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We evaluate the contributions of double-scattering singularities to three-particle scattering rates. It is

shown that these contributions are finite and consistent with the physical interpretation of double-scattering

processes. The "double-scattering regions" of momentum space where these processes contribute are

calculated, and it is shown that in these regions the double-scattering contributions dominate and the regular

part of the T matrix can be neglected.

I. INTRODUCTION

This is the second of two papers about counting
rates in non relativistic three-particle collisions.
In the previous paper' we set up a quantum en-
semble to describe two beams of particles, called
o and P, incident on a third, heavy particle that is
fixed at the origin. We derived expressions for
various different counting densities. The two-
particle density n a(p, q) was defined as the density
for finding the particles o, and P scattered with
momenta in the neighborhoods of p and q. Pro-
vided the beams are switched on for a sufficiently
long time T, the density n„z(p, q) is proportional
to T (as one would expect) and it is natural to work
with the rate r„a(p, q) =n 8(p, q)/T. Theone particfe-
rate r„(p) for observing particle o with momentum
near p irrespective of the momentum of P is ob-
tained by integrating over all values of q,

r (p) = d'qr„, (p, q).

The main purpose of both of these papers is to
examine the behavior of the scattering rates in the
neighborhood of the well-known disconnected and
double-scattering singularities of the three-parti-
cle T matrix. In Ref. 1 we showed that if the ob-
served final momenta p and q are chosen to avoid
these singularities, then the rate r 8 is propor-
tional to the modulus squared of the T matrix and
ls

r-a(p q)=( &)'P.ps&(~„- &„,,)l(p, qlTlp. , q.) I',
(1.2)

where po and q, are the mean momenta of the two
incident wave packets.

If the observed final momenta include a dis-
connected or double-scattering singularity, then
the scattering rate cannot be given by (1.2) since
the latter becomes badly infinite. In Ref. 1 we

considered the case of the disconnected singulari-
ties, which contribute on certain "shells" in final
momentum space. ' We found that on these shells
the scattering count remains finite. Furthermore,
in the immediate neighborhood of the shells, the
count is completely dominated by the singular
terms and, all other terms can be neglected.

In the present paper we consider the case of the
double-'scattering singulariti'es. We show that,
for these too, the observed scattering count re-
mains perfectly finite and is entirely consistent
with the physical interpreta, tion of the double-scat-
tering process. When the final momenta lie in the
"double-scattering regions" where these processes
occur the scattering rate is proportional to the
macroscopic linear size of the incident beams.
This means that in the double-scattering regions,
the corresponding singularities dominate and all
other terms can be neglected.

In Sec. II we review briefly some of the notation
and results of Ref. 1. We also introduce the sim-
plifying assumption that the incident wave packets
are Gaussian. This assumption can be avoided
but lets us perform several integrals explicitly
and considerably simplifies our subsequent cal-
culations. In Sec. III we derive a general formula
for the contribution of any of the four' double-scat-
tering processes. In Sec. IV we use this formula
to analyze each of the double-scattering contribu-
tions in detail. Sec. V summarizes the main re-
sults of both Ref. 1 and the present paper.

II. PRELIMINARIES

The experiment we consider consists of two
beams, one of particles +, the other of particles
P, incident on a fixed heavy particle at the origin
0. The beams are cylindrical, with axes passing
through 0 and cross sectional areas 8 =gR' and
8 8

= nR'@. They are switched on at time t = 0 and
off again at t= T. The densities of particles in
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the beams we denote by p and p~.
A typical wave packet in the beam o is denoted

&(p) =exp(-fa p)P(p),

where g(p) is a wave function centered at po in mo-
mentum space and at the origin in coordinate
space. The vector a is the position of the packet
within the beam. The corresponding packet for

particles p is

Pg(q) = exp(-i b. q)(t)(q) .
Provided the duration T of the beams is long

enough, the counting density n„& is proportional to
T and we therefore work with the rate r„8 =n 8/T.
&n Ref. 1, Eq. (3.20), we showed that this rate is
given by the integra14

r„~(p, q) =2wp„p85(E, Ee„-} db d ' dq' pqTp'q -, p' bq'
8X co

(2.1)

(2.2)

and

Here the integrals over a and b run over infinite
cylinders of cross sections 8 and 88.

To simplify our calculations we now suppose
our wave functions Ic)(p) and Q(q) are both Gaus-
sians,

((p) = (vy')-' ' exp[- (p —p, )'/2y']

We can immediately exploit this factoring of the
Gaussian to simplify the integral (2.1}. We de-
compose the vectors a and p' as the sums of their
components, a~~+a~ and p ]]+p~ parallel and normal
to po, and then write

g-, (p') =exp(- fa()p(()P(i(pfi) exp( —&a~ p~)p~(p~) .
The integral over a in (2.1) can be rewritten as

y(q) = (ii'y') ' ' exp[ —(q —qo)'/2y']. (2.3)
d&tt d +j ~

We assume, as usual, that the width' y is much
smaller than p, and q„and that the spatial width
1/y is much smaller than the beam size, but much
larger than the interaction radius.

The advantage of the Gaussian form is that the
three-dimensional wave function can be factored
as the product of three one-dimensional functions
of any conveniently chosen orthogonal coordinates.

If we make corresponding decompositions of b,
q', and pb(q'), then the integrations over a(( and
5~~ can be performed in the familiar way. Taking
advantage of the well peaked nature of P(((p f() and
(t)(((q f() we obtain (dropping the primes from p,'
and q,')

I

r 8(p, q)=(2m) p p&5(E&, —8+, )5 d a Jf d b

3~ 8g
d P f d 0 (pQITPp +p j .+qJ

xexp[- i(a, p, +b, q~)]4(p, )4~(q, )

(2.4)

If p and q are chosen so as to avoid any singu-
larities of the T matrix, then (as discussed in
Ref. 1) it is easily seen that (2.4) reduces to the
familiar result (1.2). However, our main interest
is to see how (2.4) behaves when p and q are near
singularities. The case of the disconnected sin-
gularities was treated in Ref. 1; that of the double-
scattering singularities will be analyzed in what
follows. In Secs. III and IV we shallalways suppose
that p and q avoid the shells where the disconnected
processes contribute. In Sec. V we shall review
the results of both papers and discuss the con-
tributions of all processes for all values of the
final momenta.

III. GENERAL EXPRESSION FOR DOUBLE-SCATTERING
CONTRIBUTIONS

(p~ q IT& lpa~ qo) =
~ ~„.0 ~ (3.1)

A. Singularities

The double-scattering singularities that we wish
to discuss are conveniently represented, by dia-
grams as in Fig. 1. These four diagrams illus-
trate clearly the interpretation of the singularities.
For example, the singularity corresponding to
process I is the pole
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FIG. 1. The four double-scattering processes.

To evaluate the double-scattering contributions
to the counting rate we must substitute (3.2), with

p, and qp replaced by p, +p~ and qp+q~, into the
integral (2.4) for r„a .Because the wave functions
g~(p~) and p~(q~) are sharply localized around

p~ =q~ =0 we can remove the smooth numerator
T-, from the integrals-with p~ and q~ replaced by
zero. We cannot do the same with the denomi-
nator if p and q are anywhere near the points
where it can vanish. On the other hand we-can
make a Taylor expansion of E"as

where E" is the intermediate energy (which is
defined more precisely below) and t s and ts are
the two-particle T matrices for scattering of ~'s
off P's and P's off the fixed center. This pole
arises because particle P can scatter off the fixed
target, propagate freely, and then scatter off
particle z. This sequence of two separate binary
collisions is what the diagram illustrates. The
other three singularities have similar interpre-
tations.

It should be mentioned here that in the general
three-body problem there are two more double-
scattering processes, in which first ~ and then

P scatter independently off the third particle, and

vice versa. . In the special case (which we con-
sider) that the third particle is fixed, these two

poles cancel to give a single delta function, which
we have included in the "separate-scattering term"
treated in Ref. 1. Therefore we do not need to
consider these last two donable-scattering processes
here.

All four of the double-scattering poles that we
.discuss can be written in the general form

( IT I )
i'LP~ q~ Po~ qo)

@pap

(3.2)

q' =p+q —po ~

In all cases E" is a well-defined function of the
external momenta p, q, p„q,.

with i=I, II, III, IV. Here T™,is the product of
two two-particle T matrices and is a smooth func-
tion. of its arguments. The energy E"is the kinetic
energy of the two intermediate particles, the mo-
mentum of the particle that partakes in both col-
lisions being determined by conservation of mo-
mentum in the o, -P collision. For example, in
process I, E is

/12

Er. p

E(g 2 fPl 8

with q determined by conservation of momentum
as

E"(P, q, Po+P. , q. +q. ) =E"(P; q, Po, qo)

g g Il gQ tt
+ ~ pg + ~ qg

BPP 8qP

& p, ql&, Ipo+p. , qo+q. )

T«p, q, p. , q. ) (3 4)
6& —v~ p~ —u~ q~+l'0

'

Here we have introduced

a, =a, (p, q, p„q )

=E,„,-E"(p, q, p. , q.),
which measures the distance of the external mo-
menta from the pole. If 6, is large, we are ob-
serving far from the singularity, which is there-
fore harmless; if h, is small or zero, we are
close to the singularity. In writing (3.4) we have
also replaced v p~ and u q~ in (3.3) by v~ p~ and

u~ q as is obviously legitimate.

(3.6)

B. Contribution to the scattering rate

We are now ready to start calculating the con-
tribution of any one of the double-scattering poles
to the observed counting rate. Substituting (3.4)
into (2.4) we find for the ith double-scattering
contribution,

r «~& (pq) (,2n)='p p,6(„E„-E~, }

where

x IT, (P, q, P, qo) I'g(Z, ), (3.6)

7

~E '(p, q, p„qo) + v p, + u q,
(3.3)

where the velocities v and u are just the derivatives
of E" with respect to po and q (and depend on which
of the four double-scattering processes is being
considered).

If we substitute (3.3) into the pole (3.2) we obtain
(for small p~ and q, )
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((6)= J d a f d b 'f: d), &: exp[-)(p K +j '5 )]&4(p )y (t) )
s~ g6

' vg p~ +up'q~ —Q —j0 (3.7)

In (3.6) the factors multiplying g(L} are all ex-
pected and we11 behaved. All of .the interesting
effects are contained in the function g(h), which
we must now evaluate. In particular, we. want to
know how t'(A) behaves as b, approaches 0.

To evaluate the integrais in (3.7) it is convenient
to abbreviate our notation and introduce three
four-dimensional vectors defined as the pairs

A=(a, b ), P=(p, q ), V=(v, u, ). (3.8}

We define a scalar product for these four-dimen. -
sional vectors in the natural way, such that

A A' = a~- a~ +b~ b~ .
The product wave function in (3.7) can be written

A =A)i+A~, P =P ~)+P, .

With this notation, V P = VI'
~~, where V denotes

the magnitude of the four-vector V,

V (v 2 + u 2 )1 /2

The wave function 0 (P) can be factored as
4'[[(P())4 (P ) and the integral (3.10) can be
broken down as

To isolate the effects of the denominator in
(3.10) it is clearly convenient to decompose our
four-vectorsA and P into their components par-
allel and normal to V,

@(P)= 4(pi) 4i(qi),

(3.9)

The whole integral (3.7) now takes the form

exp(- iA Pg'(P)
0' 0-a —i0

(3.10)

and is just a Gaussian in the four-dimensional
variable P,

@(P)=(r'v) 'exp(- P'/2r')

d'P~ exp(- iA~ P~)4'~(P~)

~

~

2exp(- iA[)P)[Q [[(P[['}X
't/P

()
—4 —gp

(3.11)

Here the three-dimensional integral over P~ is
just the Fourier transform 4~ of 4~. All effects
of the dangerous denominator are contained in
the one-dimensional integral over P ~~, which we
can rewrite as

" ~ (P ) = dp ~ " f[e (P )-~ (~/V)]+~ {~/V))yI „-~ —ip „'y~ ))
—~- ~p

exp(- gA [[P )[)
dp [[ exp( iA lip ll)g (P II) ++

II (™/V) dp I Vp ~ i0«c)o }I

(3.12)

Z(P „)= [e„(P„)-e „(~/V))/(VP „-~) (3.13)

In (3.12) the first term is the Fourier transfor~
g of the function

which is continuous at P([ = A/V. The singularity
is contained in the second term, which can be
evaluated explicitly and is proportional to the step
function e(-A()). Inserting these into (3.11)we obtain

2e

$(b) =(2m)~ d~A)4' (A )P (2v) g (All)+
' e(-A[[)@[)(b/V)exp(-'iA[[6/V)

saxss V
(3.14)
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where g, denotes the term involving Ig(2, $, is
that involving IC () I', and 4 is the cross term in-
volving g ~+

I( ~

h, (&) =(2v, )'/&' (4» Vy). (3.16)

Thus, when 4 is large and we are far away from
the pole, $,(a) shows precisely the expected con-
tribution from the "tail" of the pole of the T ma-
trix. On the other hand, when b, is small $, (b, )
does not have any singularity. In fact $, (0) is
easily evaluated explicitly, and one finds that as
g-0

$ (&)-2(~ —I)(»)'/V'y' (3.17)

We shall see directly that when ~ is small the
second term g, is much larger than (,. Thus we
can combine (3.16) and (3.17) and write

C. Evaluation of f&, P2, $3

The first term in (3.14) is

((~),=(») f 'd'A I~, ()(,) I'Ii(&))) I':
xS

~

The important point is that g(P(() is free of sin-
gularities and so that this integral is unchanged if
w'e extend the region of integration to include all
A. When we do this, the integration over A~ dis-
appears as a normalization integral and, using
the Parseval identity, we find

(,(&)=(»)' f ~) I(,'(&))) I'.

The function g(P„) is given by (3.13). If we recall
that 4 „(P(() is well peaked about P, (

=0 with width

y, we see immediately that when 6 is large,

0

dA (( d'Ai I+i(Ai) I', (3 21)
o(~ (()

where Q(A(, ) is the region of integration in A~ for .

fixed A. ((.
Because our spatial wave packets are localized

at A~ =0 and are much smaller than the beam, the
integration over A~ is just

d'AJ IC (A~)I =1 if A =0~A(A)()
A(A ((jI

=0 otherwise. '

Now, if A~ is zero, it is easily seen that the con-
dition (3.20) is'

IA ((vi/VI (R„and IA ((u~/V I
(R ~ . (3.22)

Thus the integrarid in (3.21) is 1 when both of these
conditions are satisfied and zero otherwise. That
is, the integral (3.21) is given by V times minlR /
v~, RB/u~). Substitution in (3.19) gives

~, (~) =(2v)'Ie (~/V) I'V-'min(R„/v„R, /u, ).
(3.23)

As a function of 6, g, (h) behaves quite differently
from g, (A). The wave function 4„ in (3.23) is
sharply peaked around 0 with width y. Thus for
t), » Vy, $2(h) is exponentially small and negligible
compared to $, (h). On the other hand, in the
immediate neighborhood of 6 =0, the term $,(h)
is much larger than g, (4). Specifically,

4 (0) = (2v)5 I% (((o) I' V ' min{R„/v~, R 8/u~)
$,(&) = (»)'/(&'+ V'y ') ~ (3.16)

-R„,./V'y

x le, (A, ) I'. (3.19)

This integral grows linearly with the beam radius
and can certainly not be extended to infinity. We
must examine carefully the region of integration,
which is defined by the conditions

a~ «R and Q~ «Ra, (3.20)

where R„and RB are the radii of the two beams.
Our first step is to rewrite the integral in (3.19)
as

For large 6 (6» Vy) this is an excellent approxi-
mation; for small 6 (where we are going to see
that $, is unimportant anyway), it gives the correct
order of magnitude.

The second term in (3.14) is

( (~) (2,), I ))( I )I* f )('a))(-x„),:
V 8 XSB

g, (a) = (2v)'5(z) min/R /v~, R 8/u } . (3.24)

where Rb, is a typical beam radius (R„or R t)).
On the other hand, from (3.17),

~, (0) =1/V'y' =R„,/V'y

where R„,=1/y denotes the spatial size of the
incident wave packets. Thus $, (0)/$, (0) is of the
order of R„„ /R„„which we have assumed all
along is a very large number. The behavior of
$, (b,) and $,(a) is therefore as shown schematically
in Fig. 2, with g, (a) much narrower and taller
than $,(a). In fact, we have taken for granted all
along that the incident packets are very narrow
compared to the experimental resolution of energy;
since &, (b, ) is proportional to I0 (((b/V) I', this
means we can now replace IC (((h/V) I' in (3.23)
by the delta function 6(a/V) and we obtain as our
final expression for g, (a),
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(2m)4
() (6, ) ~ »(p(5)

Q 2

2Vy

FIG. 2. For & small, the term $2(4) dominates; for
6» Vv, the term (,(6) dominates.

Finally, the cross term $g(b, ) must be discussed.
Since it is proportional to 4 g(b/V) it is certainly
negligible compared to g, (b, ) for large values of A.
For small a, it can be estimated as being of order
1/V'y' and is therefore much less than $, . There-
fore the cross term $, (b, ) can be neglected for all
values of A.

D. Scattering rates

We can now return to (3.6) for the contribution
of the ith double-scattering process (g =I, II, III, IV)
and substitute the results (3.18) and (3.24) in

$ = g, + $, . This gives

~ "8' (p, q) = (»)'p p g &(Ep, —E „}[ T, (p, q, po, qo) ~'

+ Treg (p& q, pop qa), (3.26)

where the remainder T„,, (p, q, po, qo) is regular at
all four double-scattering poles. ' With this no-
tation it is easily seen that the complete scattering
rate is (omitting most arguments)

~ 8(p, q) = (2m)'p~ p g 5 (E~, —E~, )

Tx .' + T„~, +cV,y

+2~+ 6(s, ) min R~ RB
4 +l, ]

(3.27)
If we choose to observe final momenta such that

none of the four energy denominators ~, is zero
(more precisely a, » V,y, for all g}, then the four
delta functions in (3.27) are zero; furthermore

» + 2m 5(a, ) ming2 + +2+2 V~] Qg]

(3.25)

This is just the contribution of the jth double-scat-
tering pole. To write down the complete scattering
rate we write the three-particle T matrix as

&V

T, (p, q, p(), &4)

the quantity that appears in the modulus signs is
just the complete T matrix; therefore, in this
ease (3.27) reduces to the familiar answer (1.2).
In particular, for observations where the 6, do
not vanish we need to know the full three-particle
T matrix before we can calculate the rate (3.27).
On the other hand, if our region of observation is
such that any of the denominators ~, vanishes,
then one or more of the delta function terms in
(3.27) contribute. Further, since the delta func-
tions are multiplied by the macroscopic beam
radius, these contributions always dominate. Thus
for any observations where one or more of the
denominators h, vanish, we can entirely neglect
the three-particle 7 matrix and the counting rate
is given by the relevant product, or products,
T, of two-particle T matrices. ,

In Sec. IV we shall discuss in detail the con-
tributions of the four different double-scattering
singularities. Before we do so we should perhaps
remind the reader that we are, at the moment,
taking for granted that the momenta p, q for which
we monitor are chosen to avoid the shells on which
the more severe disconnected singularities occur.
In Sec. V we shall remove this restriction and
discuss all of the singularities and their relative
importance.

IV. CONTRIBUTIONS OF THE FOUR DOUBLE-SCATTERING
PROCESSES

In this section we discuss in detail the contribu-
tion (3.25) for each of the four double-scattering
processes in turn and discuss the regions of mo-
mentum space where the processes can occur. It
should, perhaps, be emphasized that the double-
scattering poles contribute to the scattering rate
for all momenta. If none of the denominators ~,
vanish, then the poles contribute through their
"tails, " which must be added to the regular part
of T as in (3.27); if one or more of the denomina-
tors ~, vanish, then the poles contribute through
the delta functions in (3.27). The difference be-
tween these cases is that when 6, vanishes the
corresponding double- scattering process can
actually occur as a physical process with the ap-
propriate conservation of energy and momentum
in each of the separate collisions; and when this
happens the pole term dominates and the regular
parts of the T matrix can be neglected. It is this
case, where the b, , vanish and the corresponding
double-scattering processes can actually occur,
that we shall be interested in here.

A. Process I

We begin by discussing the process I of Fig. 1,
which we show in more detail in Fig. 3. For this
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tp q'™&+ q Po

FIG. 3. Double-scattering process I.

process the intermediate energy is
E"=P '/2m„+ q" '/2m, ,

with

q =p+ q —po' ~

Thus the two derivatives of (3.3) are

v-=sE'%p, =p,/m„- q "/m 8

(4.1)

(4.2)

center to the intermediate momentum q" is

ro(q"-q )=(2~) p85(E, —E, )~to(q", q )('. (4.6)

Each intermediate particle P, with momentum q",
starts from the origin 0 and must pass through a
thickness A of the beam z, which has density p„
and momentum po. For each such intermediate
particle the probability of a collision producing
an + with momentum p is easily seen to be'

w„(p -p„q")= (2m)4p„(A, /v, )5(E'p, —F~,")
x ( t, (f, w") i', (4 7)

where n and g" are the relevant relative momenta.
The total rate at which particles e emerge with

momentum near p is obtained by integrating (over
all intermediate q "}the product of the rate (4.6)
and the probability (4.'1}:

and

u =sE /sqo=0. (4.3} r.'(p) = d'q "~ $-po, q"}ro(q-q.)

In particular the component of v normal to po is

v, =- (q"/m8), = —@~i .

Thus v~ 'is minus the component of the intermediate
velocity v" =q"/mo normal to the axis of the beam
n', while u~ is zero.

We can now substitute these velocities into the
expression (3.25) for the scattering contribution

r„'8$, q) =(2v)'p p 8(R„/v"~)

x 5(E„-E~„)5(&,) ~ t„,t, ~'. (4.4)

This is the contribution of the double-scattering
process I in any domain where it can actually
occur; that is, where the arguments of the two
6 functions can vanish.

From (4.4) we can evaluate the one-particle rate
r„'$) for counting particles a: irrespective of the
momenta of the particles P. (As argued. in Ref. 1,
this rate is likely to be the most interesting in
practice. ) This is

q=q +pa —p (4.9)

one can easily check that this is exactly the an-
swer (4.5).

By examining the two 5 functions in (4.8) we can
determine those momenta for which the double-
scattering process I can actually occur. The
second 5 function requires that the intermediate
momentum q" lie on the sphere q"=q, . The first
5 function requires that E~, =E+, , or, if we sub-
stitute (4.9) for q,

P ~ (q +po p} Po '
~ qo

m'8 Sl ot S1 8

Since q" =qo this simplifies to

2q" $-p.)=t (P'-Pl)+$-p. }'

(4.10)

d3@ /I

= (2m)'p„p BR„,5(E,—E, )

x 5(E,.—E„)I t.&tel' (4.8)

By making the change of variables from q" to

d3r „'(p) = (2v)'p patt„„5(E,—E. „)5(&()(t„at8(

(4.5)

for all p in the "double-scattering region" where
the arguments of the two delta functions can vanish
(for some q in the region of integration).

The important feature of the answer (4.5) is that
it is precisely the rate one would predict for par-
ticles n to emerge from two successive two-body
collisions as shown in Fig. 4. This rate is cal-
culated in two steps as follows: The rate at which
the incident particles P are scattered by the fixed

FIG 4. The two successive collisions corresponding to
the double-scattering process I of Fig. 3.
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&o

FIG. 5. The double-scattering process I can occur
only if the intermediate momentum q" lies .on the circle
C~ where the cone of angle 0" intersects the sphere:
q" =qo.

where we have introduced the mass ratio ms/m
= g. If we call 8' the angle betwee~ q" and (p
—po), this requires that

cos8"= ~ p ' "' (4 11)
2q. Ip-p. I

that is, q" must lie on a cone with axis (p —po) and
half angle 8" given by (4.11). Since q must also

'

lie on the sphere q" =q, we conclude that the double-
scattering process I can occur if and only if q'
lies on the circle C, in which this cone and sphere
intersect, as shown in Fig. 5.

If we measure the two-particle rate r„s(p, q) and
monitor- for a definite value of p then the double-
scattering process I will contribute only if q
(which equals q" +ps —p) lies on the circle obtained
from C, by rigid translation through po —p. Of
course the process can only occur if the angle 8"
which defines this circle is a real angle. That is,
lcos8" l. as given by (4.11) must be less than or
equal to 1. This obviously requires that

li (p'- po)+(p-po)'1~2qolp-pal. (41»
If p satisfies the condition (4.12), then the

double-scattering process I can lead to fin, al
states in which particle + has momentum p; if p
does not satisfy (4.12) then process I cannot pro-
duce particles n with momentum p. For this rea-
son we call the set of momenta p satisfying (4.12)
the double-scattering region I. The boundary. of
this region is a fourth-order surface whose pre-
cise shape depends on the values of the parameters
q, /p, and g =ms/m„. In all cases the region is
a solid of revolution obtained by rotation about p, .
If m s/m„&q, /p„ the solid has a hole in its in-
terior; if ms/m„~q, /po, it does not. In Fig. 6
we show the former possibility for the particular
choice of parameters ms/m„= 3.3 and qo/po = 1.25.

If p lies in the double-scattering region I, then
the contribution of process I to the one-particle
rate r„(p) is given by the integral (4.8), and the
contributions of the regular parts of the T matrix
can be neglected. We can now simplify this in-
tegral, taking advantage of the two delta functi. ons,
which fix the magnitude q'=go and the angle 9"be-

tween q" and p —po. Some simple algebra shows
that the three-dimensional integral (4.8) reduces
to a one-dimensional integral over the azimuth
cp" of q" (that is, around the circle C, of Fig. 5),

R "6 N.'$ =( 'p.psl- - . I as sl' (. )
p —po ( 0 vg

Clearly we cannot simplify this rate any further
without knowing the details of the interactions and
calculating t~e and t 8.

It is clear from (4.13) that the rate r '(p) has a
singularity if v~ =0. This is easily understood
with reference to Fig. 4. Since v~ is the com-
ponent of the intermediate velocity normal to the
beam z, it can only vanish if the intermediate
momentum q" points directly up or down the beam
o. When this happens the intermediate particle P
has an infinite time in which to interact with the
beam of particles o, and the rate r „'(p) naturally
becomes infinite. However, it is easily seen that
this singularity is logarithmic, hence integrable,
and therefore entirely harmless.

B. Process II

One can continue to analyze the remaining three
double-scattering processes in a similar way.
Obviously we need not spell out all of the details
here. In particular, the process II of Fig. 1 is
very similar to the process I just discussed (with
a corresponding interpretation), except that in
process II it is the particle z that participates
in both collisions. ,

One can evaluate the two derivatives v, and u,
and finds

v, =o and u, =-p"/m =-u,";
that is, u, is mirius the component of the velocity

BLE —SCATTERING
ION I

MAXIMUM P

FIG. 6. The space of the final momentum p showing
the sphere which defines the rgaximum possible p and
the double-scattering region I (shaded). Those p inside
this region are accessible via the double-scattering
process I. (Curves calculated for m~/m~ = 3.3 and

q, /p, = ~.25.i
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term in (3.25), and the contribution of all regular
parts of the T matrix can be neglected. The in-
tegral giving the contribution x"(p) can be sim-
plified and reduces to [cf.Eq. (4.13)]

2v d /lx"(p) = (2m)'p, p~
~ „~t ~t ~'. (4.16)G jS

(

~ ~
(

~If (xp cR

FIG. 7. The space of the final momentum p showing
the double-scattering region II (for the same initial
parameters as Fig. 6'.

u" of the intermediate n, normal to the axis of the
beam P. It is then a, simple matter to write down
expressions analogous to (4.4) and (4.8) for the
rates x"~(p, q) and r"(p). The two delta functions
which appear in these expressions let one deter-
mine the double-scattering region II which is ac-
cessible to process II. One of the 6 functions re-
quires that E~„=E~; that is, the intermediate mo-

Ppf

mentum p" must lie on the sphere p"=pp if process
II is to be possible. The other 5 function requires
that E,=E, ; if we substitute

PpqpP

q=p" +q, -p, (4.14)

this constraint is seen to determine the angle 6I"

between p" and the vector p —q, as

g
(9+ 1)P + (9 —1)Po —2p 'qo

(4 15)
2pp)p-q, l

'These two conditions mean that p" must lie on the
circle C„where the cone defined by (4.15) meets
the sphere p" =p, . It follows from (4.14) that, if
we measure the two-particle rate x 8(p, q) and mon-
itor for a definite value of p, then the double-scat-
tering process II will contribute only for those q

lying on the circle obtaine'd from C» by transla-
tion through q, —p.

The process II can actually occur only if the
angle defined by (4. 15) is real; that is ~coss"

~

—1. This condition defines the double-scattering
region II, comprising those p that are accessible
via process II. The region is a solid of revolution
with axis along qp Its precise shape depends on
the initial parameters, but it is qualitatively simi-
lar to the region I of Fig. 6.".In Fig. 7 we show
the region II for the same values of mz/m, and

q, /p, as shown in Fig. 6.
As long as p is chosen in region II the contribu-

tion of process EI is given by the delta function

This can be seen to be exactly the rate one would pre-
dict from the appropriate succession of two two-body
collisions. Finally we remark that the contribution
(4. 16) ha, s a weak (logarithmic) singularity when
the intermediate momentum p" can be parallel to
the axis of the beam p and u," can vanish.

C. Process III

(p + 1)p —ppo —qo+ (po+ qo)

2p Ip, +q, I

(4.17)

The double-scattering region III, consisting of
those p that are accessible via process III, is de-
termined by the requirement that ~cos&"

~

~1. It
will be seen that this condition involves the magni-
tude but not the direction of p. Thus the region III
is spherically symmetric and is in fact'the space
between two spheres as illustrated in Fig. 8 for
the same values of the parameters as used in
Figs. 6and7. [Since (4. 17) involves the magnitude
of p, +q, it depends on the angle between p, and

q, . Figure 8 shows region III for the case that
this angle is 60'. ]

Within the region III the dominant term in r'"(p)
can be written down and simplified as above to
give

The last two processes differ slightly from those
just considered, in that the collision with the fixed
target occurs last. As we shall see this changes
some of the constraints.

For process III of Fig. 1 the momentum of the
intermediate particle a is p = p, +q, —q and the
relevant derivatives of the intermediate energy are

v, =(BE"/ p, ),„=(p"/m, ), =-v,",
ui = (8+ /sqo)ig= (p /ma)ig=—vis ~

Here we have introduced subscripts &o. and J.p
to denote componerits normal to the axes of beams
o, and P, since the two derivatives turn out to be
the components v," and v~ of the same velocity,
namely the velocity v" =p"/m of the intermediate
particle n.

The two delta functions that appear in (3.25) de-
termine the momenta for which process III can
actually occur. It is easily seen that they- require
that the intermediate momentum p" lie on the
sphere p" =p and a cone with axis p, +q, and half
angle given by
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UBLE -SCATTERING
GION KCf

MAXIMUM P

FIG. 8. The space of the final momentum p showing
the double-scattering region III (for the case that ~ z/m~
= 3 3 Q 0/p 0=- 1 25 and the angle between po and qo is
60 ).

r'."(I)=(»)'P.Po ~-Ip, +q, l

(,. ..)
This can be shown to be the rate one would pre-
dict for production of particles a in two separate
collisions, the first between o. and P and the sec-
ond between n and the fixed target. It will be seen
that because the two components v," and e~ in
(4.18) cannot both vanish" this rate (unlike that for
processes I and II) has no singularities.

x dy" ~t t, ~'min — „ (4.18)

D. Process IV

The contribution r v(p) from process IV of Fig.
1 can be analyzed in a similar way. However, if
we choose to measure only the one;particle rate
r (p) no analysis is necessar'y. This is because
the double-scattering region IV where process IV
contributes coincides exactly with the "o.-P scatter-
ing shell" where the disconnected process of Ref.
1 contributes. Since the diseonneeted process
dominates all of the contributions discussed here
(including that of process 1V) there is no point in
evaluating r'v(p) at all.

To see that this is so we have only to examine
the two delta functions which determine when pro-
cess IV can occur. As usual, one of these fixes
the magnitude of the intermediate momentum q"
=q; the other requires that E~,,=E+, or (since
q =p. +qo-p)

(po+qo —p) Po qo+ +
m ms m m8

This condition is precisely the condition that de-
fines the o'.-P scattering shell of Ref. 1, Eq. (4.4)
and therefore requires that p lie on the same '

sphere with center at (po+q, )/(I + p) and passing
through the point p =p, .

We see that process IV contributes to r (p) only
on the n-P scattering shell. On this shell the con-
tribution of the disconnected process is proportion-
al to the macroscopic volume ~„8 of intersection
of the two beams (as we saw in Ref. 1), while that
of process IV is proportional only to the radius
(A or JI8) of the beams. It follows that the dis-
connected process always dominates the double-
scattering process IV wherever the latter can oc-
cur, and there is no point in calculating the contri-
bution r'v(p ).

Qf course, if we measure the correlated two-
particle rate r„a(p, q) we can distinguish the con-
tribution of process IV. For given p (on the ap-
propriate shell) the disconnected process contri-
butes for just one value of q, namely q =p, +q, -p;
on the other hand, process IV contributes for all
q with this magnitude (i.e., for all q on a certain
sphere). One can, of course, write down an ex-
pression analogous to (4.4) for the contribution
r'„8(p, q) to such a measurement.

V. CONCLUSION

We have seen in Ref. 1 and the present paper
that there are several processes that contribute to
the three-particle scattering rates. These various
processes contribute in markedly different subsets
of momentum space and with strikingly different
orders of magnitude. Loosely speaking, we have
found that the larger the region in which a process
contributes, the smaller the size of its contribu-
tion. This means that in the region where a given
process contributes we can neglect all processes
which contribute in a larger region.

In Ref. I we examined first what we called the
separate-scattering tegms, which arise because
particles n and I8 ean scatter independently off the
fixed target. Such processes contribute to the one-
particle rate r„(p) only on the "n-scattering shell",
the sphere defined by conservation of energy, E~
= E~, for particle n alone. On this shell their con-
tribution is proportional to the density p, as one
would expect, and dominates all real three-body
effects.

We next considered the disconnected process in
which particles n and P collide, but do not interact
with the target. This process contributes on the
"o.-P scattering shell", the sphere with center
(p, +qo)/(I + p) passing through po. On this shell
its contribution is proportional to p„p8V 8 (where
'U„8 is the macroscopic volume of intersection of
the two beams) and dominates all real three-body
effects.

It should be emphasized that the "separate-scat-
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FIG. 9. The space of the final momentum p showing
the regions in which different processes can contribute
(for the same external parameters as in Figs. 6-8). The
double-scattering region is the union of the three regions
of Figs. 6—, 8.

gether the "n scattering" and "e-P scattering"
shells as "disconnected shells".

In this paper we have discussed the double-scat-
. tering processes. We have seen that, as far as
the rate x (p) is concerned, there are just three
processes to consider, each of which occurs in its
own region (as shown in Figs. 6-8). The union
of these regions we call the double-scattering ~e-
gion Th.is region is shown (for the same choice of
parameters as in Figs. 6-8) shaded in Fig. 9. Any

p in this region is accessible by one or more dou-
ble-scattering processes; the contribution of these
processes is proportional to p„pBA, where A is
the macroscopic radius of one of the beams.
Therefore, for any p, in the double-scattering reg-
ion we can neglect the contribution of the regular
parts of the three-particle T matrix.

Finally, for any p that is not in the double-scat-
tering region, "the scattering is given by the fami-
liar formuIa

I

tering" processes are really just disconnected pro-
cesses in which particle n collides with the target
while P is undeflected, or vice versa. Our differ-
ent treatment of these disconnected processes re-
flects our unsymmetrical treatment of the three
particles themselves, w'ith one infinitely heavy. "
For the present discussion it is convenient to rec-
ognize that these processes are all basically simi-
lar. In Fig. 9, which shows the various different
regions in P space, we have therefore grouped to-

If we wish to predict the rate for p in this "true
three-body region" we must know the full three-
particle T matrix, (p, @TIp„j,). Conversely, if
we wish to measure the contribuion of the full
three-particle T matrix to the rate r„(p), then we
must make our measurements in this "true three-
body region. "

*Work supported in part by I.R,E A.
~V. S. Potapov and J. R. Taylor, preceding paper [Phys.

Rev. A 16, 2264 (1977).
2In the terminology of Bef. 1 there are the "separate-

scattering" processes (which contribute on the 'o.'—

scattering shell" and "P-scattering shell" ) and the dis-
connected process (which contributes on the "u-P
scattering shell" ). As we shall discuss in Sec. V these
are all really disconnected processes, and we shall
refer to the corresponding shells as disconnected shells
here.

3As we discuss below, there are actually six double-
' scattering processes, but two have already been treated
as part of the "separate-scattering" term in Bef. 1.

In Ref. 1 the T matrix in this equation was written as
T 3 to denote the three-particle T matrix minus its
"separate-scattering" part (i.e. , its value when V~&
=0). In the present paper we need not distinguish be-
tween T and T since we shall usually avoid the shell
where the separate-scattering part contribute .

~There is no loss of generality in our taking the widths
of g and Q to be the same, since these can always be
adjusted by an appropriate scale change.

With a Gaussian wave function the integral is not exactly

/

zero but is, rather, exponentially small.
If A~ =0 then A =A IIV/V =(AII/V)(v&, u~). But A
= (a~, bj ), so a ~ =A IIv ~/V and b ~ =A II u ~/V.

Strictly speaking T„~ as defined by {3.26) contains the
disconnected singularities. However, we are taking
for granted here that the observed momenta p, q are
chosen to avoid the shell on which these contribute.
Thus for our purposes T«~ is I- for all momenta of
interest.

9Notice that the factor R~/v~ is just the time spent by
the intermediate particle P in the beam G, .
The region II as defined by. (4.15) is not exactly the
same as region I except for the special case of equal

. masses, p =1. In particular region II has a hole in
it for all values of the external parameters m8/m~
and qo/po (except on a set of measure zero).
The components v~~ and v~8 can both vanish only if the
incident beams are parallel; but one would never do
experiments in this configuration since it would lead to
an overwhelming contribution from the disconnected
process discussed in Ref. 1. (See, in particular, foot-
note 19 of Ref. 1.)

~2We can improve the parallel. between the different
disconnected processes if we generalize our experi-
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ment to include several target particles. For example,
if we have N„, targets in a volume'U& (entirely inside
both beams) then the "n-scattering" contribution is
proportional to p~p, g,~, which clearly shows its
relation to the e-P contribution, which is proportional

~3Notice that the double-scattering region always includes
the two disconnected shells. Thus if p is not in the
former it is certainly not on the latter.


