approrimation4 consists of replacing
the solutions of Eq. (1)-(5) with

and it is assumed that p(x), see Eq. (2), has a
simple and unique zero at x=xp. The regular Airy
function is Ai(x). Also, l(l+1) appearing in Eq.
(2) is replac'ed by (l+ —,')'. This is required hy Eq.
(3). Equation (3) is a somewhat stronger require-
ment than is strictly necessary but it is a desir-
able quality and it has the added feature of produc-
ing the usual %'KB phase-shift approximation to
6, of Eq. (5). The use of Eq. (16) in the evaluation
of Eq. (15) will result in cross sections desigriated
by DWU, CBU, or BU, depending on the choice of
V(r; v, v) discussed in the preceding paragraph.

Riley's average approximation and several simi-
lar approximations have been developed in the
study of heavy-particle scattering. Reference 5
cites a rather complete list of this literature.
Some aspects of the heavy-particle scattering
problem seem quite different. from those en-
countered in electron scattering. However, the
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evaluation of integrals of the type defined by Eq.
(9) is common to the two problems and the error
analysis provided in Ref. 5 leads one to exp|.ct
reasonable accuracy in the electron scattering
problem once- the initial scattering energy E' be-
comes sufficiently large. Such an approximation
is studied here as an alternative to developing
special integration techniques for cases in which
the integrand of Eqs. (9) or (15) becomes highly
oscillatory.

The average approximation developed by Riley
is presented in See. III of Ref. 5. These procedures
must be followed to produce the average approxi-
mation appropriate to the present problem. The
differences are mainly ones of redefinition after
recognizing that the derivation in Ref. 5 implicitly
assumes l=l'. The result, in the notation of this
section, is

S(kl v, 0'l' v')

puter.
Study of Eqs. (17) and (18) shows that this approx-

imatidn is easily evaluated if one is careful of the
integrable singularities and, in fact, becomes
easier as E' increases. Hence, if sufficient ac-
curacy for this approximation can be established, .

the problems encountered in evaluating Eq. (9}for
large E' can be avoided by use of Eq. (17).

III. NUMERICAL RESULTS

Since the object is to test the uniform approxi-
mation, Eq. (16), and the average approximation,
Eq. (17), when evaluating the cross section, Eqs.
(13)—(15), simple targets will be used. This will
avoid any questions concerning the target orbitals
used to evaluate Eqs. (6) and (12). Also most of
these tests will be made using the Coulomb-Born
approximation since this provides the exact solu-
tions to Eq. (1}in the well-studied form of Coulomb
functions. The inference that similar results ap-
ply to the distorted-wave case seems natural.

The first test results are shown in Figs. 1 and
2. They show the ratio

R(CBU) = 0 „(n,l„n', l',)/0 (n,l„n,'l,'), (19)

P(r) =-,' [p(r)+ p'(r)],
r

(t)(r) = —,
' dx[p'(x) —p(x)]P(x) '~',

and the assumed'existence of a simple and unique
zero of P(r) defines r, Here, .p(r) is defined by
Eq. (2) and the usual substitution of (l+-,')' for
l(l+ 1) has been made. Remember that the primed
and unprimed quantities indicate use of the initial and
final parameters for the scattering electron. In the
CB case )l)(r) is easily shown to be

(l)(r) = i(,aEh '(a '[X(r)]' ' —(0.5ba ' ')

x in((2[aX(r)]' '+ 2ar+ b}d)}

[(l'+ 0.5)' (l+ 0.5)']( 4c) '~'

&& l—,
' ))+ sin '[d(br+ 2c)r ']}, (18)

and the obvious analog A(CBA) for the reaction,

e + T"(ls)-e + T"(2s). (20)

1.04

l. 03

1, 02

By T"(nl) we mean a one-electron target with a
nuclear charge Z=q+ l„see Eq. (8), in the indi-
cated quantum state. A percentage error is de-
fined by 100 [fl(CBU) —1]. The variable

x= Z'/~Z

is chosen to represent the collision energy be-
cause of Born scaling 1'aws. [The plot of B(B)

X(r) = ar '+ br+ c, X(r,) = 0,
a= VV'(E+ E'), b = 2Vqe'h ',
c = —0.5[(l'+ 0.5)'+ (l+ 0.5)'],
d=(b~ 4ac) &~2

1, 01

1.00

0. 99

x =1.8
x =10

The excitation energy is symbolized by 4E. The
quantities r„P(r), and )t)(r) are not simple alge-
braic expressions in the distorted-wave case but
the tabular manipulations required for a given
numerical U(r; v, v) and U(r; v', v') a,re relatively
easy and efficient to program for a digital com-

x =1

0. 98

FIG. 1. R(CBU) shown as a function of x and q for the
reaction defined by Eq. (20). The vertical mark indi-
cates the precision to which these values of R are
known.
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versus x is independent of q. ] Since data were
generated only for integer q, some artistic license
was exercised in the 0 & q & 1.range where R is
rapidly varying in some cases. These plots of R
versus q for a few chosen values of x should give
a reasonable picture of the error of the U and A

approximations as K function of these parameters.
The evaluation of the U and A cross sections

was carried out with an overall precision of +1 in
10' while Qc ~ was evaluated with a greater pre-
cision. This precision limit is reflected in, Figs.
1 and 2 by the vertical marks.

From Fig. 1, it can be seen that R(CBU), for
q &0, is negative for x=1 and positive for x= 1.8.
These x values roughly represent the maximum
deviations found for each q studied. Hence it is
safe to infer that ~R —1~ essentially is a mono-
tonically decreasing function for increasing
x(&1.8) in this range of q. The behavior of R(CBU)
for q=0 and x=1 is indeterminate and was not
calculated by limiting procedures. Consequently,
the x= 1 curve is not well known for q & 1.

Figure 2 shows similar data for R(CBA). The
x, q surface appears more complicated for x&2
and q & 8 but otherwise differing from the R(CBU)
surface only by exhibiting slightly larger errors.
The character of R(CBA) for x=1 was' not esta-
blished but, as pointed out in Sec. III, this ap-
proximation is not intended for use. in the thres-
hold region.

The decrease of ~R —1~ as q increases shown in
Figs. 1 and 2 is especially significant since the
treatment of highly charged ions is one of the mo-
tivations for this w'ork. This cross section for
fixed x decreases roughly as Z ' as q increases.
Hence, the interplay of the various factors asso-
ciated with the use of Eqs. (16) and (17) results in

1.105
i. o4 1

an error decreasing with increasing q even though
the cross section, i.e. , range of V(r; v, v'), is
rapidly decreasing.

The study of a 1s-2s transition was chosen be-
cause it represents a "worst case" situation. The
large-r behavior of V(r; v, v'}, Eq. (12), is an ex-
ponentially decreasing function of r for this case.
Hence the value of S(klv, k'l'v') will depend strongly
on the behavior of the solutions to Eq. (1) for x r, -
and the small l' terms in Eq. (14}will tend to dom-
inate the total collision strength. U-approximation
errors' in the transition region, x- x„' and for
small /' are therefore emphasized. Also, this
should be a relatively severe test of the A approxi-
mation because of its approximate treatment of the
classically forbidden regions of motion. '

Obviously, one could find a V(r; v, v') that would

produce errors larger than shown in Figs. 1 and 2.
The lack of a general error analysis must be re-
placed by examples, such as those given here,
and intuition. An example of intuition would be
to suspect larger errors for extremely small
cross sections for cases with oscillatory V(r; &, &')

because of the implied cancellations in the evalua-
tion of Eq. (9).

To substantiate the implication that Eq. (20} does
not represent the most favorable case for the U and
A approximations, data for

e +C"(1s)-e +C"(2p) (21)

are presented in Fig. 3. The parameter X in Eqs.
(12) and (15) is restricted to unity for this dipole-
allowed case and the longest possible interaction
range is found; V(r; v, v') = 0(r ') for ~ large. For
example, it can be seen from Figs. 1, 2, and 3
that ~A —1

~

for x= 10 is decreased by a. factor of
about 3 for the U theory and between 2 to 3 for the
A theory. The situation is quite similar for the
neutral analog to Eq. (21), To summarize the
neutral ease which is not shown, R(BU) shows an
error of about 0.5% near the cross section maxi-

l. 08
1, 02

1.02

C3

1.01

x=1.8

x=10
1, 01

BA)

l. 00

R(CBU)

0.99-
1, 00

1

FIG. 2. R(CBA) shown as a function of x and q for the
reaction defined by Eq. (20). The vertical mark indi-
cates the precision to which these values of R are
known.

FIG. 3. R(CBU) and R(CBA) shown as a function of x
for the reaction defined by Eq. (21). The vertical mark
indicates the precision to which these values of R are
known.
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TABLE I. Values of R computed for the indicated reactions, see.Eq. (19), are shown for
the partial collision strengths, Eqs. (14) and (15). The column labeled "exp" gives the order
of magnitude of the individual partial-collision strengths.

Eq. (20) for q=5 and x=1.835
R (CBU) exp R (CBA)

Eq. (21) for x=1.835
R (CBU) exp R (CBA)

0
1
2

3
4
5
6
7
8
9

10
11
12
13
14
15

Total

0.9802
1.0132
1.0138
1.0116
1.0100
1.0085
1.0134
1.0304
1.0132
0.8697

1.0051

-3

-8

0.8745
1.0092
1.1421
1.1596
1.1105
1.0298
0.9384
0.8518
0.7875
0.7260

1.0077

1.0465
0.9447
0.9990
1.0054
1.0055
1.0047
1.0039
1.0033
1.0027
1.0024
1.0022
1.0017
1.0012
1.0011
0.9997
1.0017

1.0025

-5
-6

0.7053
1.6643
0,.9514
0.9559
0.9924
1.0281
1.0637
1.1013
1.1418
1.1851
1.2309
1.2794
1.3291
1.3811
1.4354
1.4919

1.0056

~These are the R values for the total collision strengths, Eq. (15).

mum, x —=2, with the error increasing as x de-
creases, and with an error decreasing to near the
values shown in Fig. 5 as x becomes large. The
B(BA) error is less than -3% for x=2, changes
sign at x= 5.5, and never exceeds 0.3% for x&5.5.

Insight into the origin of the U and A errors is
provided by Table I where the partial collision
strength, Eqs. (14) and (15), is shown for two
cases from the above study. In general, the trends
with changing l remain the same as x changes,
with the errors increasing (decreasing) as x de-
creases (increases). The error for the total colli-
sion strength is less than that observed for a typi-
cal partial contribution in both the dipole-allowed
and dipole-forbidden cases. This observation may
not prove to be a rule but the general tendency for
errors to cancel in tPe l' sum is observed here as
it has been in the heavy-particle scattering stud-
ies. ' (The lengthy sums over l' encountered in di-
pole-allowed cases for large x and q are avoided
by the use of well-known sum rules. ""Thi@ is
also a useful option for D% theory if one suitably
restricts the range of l' for which it is used. )

The collision strengths for the reaction

e +Ne"[2s'S]- e +Ne"[2p'Pj

are shown in Fig. 4 to provide an application of
these techniques. The NeVIII orbitals required for
Eq. (11) and n.E= 0.5943 hartrees were taken from
a Hartree-plus- statistical- exchange calculation. "
These wave functions result in, from Eq. (12),

lim V(r; P, 2S) - de2r = (-0.6232)e2a r, (22)

where d is the dipole-length matrix element. The
data shown in Fig. 4 do not contain exchange con-
tributions. These effects must ordinarily be in-
cluded. However, they are unusually small for
this case, ' less than 6%, and, since the treatment
of exchange in the U apd A approximations is de-
ferred to a later study, the exchange collision
strengths are not presented.

8, 4-

7. 6

6. 8

6.0

5. 2

4, 4

3. 6

2, 8
1

I

100

FIG. 4. Collision strength in the indicated approxima-
tions shown for Ne vries as a function of x. The Y indicate
CBI data taken from Ref. 12.
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The CB and CBU collision strengths could not
be distinguished if both were shown in Fig. 4. This
is consistent with the implications of the results of the
preceding examples. A similar relationship should
exist for the DW and DWU collision strengths.

The A approximation is somewhat less accurate
for this case than it was for the dipole-forbidden
case presented above, having an error of -3.5/o

for x= 1.8 and which remains negative while de-
creasing in magnitude as x increases. The rea-
son for the differences between the two dipole-
allowed examples presented here is not known.
Although these errors are not great, the need for
some care in extrapolating the A results presented
here for the one-electron targets to other cases is
indicated.

Comments on the physics contained in Fig. 4
seem appropriate. Reference 17 data, which are
therein labeled CBI, shown in Fig. 4 should be
directly comparable to the CB data from this study.
The agreement is not quantitative but certainly
within the usual expectations for such compari-
sons. The use of different target wave functions
is always a source of difficulty in these compari-
sons although in this case it is a relatively insen-
sitive point.

An important and practical test based on the
high-energy behavior of the cross section can be
made for the case of dipole-allowed transitions.
For large k', it is well known that

lim k"a(LS, f. 'S')/m- ', a, '~d~'l—nx
g-+ Oo

(23)

can be established, "where d is defined in Eq. (22).
Equation (23) determines the slope for large x that
should be exhibited in curves like that shown in
Fig. 4. Since d depends only on the target wave
functions and is an often-studied quantity, Eq. (23)
will provide at least qualitative insight into the
differences between various theoretical studies.
Unfortunately, Ref. 17 does not provide a value
for ~d ~' but, since crude orbitals with Slater's
scaling parameters give

~

d
~

= 0.5938a, to be com-
pared with that given in Eq. (22), the suspicion
that the wave functions are not crucialis supported.

Equation (23) leads to another observatio'n. The
large x asymptotic slope from Fig. 4 should predict
ao'

~

d ~' = 0.3884 while BA, C BU, and DWU(A) curves
give 0.386, 0.427, and 0.420, for 100 ~ x ~ 200.
The BA prediction does not change while the others
give every indication of going to the correct limit-'
ing value for x increasing beyond 400. The strong
Coulomb effects contained in the CB and D% ap-
proximations, for this example, . depress the cross
section value compared to the B prediction. This
ordering of approach to the behavior demanded by
Eq. (23) is in general expected although these dif-

ferences are unexpectedly large. Note that the B
theory is often assumed to be quite accurate for
x —=100. Since the difficult problem of extracting
this slope from experimental data often leads to
some discussion, "this Coulomb effect for posi-
tive-ion targets should not be ignored.

The differences betweeri the slope, predicted by
Eqs. (22) and (23) and that found from differentiat-
ing the numerical cross section data found for this
and numerous other examples' are typically less
than 1% for sufficiently large x. This is taken as
a confirmation of our numerical techniques and the
precision claimed in the preceding discussion.

The only experimental test available for these
data is concerned with rate coefficients. - The theo-
retical prediction based on any of the data pre-
sented in Fig. 4, excluding the BA curve, will lie
within the experim'ental error bars of +35%.20 Ra-
ther complete theoretical studies of an isoelec-
tronic collision event in Np a,re ava, ilable. ' The
expected scaling with isoelectronic sequences
leads to the following conclusions. The effects of
exchange should indeed be small. Results from
CB, D%, and close-coupling methods should differ
only to the order of 10-20%.

The data in Fig. 4 present a reasonably accurate
and complete prediction. Equation (23) provides
a means to extrapolate these data up to the region
of relativistic collision energy.

IV. CONCLUSIONS

The preceding material defines the uniform and
average approximations as applied to weak-coupling
theory for electron-atom (ion) scattering. The dif-
ferent examples used for ez ror analysis are typical
of results to be expected. The nature of the appli-
cation will determine mhether or not these approxi-
mations are considered useful. In the context of
usual scattering theory, a precision of several
percent is often adequate for a total cross section.
The U approximation seems to meet this require-
ment for all x while the A approximation is not
recommended for x&2. A number of other sys-
tems have been treated' which verify these state-
ments. All results indicate that the relative error
decreases for increasing q in the range 0 & q + 7.
The cautions expressed in Sec. DI should be noted
if one wishes to predict differential cross sections-
or any quantity heavily dependent on 1.arge-angle
scattering.

It is difficult to give a quantitative estimate of the
savings of computer time associated with these
approximations because of the large number of
parameters, integration ranges, different re-
sults for different transitions, , etc. , that must be
defined. Based on the experiences of this work, we
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conclude that CB and CBU use comparable times
although the CBU offers small savings in time and
it makes the transition into asymptotic regions a
little more easily. The DW and DWU times were
not tested, but the DWU approach should offer a
reasonable improvement in time as well as a sav-
ings in storage and programming requirements.
The CBA and DWA approximations are 6-10 times
quicker than the corresponding U approximation
in the case of a dipole-allowed transition for in-

termediate x. The savings increase dramatically
for increasing x. These savings are reduced for
the dipole-forbidden case studied in Sec. III.
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