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Behavior of partial cross sections and branching ratios in the neighborhood of a resonances
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Starting from the treatment of Fano for the behavior of the total cross section in a photoionization (or
electron-ion scattering) experiment in the vicinity of a resonance, we present a theoretical formula for the
behavior of an individual final-state channel in the neighborhood of a resonance. This result. is then used to
derive another theoretical formula for the behavior of the ratio of two partial cross sections (i.e., the
branching ratio) in the vicinity of a resonance. This branching-ratio formula depends on the profile
parameters q, I, and p' for the resonance, on the branching ratio outside the resonance, and on two new

parameters which are explicitly related to scattering-matrix elements arid phase shifts.

I. INTRODUCTION

Whenan atom (or ion) is photoionized, the resi-
dual ion may be left possibly in any of a number
of term levels, each possibly having a number of
fine- structure levels. The relative intensities
(i.e. , the branching ratios) of the photoelectrons
corresponding to thyrse alternative ionic states
have been measured recently for the ra, re gases'
and for mercury. ' Corresponding measurements
have-been made for the case of photodissociation
of negative ions. '4 All of these experimental
studies have found nonstatistical branching ratios
for the alternative photoelectron groups and theo-
rists have only begun to explain these results in.

detail. ' "
In this paper we present theoretical expressions

for the behavior. of partial cross sections and
branching ratios within a resonance. These ex-
pressions are given in a form analogous to the
Fano formula for the profile of an autoionizing
resonance. Thus experimental data on branching
ratios or partial cross sections within a resonance
may be fit in terms of a few parameters using the
expressions in this paper. Alternatively, these
parameters may be calculated theoretically in
terms of electrostatic and spin-orbit interaction
matrix elements, as indicated in this paper, and
then used to predict the behavior o'f branching
ratios or partial cross sections within a reso-
nance.

A first application of the present theory has been
made to recent data of Kemeny et al." They used
synchrotron radiation to scan the Xe(5s5p'Gp "P,)
autoionizing resonance centered at 20.95 eV and
measured the 'P3&, . P, &, photoelectron intensity
ratio corresponding to the ionization process

Xe(5 p') + a+ -Xe'( 5 p."('P,(, „,)}+e

Whereas this ratio had been found previously' to
have the nonstatistica1. value of 1.55 away from

any resonances and to be remarkably constant
over a range of photon energies of = 30eV above

,
the first ionization threshold, Kemeny et al.
found" that iaithin the Xe(5s5 p'6p 'P, ) resonance
this ratio increases sharply from its off-reso-
nance value to values greater than. 3. I,ow signal-
to-noise ratios prevented an experimental deter-
mination of the maximum value of the branching
ratio, which occurs near the center of the window

, resonance. However, a theoretical fit" to their
data using the formulas in this paper indicates that
this branching ratio reaches a maximum value of
=8.8 within the resonance. This dramatic behavior
of the branching ratio is another indication of the
strong effects due to electron correlation and spin-
orbit interaction that can take place in narrow en-
ergy regions. Similar dramatic changes have been
found in the value of the photoelectron asymmetry
parameter within an autoionizing resonance. '""

In Sec. II we review the Fano treatment" of the
interaction between. an isolated resonance and two
or more continua. This results in a description of
the behavior of the total cross section in the neigh-
borhood of an isolated resonance. In Sec. III we
show how the Fano treatment may be modified to
obtain. the behavior of Partial cross sections in the
vicinity of an isolated resonance. In Sec. IV we
specialize to the case where the total cross sec-
tion consists of the sum of two partial cross sec-
tions and present a theoretical expression for the
branching ratio of the two partial cross sections
within a resonance. The procedure in Sec. IV
may be extended to three or more partial cross
sections, but we have in mind primarily the rare
gases and other closed-shell atoms where photo-
ionization of a P6, d'o, or f" subshell results in
two groups of photoelectrons corresponding tothe
two fine-structure levels of the resulting ion. (It
should be noted that although in this paper we have
in mind photoionization processes in atoms, the
theoretical formulas presented apply equally well
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to photoionization of ions or to inelastic electron
scattering from atoms or iona. ) Section IV also
indicates the relationship between certain param-
eters appearing in our expression for the branch-
ing ratio within a resonance and the Fano profile
parameters' '4 for the resonance. Section& sum
marizes the main results of this paper for con-
venient reference. Section VI provides illustra-
tions of the type of behavior one may expect for the
branching ratio within an autoionizing resonance,
and discusses extensions of the present work and
its relation to other work.

While the present theory has been reported
earlier, "publication of the details of the theory
was deferred until an explicit application could be
presented and compared to experiment. This goal
has now been achieved"" and the purpose of the pre-
sentpaper is to present the details'of the theory re-
ported earlier. "*""In the meanwhile, Kabachnik
and Sazhina' have developed a similar but some-
what less general theory for describing the be-
havior of the photoelectron angular distribution
and spin polarization within the neighborhood of
a resonance. The relation of the present theory to.
that of Kabachnik and Sazhina" is described in Sec.
IV.

II. REVIEW OF THE FANO TREATMENT FOR THE

INTERACTION BETWEEN A SINGLE DISCRETE STATE

AND TWO OR MORE CONTINUA

The Fano treatment" for the interaction between
a discrete state and N continuum channels consists
in transforming the N degenerate continuum states
at a given total energy to N new orthonormal states
having only a single member which interacts with
the discrete state. This single continuum state
belongs to a channel which then interacts with the
discrete state just as if the other N- 1 continuum
channels were not there. That is, the N —1 other
continuum channels merely form a background
that is unaffected by the discrete state. We re-
view the transformation to this new set of con-
tinuum channels as well as their interaction with
the discrete state in this section. While this new

set of continuum states is convenient for describ-
ing the effect of the discrete state on the total cross
section, it is not directly useful however for desc rib-
ing the effect of the discrete state onPartial cross
sections since the new continuum channels differ
from the experimentally observed channels. The
relation of the new continuum channels to the ex-
perimentally observed channels and the effect of
the discrete state on the observed channels is pre-
sented in Sec. III.

Following Fano" we start with a discrete state
( P& and a set of N prediagonalized continuum
states (ic&, where i specifies a set of channel quan-

turn numbers and e specifies the total energy of
the state. These states are defined to give the fol-
lowing matrix elements of the total Hamiltonian
H:

(la)

(lb)

(1c)

The so- called prediagonalized continuum states
(ic&, defined by Eq. (1a), get their name from the
two-step procedure used in Ref. 12 to diagonalize
the Hamiltonian: firstly, the submatrix of the
Hamiltonian defined by the (open) continuum chan-
nels is diagonalized to obtain the state (ie&; sec-
ondly, the interaction of the continuum states (ie&
with the resonance state (Q& is examined. Ref-
erence 12 and the present paper concentrate on the
second step of the calculation, the discrete-con-
tinuum interaction. Reference 12 assumes the first
step has already been carried out; below we in-
dicate the gist of the calculation. , since later we
shall need various matrices and phase shifts
arising from the calculation. However, we refer
the reader to Ref. 21 for complete details of the
first step of the calculation.

Briefly, then, one starts with a complete set of
one-electron orbitals computed from some model
Hamiltonian and forms Slater determinants to de-
scribe the ionic core and an excited, continuum
electron. One can then form linear combinations
of these Slater determinants, which diagonalize the
ionic core interactions that give rise to different
term levels and fine-structure levels. The re-
suiting states, which we shall denote by ( pe),
are identified by quantum numbers p, and total en-
ergy e, where p indicates the fine-structure levels
of the core, the orbital angular momentum of the
continuum electron, and the coupling of the core
and the continuum electron, and where e is the
sum of the core energy and the continuum-electron
energy. The states

(
p, e& thus correspond to the

asymptotically observable states of the ion-elec-
tron system, but they are not eigenstates of the
Hamiltonian, i.e. , in general, (p'e' (H ( pe& c 0.
If we diagonalize the submatrix of the Hamiltonian
defined by the states

( p, e) (i.e. , leaving out inter-
actions with the resonance states), then the stand-
ing-wave eigenstates (ie& of this submatrix —the
"prediagonalized" states —may be written as

&& T,.(&) coswq, ,
'

(1d)

where ( p, 'e' («e) ( pE & is the reaction matrix of
collision theory, P indicates that the Cauchy prin-
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cipal part is taken when integrating over the
singularity in t;he denominator, and the matrix
T„,(e) and the phase shifts q, are obtained by di-
agonalizing the on-the-energy-shell reaction ma-
trix according to the following equation:

g & p, e IK(c) I
p, 'e& T,„.(e) = -7) ' tanv g; T„((&).

(le)
The reaction matrix is obtained by the standard
methods of continuum perturbation theory. " Note
that the eigenstates Iia& do not refer to any par-

i

ticular core energy or photoelectron energy but
rather to a superposition of observable states as
indicated in Eq. (1d).

We now represent an exact standing-wave final-
state eigenfunction of the total Hamiltonian 8 as
the following superposition of the states

I Q& and
Iis&:

l))E)=s(ss)l()s g fssb(ss) lis), ,. (2)

(Sa)

a(xs)&je'I V
I y&+b„,(xz)~ =Eb„,(~E) . (31)

Equations (3a} and (Sb) describe the interaction of
&f&& with the N prediagonalized continuum states
ie&. For fixed total energy e the N states lie&

are degenerate, and hence we may make linear
combinations: of them to form any other complete
set of N continuum states. 'Ig. particular, we wish
to form linear combinations of the states lie& so
that only one of the new basis states intera, cts with

I
(t)& and the rest are orthogonal to it and hence

unperturbed.
Noticing that Eq. (Sa) involves the sum

N

s, (xE}-=g&y lvli~&b, ,(xE), (4)

The index X represents the set of quantum num-
bers necessary to specify the new channel, E is
the total energy of the state, and we use rounded
bras and kets to distinguish the eigenvectors of the
total Hamiltonian.

Taking matrix elements of H between'the ket

I
xE) ori the right and either & Q I

or & js'I on the
left, we obtain the following linear equ'atiops for
the coefficients a(XE) and b, , (XE):

In Eq. (51) we have introduced the linewidth, which
is defined as

(( )
-=s 2 I ( ~

I
)'

I s) I'. (5c)

—S(Z —s) ssss(s:))

r(s)
[2 r(E)]'i' ' (6a)

( ) (
. 2s )'i'siss(S, ')

(6b)

Equations (5a) and (51) describe the interaction of
the discrete state

I Q& with the linear combination
S,(XE) of the continuum states lie&. We have thus
rewritten Eq. (3a) as Eq. (5a) and taken a particular
linear combination of the N equations (i.e. ,
1~j ~N) represented by Eq. (Sb). To complete
our transformation of Eqs. (Sa) and (3b), we form
N- 1 other linear combinations of the N equations
represented by Eq. (31) and choose these N —1
other equations in such a way that there is no
coupling to the discrete state

I
(t)&. The kth mem-

ber of these N- 1 linear combinations is formed
by multiplying Eq. (Sb) for j=1 by &k&'I VI /) and
subtracting the result from the result of multi-
plying Eq. (31) for j=kby &Ie'I Vl Q&. One obtains
the N —1 equations (2 ~k ~N):

(E-')[b" (~)&I"
I
v le&- b.. (~)&k'I vie&]=0

(5d)

Rather than solving Eqs. (Sa) and (Sb) for the co-
efficients a(kE) and b„(XE), we will thus solve
Eqs. (5a), (51)', and (5d) for these coefficients.
As discussed, we are looking for two kinds of
eigenvectors IXE) in Eq. (2): one which has a
discrete component [i.e. , a(XE) eO for A. = 1) and
N —1 others which do not [i.e. , a(XE) = 0 for
2~X~N]. We consider each of these two eases
in turn.

If a(LE) WO, then Eqs. (5a) and (5b) are of the
same form as the equations. describing the inter-
action of a single discrete state with a single con-
tinuum channel; these equations thus have the so-
lutions"

N

S, (1E)= p &4 I Vlj~& „b( I)E

we rewrite Eq. (3a) in terms of S,(kE) and then
multiply Eq. (Sb) by &(t)

I
V

I
je'& and sum over j

to get the followin. g pair of equations:

a(AE)Eo+ de S,(XE) =Ea(XE),

a(kE) + e S, (LE) = ES, (kE) .r(e)

(5a)

(5b)

where

-2r(E)
E E, (J/2~) J r(e)d~/(E- e)'

(6c)
In Eq. (6) the symibol P indicates that the Cauchy
principal part is to be taken in any integration
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Note that Eq. (7) exhibits resonant behavior
through functions of the angle &(E), which is de-
fined in Eq. (6c).

The N —1 other solutions (2 ~ X ~N) are obtained
by setting a(XE) = 0 in Eqs. (5a) and (5b), which
implies that

s,(~) -=g &y
~
v~j~&b„(m) =0, (9)

J=l

and then requiring that the coefficients b&, (XE)
satisfy both Eq. (5d) and Eq. (9). If we require
each b&, (XE) to be proportional to 5(E —e), then
Eq. (5d) is satisfied and we are left with finding
the N 1 orthonormal solutions of Eq. (9). [Note
that Eq. (9) represents a homogeneous equation in
N unknowns having a coefficient matrix of rank 1;
therefore the solutions span a vector space of
N —1 dimensions. "] A set of N 11inearly inde--
pendent solutions of Eq. (9), all orthogonal to the
1=1 solution, may be found quite easily. For ex-
ample, one might define the Xth solution
(2 ~ X ~N) as follows:

b„(xz) = -6(E —&)&y
~
v

~
a&&,

b, (LE) = 6(E —E')g&
~
V~16&,

(10a)

(10b)

(10c)b,, (XE) =0 for jul and j WX.

The coefficients for these N- 1 solutions, when
substituted in Eq. (2), give N 1continuum —eigen-
vectors having no coupling to the discrete state
and, of course, no resonant behavior. They may
be made orthonormal to each other by the Gram-

over energy E and that X has been set equal to 1.
Comparing Eq. (6a) and Eq. (5d) and using the de-
finition in Eq. (5c), we see that the coefficients
b„(1E) are given by

b, ((Z) =, ( )
x —Il(z —c) cosa(z))P sin&(E)

E-e
(6d)

Substituting Eqs. (6b) and (6d) in Eq. (2) we obtain
for the X= 1 eigenvector the following:

i(E)=(,',")"'
x 4 — iE iE V '-cos~E

(7)
In Eq. (7) we have defined the "augmented discrete
state" 4 as"

I

l~~&&~~ I vl 4 &

i=1

N

g ~iz&U, ,(z)

has the following properties. Firstly, for
2 ~A. ~N it transforms the states ~iE& into eigen-
vectors ~XE) which have no interaction with the
discrete state. The specific form of U,~(E) for
2 ~X ~N depends on the number of channels N as
indicated in the discussion following Eq. (10).
Secondly, for A. =1 we have

~„(~)=-(,'; )"(~i~l(), (12)

as may be seen by comparison of Eq. (11a) with
Eq. (7). The extent of the mixing of the linear
combination

N

iE U]q E
i=1

with the augmented discrete state is determined
by the magnitude of the angle &(E), which is de-
fined in Eq. (6c).

The meaning of the angle &(E) may be found by
rewriting Eq. (lla) as follows. Factor out cosh, (E)
from Eq. (11a) and replace tan&(E) by

tan&(E) + Z Z, (P/2a) f r(~) d&/(E e)

(13)

which follows from Eqs. (5c) and (6c). Then, . using
Eq. (12), one obtains

i c»&y(vlz)= ~ + (iz&E —E~ —(P/2m) f r(e) de/(E —a)

x U,,(E) cos&(E) . (14)

Equation (14) shows that b(E) is the phase shift
in the eigenchannel 1=1 due to interaction of the
states ~iz& with the isolated resonance state
Equation (11b) correspondingly shows that there
is no such phase shift in the eigenchannels X& 1.

Schmidt orthogonalization procedure.
In summary, the eigenvectors in Eq. (2) may be

written for A. =1 and for 2 ~A. ~N, respectively, as
follows.

~lz)= ~e&
"

r(z)
N,

+ Q ~iz&U„(E) cos&(E), (lla)
i=1

xz) = g iiz&U, ,(z). (11b)
i=1

In Eq. (11) the unitary transformation matrix that
transforms the prediagonalized states ~iE& into the
new linear combinations
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III. BEHAVIOR OF PARTIAL CROSS SECTIONS IN THE
VICINITY OF AN ISOLATED RESONANCE

I
~E-&= g I~E)x'"' ', (15)

where the minus sign indicates that the coefficients
' are determined by applying the so-called

incoming-wave boundary condition for the channel
This boundary condition requires that asymp-

totically (i.e. , as r ~) the amplitudes for all out-
going spherical-waves in channels other than p,

In the previous section, following- Fano's treat-
ment, "we obtained standing-wave expressions in
Eqs. (11b) and (14) for the eigenfunctions of the
total Hamiltonian. Only one of these eigenfunctions,
denoted by X= 1, exhibits the characteristic reso-
nance behavior associated with an autoionizing
state. While this choice of eigenstates X simplifies
the description of the discrete-continuum interac-
tion, it does not permit a simple relation to exper-
imentally measured final states, which most often
are not eigenstates of the collision process, but
rather states having a well-defined energy for the
residual ion and a mell-defined kinetic energy for
the outgoing electron. In other words, the'eigen-
channels X do not satisfy the fina, l-state boundary
condition that there i.s an outgoing electron in a
particular observable channel p, , characterized by
the state of the ion and its coupling with the out-
going electron and by well-defined ionic and elec-
tronic energies.

We may obtain the desired final state ket of
total energy E as a linear combination of the stand-
ing-wave eigenfunctions

I xE),

vanish. Application of this boundary condition
gives

XA =exp(-i +A) PUA (E) exp(-i7i;)7$ (E),
i=1.

(16)

where the orthogonal matrix T„,(E), defined in
Eq. (le), transforms the experimentally observable
channels p, at energy E to the prediagonalized con-
tinuum channels i; the phase shift q;, also defined
in Eq. (le), is the eigenphase shift in the channel
i arising from the interaction between different
channels p; the matrix U,.~(E), defined in the pre-
vious section, transforms the prediagonalized
states i to the eigenstates X; and &~ = &5„ is the
eigenphase shift in the channel X arising from the
interaction of the channels i with the discrete re-
sonance state. Note that the states

I
pE &in Eq-.

(15) are the incoming-wave-normalized couriter
parts of the standing-wave-normalized states
I pE) in Eqs. (ld) and (le).

The experimentally observable final states
I pE

are thus completely defined by Eqs. (15), (11b),
(14), and (16). We consider now the matrix ele-
ment for an electric dipole transition to one of
these final states from an initial state indicated
by &g, l. We obtain a convenient form for this ma-
trix element by first substituting Eqs. (1lb), (14),
and (16) in Eq. (15) and defining the following ex-
pression for compactness:

N

Q~„(E)=—P Ui;(E) exp(—iq;)T;„(E) . (17)

In this way we find

&C. I- I~E-&=+g &C. I-
I

E& U;,(E)~,.(E)
X=2 i='1

&go I r I 4»& P I V I iE)
('/ )f ()„/( ).&&. I'IE& U'. (E)fl.-'""

I
I

Secondly we note that far from the resonance, or in the absence of the resonance, ~-0 and also

& iI. I r I e&& y I V I iE&

E —E~ (p/2v) f I'(e)-dz /(E —e)

Hence we may write the matrix element in the absence of the resonance as
N N

&eo lr li E-&0-=Z g &eo I. IiE& U,,(E)fl,„(E).
&=1 i=1

Substituting Eq. (20) in Eq. (18) we get

&g, ir I pE-& 1 &g, I r, l4) 2,. „&Q I V iiE&U„(E)&»(E)
&g, I r I pE-&, &P, I r I iJE &, E —E, —(P/-2v) f (~f)de/(8 e)

2;, & g, I r I iE) U„(E)Q, ~(E) exp(iA)

1

(18)

(19)

(20)

(21)



ANTHON Y F.. STARACK

Equation (21) may now be written in an especially simple form by (i) writing &g, I
r

I
4& in terms of the Fano

q parameter4

(22)

(ii) writing &(E) and the eriergy denominator in Eq. (21) in terms of the reduced energy variable e:"
E- E, —(P/2v) f r(~) d~/(E ~)

~a I (&)

(iii) introducing the new variable n(pE):

(23)

)
~, , &C, I-,

I E& ~,,(E)~l,„(E)
&P. Ir I VE-&.

2a' (Q, ,&Q, Ir liE&&iE IVI @&)[Z&,&$ I V ljE&exp( iq&)-T»(E)]
I'(e) &P. Ir luE-&.

and (iv) substituting Eqs. (5c), (12), (17), and (22)-(24) in Eq. (21) to obtain

& A. Ir I vE-& =
& 4, Ir I

uE &.[I-+ n(vE)(q+ i)/(~ - i)] .

(24)

(25)

Finally, noting from Eq. (24) that n(pE) is complex and thus writing n(pE) =Ren(pE)+ilmn(pE), we obtain
for the squared dipole-matrix element the following expression:

lit Irl E & I

l&p, lr I gE-&, l'
1+ E'

&& (e'+ 2c [qRen(~) —Imn(pE)]+ [1—2qlmn(pE)- 2Ren(pE)+ (q'+ 1)
I a(~) I']] .

(26)

Equations (25) and (26) thus give the dipole-matrix
element and its absolute square for transition to an
observable channel p, in the vicinity of an auto-
ionizing resonance in terms of the Fano q param-
eter and the real and imaginary parts of a new

parameter n(pE). The new parameter n(pE), de-
fined by Eq. (24), may be interpreted by comparing
Eqs. (20) and (24): It represents the fraction of the
dipole amplitude &P, I

r
I pE-&, that passes through

the eigenchannel A. = 1, the only eigenchannel which
interacts with the discrete state. In the l.imit of
a single channel the matrices in Eq. (24) collapse
to unity, as does n(pE), and hence Eq. (26) re-
duces to the Fano profile formula. ,

I«. Ir I~E-& I'= I«. Ir I~E-&.l' '1",,
Since n(pE), & ll, I

r
I
pE-&, and q contain no factors

having resonant behavior, that is, dependent on e,
we expect that in the narrow energy region of a
resonance these parameters will be nearly con-
stant [cf. Eqs. (20), (22), and (24)]. That is, the
entire energy depen. dence of the dipole-matrix
element and its square in Eqs. (25) and (26) comes
from the reduced energy variable E. Hence, given
the parameters n( pE) ~ & &0 I

r
I
pE &„and q, one

may determine the behavior of any kind of photo-
absorption process within. an autoionizing reso-
nance. In the following sections we apply Eq. (26)

to the determination of the behavior of photo-
electron branching ratios within a resonance.

IV. BEHAVIOR OF THE BRANCHING RATIO ACROSS AN

ISOLATED RESONANCE

In the last section we obtained the squa, red elec-
tric-dipole matrix element for transition from the
ground state to a particular experimentally ob-
servable final state. In many experiments, e.g. ,
photoelectron spectroscopy, what is measured is
the bra, nching ratio of different groups of photo-
electrons. Consider the case of photoionization of
an nP' or nd" subshell of a closed-shell atom or
ion. The residual atomic or ionic core after ioni-
zation wil. l have two fine-structure levels of dif-
ferent energy [i.e. , nP'('P, ~»&, ) or nd'('D, &»&,)].
For a fixed photon energy, photoelectron spectro-
scopy experiments thus measure two groups of
photoelectrons having different energies corres-
ponding to the two energies of the residual core.
The higher-energy group of photoelectrons (cor-
responding to the higher-multiplicity core state)
comprises three observable final-state channels,
while the lower-energy group of photoelectrons
(corresponding to the lower-multiplicity core
state) comprises two observable final-state chan-
nels. In this section we shall examine how the
ratio of these two photoelectron groups behaves
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in the vicinity of an isolated resonance. A first
application of the theory presented in this section
has been reported elsewhere. ""

%e con.sider then a group of N final-state chan-
nels of which a subset P all have one photoelectron
energy and a subset Q have another photoelectron
energy. The number of channels belonging to P
plus the number of channels belonging to Q equals
¹ The measured cross- section branch, ing ratio
wi11. thus be the ratio of the sum of the squared
dipole-matrix elements belonging to the individual
channels of subset P to the sum of the squared
dipole-matrix elements belonging to the individual

channels of subset Q. That is,

Zu~ I=&~a Ir I» &-(27)
Z. .—.l&&. l

I»-&I' '

where the individual squared dipole-matrix ele-
ments are given by Eq. (26). Note that the photo-
ionization cross section for each channel p, is
equal to the squared dipole-matrix -element times
a factor involving the photon energy and various
fundamental constants. " This factor cancels in
numerator and denominator when we take the ratio
of the partial cross sections a~ an. d 0@.

Substituting Eq. (26) into Eq. (27) we obtain

o~ o~ e'+2&(q Be&n&~- Im&n&~)+ [1-2q 1m(n&~ 2 Be&o&~+ (q'+ 1)& I n I'&~]
oo o@,c'+2e(q Be(o'&o —Im&o&)+ [1—2q Im&n& —2Be&o&o+ (q'+1)& I n I')o] (28)

where we have defined the branching ratio away
from the resonance as

o„Z, ~ l&g, ir I » ), I'—
oo o Z„-o l&g, lr I»—), I' (29)

and weighted averages of the o.'(») parameters
as

we obtain.

(32)

and

Z, „~o.(pE) l,&ii, ir I pE &, I'-
Z„- ~ I&&, Ir I»—&, I'

Z, ~ I ( Q, I r I »-&, I
'

(30) & I
~ I'&'= p'[1+ (o./o. )."]x (33)

In Eq. (33), p is another profile parameter, called
the correlation index, "having values p' ~1. The
branching ratio outside the resonance, (o'~/o')„ is
given by Eq. (29), and y is defined as

(31)

The parameters (n&o and ( I
o.'I') have sums over

p belonging to the set, Q but are otherwise identical
to the definitions in Eqs. (30) and (31).

Equation (28) thus gives the branching ratio in
the neighborhood of a resonance as the product of
the branching ratio outside the resonance and an
c-dependent factor consisting of the ratio of two
quadratic polynomials in E. The coefficients of
these polynomials depend on the following six new
parameters: & In I'&~, & ln I'&@, and the real and
imaginary parts of &o.& ~ and &n&. The remainder
of this section is devoted to an examination of the
properties of these six parameters. In particular,
we shall see that Eq. (28) involves only two in-
dependent parameters.

A. Relations between the n parameters

In-order to determine the properties of the
parameters, we must examine Eqs. (30) and (31) in
detail. Substituting Eq. (24) into Eq. (31) and mak-
ing use of the relation"

Z, ~ I Z;,&Q I V IjE&exp(-iq, .)T,.„(E) I'
Z~ l&elVljE&I2

(34)

Note that in Eq. (34), if the sum over p. were over
the full set of N channels, then y wouM become
equal to unity because T,(E) is a unitar. y matrix.
In general, then, 0~X ~1. Considerations similar
to those which led to Eq. (33) give the additional
result

& I
~ '&.= p'[I+ (o./o.).](l - x) (»)

Finally, multiplying Eq. (33) by (o'~/a'Jo and adding
the result to Eq. (35) gives a relationship between

(../. ,).&[ I &,.&I I &,=p[1.(../. ,).].
(36)

Turning now to &n&~, substitute Eq. (24) in Eq.
(30) and make use of Eq. (32) to obtain

(o'&p = p'[1+ (o~/oo), '] t,
where g is a complex coefficient defined by
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[+ &0 il ~i»exp(-fn)T. (E)]&uE-~r~V
Q;. ,&y ~ V i z»(zs ir Ig,&

(38)

[From Eqs. (17) and (20) and the properties of the
unitary matrices V;~(E) and T„;(E), we see that if
the sum over p in Eq. (38) extended over all N
channels then $ would become unity. ] A similar
calculation shows that

&o& q= p'[1+ (o~/oq). ](I—h). (39)

Furthermore, multiplying Eq. (37) by (o~/oq),
and adding the result to Eq. (39) gives the following

relationship:

(o,/oq&, &~&,+(~&q= p'[1+(o&/oq), ]. (40)

Taking the real and imaginary parts of Eq. (40) and
noting that the right-hand side is real gives the
folIowing two relations:

(o / oq), He& o& +He&a&q= p'[1+(o /o ),], (41}

( oJ/oq), 1m& o.& ~+ 1m(o.&q= 0. (42)

Equations (36), (41), and (42) thus give three
equations relating the six n parameters. Hence if
one knows from other experimental measurements
the profile parameters q, p', and I' for a reso-
nance, Rs well as the branching ratio outside the
resonance, (cr~/oq)„ then one may calculate the
branching ratio uithin the resonance by calculating
only the quantities ( I

o! I') ~, Re(o!&~, and Im
Unfortunately one cannot obtain these n parameters
by fitting Eq. (28) to experimental data since after
substituting for (Ia. I')q, He&n& q, and Im(o. &q from
Eqs. (36), (41), and (42) in Eq. (28), Eq. (28) has
the form I

0~ E '+ 2eC, + (I+ C,)
. o &'+ &2[ qp( +Ir) r, C, ]+ [1+ (q'- 1)p'(1+r)-rC, ]

(43a)

\

In Eq. (43a) we have defined

r =- (a~/aq), ,

C, =-q He&a. &~- Im& o.&~,

C., =-(q'+ 1)(
I
a. I')„-2qim(n&~- 2 Re(o&~.

(43b)

(43c)

Thus Eq. (43a) for the branching ratio within a
resonance depends on only two independent linear
combinations, C, and C„of the th~ee parameters
(Io.'I'&~, He&a.'&~, and Im&n& p. Given r, q, p' and
I", one may determine C, and C, by fitting Eq. (43a) to
experimental data on the branching ratio within a
resonance.

I

Schwartz inequality

(Io' I')p~ (Re&a'&J,)'+ Om&o'&~)'. (45)

The proof proceeds by subtracting the right-hand
side of Eq. (44) from both sides of Eq. (44), sub-
stituting the right-hand sitle of Eq. (45) for
( I

a I'&~, and rearranging terms to find

[q 1m(n&~+ (Re(n&~- I)]'~ 0, (46)

which is obviously true. - From the definitions in
Eqs. (30) and (31) it is clear that Eq. (45) is true.
In addition, Eq. (33) and the fact that y & 1' implies
that

B. Bounds on the parameters

Equations (28) and (43a) represent a ratio, of
cross sections. Hence they must always be non-
negative. Thus in,each case we must require the
roots of the quadratic polynomials in e, in both
numerator and denominator, to be imaginary. The
requirement that these roots be imaginary implies,
for the polynomial in the numerator in Eq. (28),
that

p(1+1/r&=&lnl &, .
These bounds, in Eqs. (45) and (47), must be

satisfied by the three independent parameters
( I

o' I'&~, Re(o.& „, and Im(n&~. Similar bounds
may be obtained on the parameters ( I

o. I') q,
Re&n&q, and Im(n&q, namely,

(.
I
n I')q ~ (Re(o&q)'+ (Im(n&q&',

p'(1+r) -
& l~ I'&. .

(47)

(48)

(49)

1 —2q Im&o&p —2 He(n&p+ (q'+1)(
I
o. I')„

—(q Re(o.)~ —Im(o.&~)', (44)

with a similar requirement for the polynomial in
the denominator. Equation (44) can be shown to
be satisfied provided the a parameters satisfy the

Applying the same restrictions on the roots of
the polynomials in Eq. (43a) gives two bounds on
the parameters C, and C, :

1+ C2~ C, (5o)

1+ (q' 1)p'(1+ r) rC, ~ [qp'(1+ r) —rC, ] '. (51)
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/

In fitting Eq. (43a) to experimental data, the in-
equalities in Eqs. (50) and (51) must be enforced
or spurious results will be obtained. The inequal-
ities may be satisfied automatically by changing
independent variables from C] and C2 to two
fictitious angles 8 and Q as following:

C, =- „,sin8sing+qp,1 g+r l/2

C, =—-1+R' sin'8 cos'p+ (C,)',
where for compactness we have defined

R' =—(1+1/r) [1+(q' —1)p' —q'p4] .

(5.2a)

(52b)

(52c)

Note that R'& 0 since p' &1.
An additional bound relating y. and $ may be ob-

tained by substituting Eqs. (33) and (37) into Eq.
(45) to get

x= p(1+1/.& I~ I'.
Similarly, substituting Eqs. (35) and (39). into Eq.
(48) gives

1 —y - p'(I+ r)
I

1 —( I'.

(53)

(54)

C. Maximum and minimum of the branching ratio

Equations (28) and (43a) may be written in the
f0rIQ

(55)

A.„=-2(q Re& n&~ Im& o.&p) —B-, ,

2qlm&n&~ 2Re&n) ~

«(q" 1)&l I'), -B..

(56c)

(56d)

The maximum and minimum values of the function

)
A, e +Ao

&'+B,& +B,
then occur at &, and &, respectively, where

E, = (1/A, )(-A, v [A2+A, (A,B —A,B,) ]'~ '],

(57)

and have the values

(58a)

+A'
2[A', +A, (A,BO —A,B,)]"' + (2AO- A~B~)

(58b)

where, for example, in the case of Eq. (28) the co-
efficients are given by

B,= 2(q Re(o.&o-—Im&e&o), (56a)

B, -=1 —2qlm&a&o-2Re(n&o+(q +1)&

(56b)

V. SUMMARY

In this paper we have determined, in Eqs. (25)
and (26), the behavior of an individual observable-
channel dipole-matrix element and its absolute
square in terms of anew complex parameter n(pE),
defined in Eq. (24), and the Fano profile param-
eters q and I . In Sec. IV this result is used to ob-
tain an expression for the photoelectron branching
ratio in the neighbo'rhood of a resonance. We have
in mind closed- shell atoms where photoionization
of an nP', nd", nf", etc. , subshell results in two
groups of photoelectrons, each having a different
energy corresponding to the two fine-structure
levels of the residual ion. These two groups of
photoelectrons, indicated by P and Q, have a
branching ratio across a resonance that is given
by Eq. (28) in terms of four. different averages
[cf. Eqs. (30) and (31)] of the n(pE) parameters:
&~&~ & l~ I'& ~ &~&o»« l~ I'&o where &~&

and & n&o are complex and thus have two compo-
nents.

Relations between & (n I'&~ and & I
n ('&o, and

between the real and imaginary parts of & o'&~ and
(o.&in Eqs. (36), (41), and (42), reduce the number of
new parameters needed to calculate the branching
ratio from six to three provided the profile parame-
ters q, I' and p' and the branching ratio outside the res-
onance, (o~/oz)0, are available from other experi-
ments. At pres'ent these three independent param-
eters must be calculated —they cannot be obtained
from any experimental data. Thus in order to
Predict branching ratios within a resonance, one
must calculate ( I

n I'&~ and the complex param-
eter & n&~. One needs also the profile parameters
q, p', and I" for the resonance, which may be
either obtained from experimental data on the
resonance profile or else calculated using Eqs.
(5c), (22), and (32). Lastly, one needs the branch-
ing ratio outside the resonance, which may be ob-
tained from experimental data on partial cross
sections or calculated using Eq. (29).

Alternatively, one may fit experimental data to
Eq. (43a), as was done in Ref. 15, to obtain the

.two parameters C, and C, defined in Eqs. (43c)
and (43d). These parameters are two independent
linear combinations of (I n I'&~, Re&n&~, and
Im&n&~. They must satisfy the inequalities in Eqs.
(50) and (51), which is easily done by changing
variables according to Eq. (52).

While Sec. IV,of this paper considers a particu-
lar kind of branch'ing ratio in the neighborhood of
a resonance (i.e. , one where N final-state channels
may be spl. it into only two groups corresponding to
two groups of ejected electrons), we note that other
kinds of branching ratios may be treated easily.
One starts from the general result in Eq. (26) for
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HG. l. Behavior of the branching ratio as a function
of the reduced energy & for three values of the param-
eter q. For all curves ~ =2.0, p =0.9, and 0 =Q =-~/4
[cf. Eqs. (43) and (52)]. The dotted curve indicates the
value of &, the branching ratio away from resonance. '

a channel cross section in the neighborhood of a
resonance. One then proceeds in a fashion analo-
gous to that in Sec. IV.

VI. DISCUSSrON

A. Iustrations of branching ratio behavior within resonances

Figures 1-3 show various plots of the branching-
ratio formula presented in Eq. (43a). Equation (52)
is used to represent C, and C, in terms of the fic-
titious angles 8 and Q so that the boundary condi-
tions on C, and C, are automatically satisfied.
Thus the figures show the branching ratio as a
function of E and of the parameters q, p', x
=—(o~/o@)„8, and P. The values of the parameters
were chosen to exhibit a variety of possible shapes
for the branching-ratio curve and to illustrate the
dependence of the branching ratio on those param-
eters which are characteristic of the resonance

(i.e. , q, p', 8, and Q). An additional shape for
the branching ratio, different from those shown in
Figs. 1-3, is given in Ref. 15 using parameter
values obtained for a particular resonance. In
general, of course, the branching ratio always-
has a single minimum and a single maximum in
the neighborhood of a resonance [cf. Eq. (58)].

In Fig. 1 we have chosen r=2.0, p'=0. 9, and
8= P = —n/4, and illustrate how the branching ratio
changes as q assumes the three values 10.0, 1.0,
and 0.1. We see from the figure that the maxima
and minima seem to be independent of the value of
q. (For q = 10.0, the minimum occurs off the scale
of the figure. ) However, the energy range over
which the branching ratio oscillates (i.e. , the
"width" ) narrows as q decreases. Furthermore,
the position. s of the maximum and minimum ap-
proach a =0.0 as q decreases.

In Fig. 2 we have chosen. x=2.0, q=0. 1, and
8= Q = 0.0, and illustrate how the branching ratio
changes as p' assumes the three values 0.9, 0.5,
and 0.1. Note that for q= 0.1 the autoionization
profile is of the window type and fairly symmetric
with respect to 6= 0.0." This symmetry is mir-
rored in Fig. 2 by the branching ratio. More re-
markable is the fact that whereas the total photo-
ionization cross section goes to zero only for
p'= 1.0,"we find that for the parameters chosen
for Fig. 2 the branching ratio goes to zero for all
three va'lues of p', none of which are equal to 1.
This implies either that the partial cross section
in the numerator becomes very small or zero with-
in the resonance, or that the partial cross section
in the denominator becomes very large, or that
perhaps a combination of both effects occurs;

Finally, Fig. 3 shows the dependence of the
branching ratio on the parameters C, and C,
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FIG. 2. Behavior of the branching ratio as a function
of the reduced energy for three values of the param-
eter p2. For all curves, ~=2.0, q=0.i, and 0 =$=0.0
tcf. Eqs. (43) and (52)]. The dotted curve indicates the
value of &, the branching ratio away from resonance.
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FIG. 3. Behavior of the branching ratio as a function
of the reduced energy & for three values of the param-
eters 0=.$. For all curves, &=2.0, q=1.0, and p2=0.9
[cf. Eqs. (43) and (52)]. The dotted curve indicates the
value of &, the branching ratio away from the resonance.
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through their dependence on the fictitious angles
8 and !t!. We have chosen 8 =!t!, r = 2, p' = 0.9, and
q=1.0. We see that for 8= /=0 there is a fairly
symmetric branching ra, tio, but that for nonzero
values of these angles there is an asymmetri, c
branching ratio. In particular, notice that the
dashed curve, for which 8=!I!=v/2, has a minimum
of zero and a very large maximum. This indicates
either that one of the two partial cross sections
oscillates between zero and infinity within the res-
onance, or that each partial cross section goes to
zero at different energies within the resonance, or
even perhaps that each partial cross section goes
to infinity at different energies within the reso-
nance.

B. Variation of the branching ratio along a Rydberg series

If the discrete resonance state!t! is the nth mem-
ber P„of a Rydberg series, then we may ask how
the branching ratio varies from one' member of
the series to another, or equivalently, how the
parameters q, jP, I', and o.(pE) vary from one
member of a Rydberg series to another. Quan-
tum-defect theory provides an answer": The
wave function!I!„may be represented as Q„=N„P„
where N„ is an energy-dependent (i.e. , n-depen-
dent) normalization factor and!!f!„is the reduced
wave function, which is independent of energy for
small radii. Thus, provided the matrix elements
involving !t!„obtain their major contribution from
small radii, the energy dependence of these matrix
elements is given by N„. Using these arguments,
it can be shown that q and p' are the same for all
members of a Rydberg series and that 1 is propor-
tional to N'„,"which in turn is proportional to
(n*) ',"where n* is the effective quantum number.
In a similar way, examination of Eq. (24) shows
that the factor N'„arising from the matrix element
in the numerator is cancelled by the factor Ã'„
arising from I'(E) in the denominator. Hence
o!(pE) and its averages are the same for all mem-
bers of a Rydberg series. Furthermore, examina-
tion of Eqs. (43c) and (43d) shows that the param-
eters C, and C, are the same for aH members of a
Bydberg series. Thus the branching ratio is ex-
pected to have the same behavior for all members
of a Rydberg series, except for the narrowing due
to the decreasing linewidth I'.

!

C. Relation to other work

-Dill" has developed the theory for the variation
of the angular distribution asymmetry parameter
P within an autoionizing resonance using a very
general framework: the angular- momentum-
transfer expansion for P. The dipole-matrix ele-

(59)

Substituting Eq. (59) in Eq. (24) gives

~(~E)&O. IrI w- &.

N- g &'4lrl W&U. (z)U, „(E)exp(-f7', ). (60)
g=1

Comparison now of Eqs. (25) and (60) of this paper
with Eqs. (44) and (45) of Ref. 20 reveals that in
the limit that the states I!ue& and Iie& are identical
(i.e. , in the limit of no first-order interchannel
interactions), our parameters reduce to those of
Ref. 20 as follows:

~(pE)&q. Irl ~E-&.-R.*e~(-~5.) (6»)
&&, IrI pE-&, -(R*,+r*,) exp(-H„), (61b)

where R~, r„, and 6„are parameters defined in
Ref. 20.

D. Complete experimental determination
of.the interaction parameters

In the neighborhood of a particular resonance
having known yrofile parameters, the outcome of

ments and phase shifts needed to compute p are
obtained for a particular case by means of the
multichannel quantum-defect theory. In this the-
ory the autoionizing resonance is treated as a
member of a closed channel and not as an i.so1.ated
resonance as in this paper. To compensate for
this greater generality, however, a much larger
number of experimentaI data have to be analyzed
to obtain the quantum- defect- theory parameters
needed for the calculation. No explicit relation is
made to the profile parameters q, p', and 1 of
the resonance.

Kabachnik and Sazhina, '0 on the other hand,
develop the theory for the variation of P and of the
photoelectron spin polarization within a resonance
in a way that is very similar. to that used in this
paper. That is, they regard the resonance as
isolated and make use of the q parameter for the
resonance. However, they make the additional
assumption that the prediagonalized states Iie&
are identical to the asymptotically observable
states

I pe&, an approximation which is not a good
one for heavier atoms. However, this approxima-
tion does not affect the form of the dipole-matrix
elements within a. resonan. ce. In particular, our
expression for the dipole-matrix element, Eq.
(25), reduces to the complex conjugate of Eq. (45)
in Ref. 20 in the limit of no first-order interchan- .

nel interactions. This reduction. proceeds as fol-
lows: The limit of no first-order interchannel in-
teractions implies that the matrix T, (E) becomes
the unit matrix 6,„. Equation (17) then gives

0 „(E)- U (E) exp(-iq„) .
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a particular photoelectron measurement in the
neighborhood of the resonance is dependent on the
complex dipole-matrix elements in Eq. (25). Con-
versely, it may be possible to do a number of ex-
perimental measurements that would completely
determine the dipole-matrix elements in Eq (2. 5).
Such a complete set of measurements away from
the resonance would determine the dipole-matrix
elements (tt,

~
r~ itE —)„ the complete set of mea-

surements done within the resonance would then
determine the n(iJE) parameters.

As an example, consider the photoionization of
the outer p' subshell of the rare gases. There are
five continuum channels p,. Since o. (pE) is com-
plex, there are ten parameters to determine.
Equations (36), (41), and (42) give three relations
for these parameters in terms of the profile pa-
rameter p' and the 'P3g, . P~], photoelectron
branching ratio outside the resonance. Measure-

ment of the branching ratio within the resonance
determines C, and C„which give two more rela-
tions for the n(irE) parameters [cf. Eqs. (43c) and
(43d)]. Thus only five more relations are needed.
Kabachnik ahd Sazhina" show that the photoelec-
tron angular distribution is determined by three
parameters within a resonance and that the photo-
electron spin polarization is determined by a dif-
ferent set of three parameters within a resonance.
These parameters, which involve sums of pro-
ducts of dipole-matrix elements of the form of Eq.
(25), thus give additional relations for the param-
eters ct(iIE). In the rare-gas case considered
here, measurement of either the spin polarization.
or the angular distribution for each of the two en-
ergy groups of photoelectrons within the resonance
would thus determine six parameters, giving one
more relation than needed to completely determine
the n(ALE) parameters.
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