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Continuum orbitals, complex scaling problem, and the extended virial theorem
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A complex scale transformation of the time-independent Schrodinger equation leads to a symmetric
eigenvalue problem containing both bound states and resonance (complex) eigenvalues as solutions. An
extended virial theorem is stated, and its necessary fulfiHment is pointed out. The latter, in conjunction with
a symmetric stationary principle, allows for determination of resonance (complex) eigenvalues by means of
elementary matrix manipulations. Application to the Stark effect in the hydrogen atom shows agreement
with previous calculations based on numerical integration. t

I. INTRODUCTION.

Continuum orbitals and wave functions are needed
in order to, describe and analyze radiationless pro-
cesses. The calculation of transition energies and
moments between discrete states are well-known
procedures, whether one uses a conventional wave-'

function picture or the recent powerful propagator
technique. ' When the continuum is involved, the
ubiquity of nonquantization leads to a situation of a
more difficult nature. It is our aim, however, to
show in this paper that a simpIe extension of known
stationary principles allows for a direct determin-
ation of resonance (complex) eigenvalues by means
of standard matrix manipulations.

Before proceeding, we quote some earlier re-
sults. The complex- scaling problem emanates
from the complex-coordinate method of Nuttall
and Cohen. ' The symmetric "Kohn type" variation
principle that we will obtain here was derived and
applied to a narrow-shape-resonance problem as
well as the lowest 'S resonance of H by Bain,
Bardsley, Junker, and Sukumar. ' In these and
other related studies by Doolen, ~ Hescigno and
Reinhardt, ' and Reinhardt it was found that reson-
ance trajectories (as a function of rotation angle)
"pause" near the true resonance. This observa-
tion, which also indicates stationarity in the total
variation of the complex scale factor, prompts the
formulation of a complex version of the virial
theorem. ' As we will see below, this condition
(necessary but not sufficient) leads to important
practical consequences. In all previously men-
tioned applications except Ref. 6, the considered
Hamiltonians belong to the dilation analytic class"
encompassing the theory of Aguilar, Balslev, and
Combes. ' The beauty of this idea is well de-
scribed by Simon. " Reference 6, which contains
a test of the complex-rotation method on the Stark
effect in the hydrogen atom, differs from Refs.
3-5 in that the Stark Hamiltonian is not dilation
analytic. The latter does, on the other hand, be-

long to Weyl's limit-point case, ".' ~ assuring the
existence of the concomitant spectral density from
which the resonance can be extracted by analytic
continuation. In the following, we will demonstrate
how one arrives at the symmetric eigenvalue prob-
lem and the extended virial theorem. We will also
devise a complex-scaling technique, in principle of
general applicability, which we test on the Stark
effect in the hydrogen atom.

II. AN EXTENDED VARIATIONAL PRINCIPLE

We start by writing down the time-in'dependent
Schrodinger equation for N(space-spin) degrees of
freedom,

a(x„.. .x„)y(x„.. . x„)= eg(x„. . . , x„), (1)
where 8 is the N-particle Hamiltonian (self-ad-
joint for real coordinates). We want to stress at
this point that (1) also contains complex resonance
solutions of the Gamow type provided appropriate
boundary conditions are accepted. These are to be
understood as formal solutions, to emphasize the
fact that they do not satisfy the conventional boun-
dary conditions, i.e, , they are not square inte-
grable.

By scaling each coordinate, i.e., letting x =gx;,
where q = ne', the equation (1) has not changed
except for the asymptotic behavior of the formal.
solutions just mentioned. In other words, the asy-
mptotic properties of the solutions of (1) may de-
pend dramatically on the phase of g. Our goal is
hence to demonstrate that diverging outgoing waves
may be treated on the same basis as ordinary
bound-state solutions by a scale transformation of
(1), applied in such a fashion that square integrab-
ility of the corresponding solution is assured. The
price we have to pay for this convenience consists
of the occurrence of a nonreal symmetric operator
II(q) As a conseque. nce we need to derive an ex-, .

tended variation principle. Although this was sug-
gested in Ref. 3, we will proceed here along differ-
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ent lines. We intxoduce the notation

4(q) q — 4(q&», q&~),

H(q) =H(qx„. . . , qx„),

e(q) = e,

(2)

(3)

(4)

where e(q), at least in some q domain, is indepen-
dent of q, keeping in mind, however, the relation-
ship between g and the boundary conditions as men-
tioned above. Reality of JJ for 8=0 leads to the
following analyticity conditions obtained from
Schwarz 'reflection principle:

4*(q) = 4(q*),

H+(q) = H(q+),

~*(q) = e(q*)

(5)

(8)

(7)

These rules require an extremum principle of the
symmetric type (P is a trial function):

& y(q*) IH(q) lg(q)&
&4(q*) I 0(q)&

(8)

[Note that the reality of approximate trial wave
functions of Eq. (1) has previously been derived
from the var iational theorem. "]

We emphasize that the existence of (8) depends
critically on the domain of g through the require-
ment of square integrability of g(q). It is also
possible to interpret (8) as a special case of a bi-
orthogonal construction for a non-self-adjoint
H(q) ~

It is obtained that e(q) is stationary for small
variations around g(q); i.e., writing T! (q) =!!(q)
+&!!(q), with &P(q*) (P(q)&=1, we get

~(q) ~(q) =«—4(q*) IH(q) —e(q) (~y(q)&. (9)

Belated variational principles have been derived in
Befs. 14 and 15. We may also interpret the analy-
sis in Bef. 16 by means of the present theory.

&!!(q*) I qr ~ V „;V(q) I!!(q)&, (.10)
S=g

III. THE EXTENDED VIRIAL THEOREM-

AND ITS NUMERICAL IMPLEMENTATION

In order fo find a practical way to obtain approxi-
mate resonance solutions from (8), we will make
use of the extended virial theorem (H= T+V),

2 &~ (q*) I nq) I ~(q»

transforrnations, satisfy (10) (provided appropriate
q domains are considered). Condition (10) is a
necessary but not a sufficient one, hence enforce-
ment of (10) for approximate treatments provide,
in addition to fulfillment of (8) and (9), also station-
arity with respect to analytic changes in g. A very
simple implementation of (8), (9), and (10) follows
from a direct generalization of the successive scal-
ing procedure of Nor dling and Faulkner. " We in-
dicate the procedure by the following scheme: (i)
Choose r, =1/q„construct H(q, ) according to (3),
and solve the symmetric eigenvalue equation as a
stapdard secular problem, wh'ere $„,(1) is expand-
ed in a given basis p„,(1)= ~h(I)& c(qo) =Q;I;(I)cq(q, ).
(ii) Evaluate e(q, q,), q, =1/r, as the "extended"
expectation value (8) of H(q, q, ) with respect to
P„(1).(iii) Determine q, by requiring &e(qoq, )/&q, = 0.
(iv) Replace r, by r,r„go back to (i), and proceed
to determine r, =1/q„etc. ; continue until r; =1/q;
~ 1.

We will briefly comment on the steps (i)-(iv). If
r, is real, step (i) results in a standard Hermitian
eigenvalue problem. If it is complex, we will deal
with a compl, ex symmetric secular equation. These
secular problems arise from a biorthogonal con-
struction, i.e., the bra (& ~) entry will contain
wave functions scaled with r,* and the ket (~ &) entry
the ones scaled with r, . Step (ii) will therefore
lead to a polynomial in y = @=' due to the simple
homogeneity of the operators involved. In this
case a particular scaling of the wave function is
transferred to an equivalent inverse scaling of the
operator, i.e. , with respect to step (ii) we write

&g(r,*r,*)IH(1) I g(r, r, )& =&0(ro) I H(q, ) I y(r, )& (11).
Step (iii) contains the determination of the approp-
riate root yy of the polynomial mentioned above,
and step (iv) replaces r, by r,r, going back to step
(i). It follows that convergence, i.e., r; and q; go
to unity, implies that the extended virial theorem
(10) is satisfied. To avoid misunderstandings in
the interpretation of this result, we find after the
iteration procedure has converged (but not soon-
er!), that for r,r, . . . r„=r=l/q,

&!!*„(r)IH(1) I &„(r)& &!!*.(I) IH(q) I 0,(I)&

&V*,(r) IC,(r) & &O*„(l) ly„(I)&

(12)

with g„(1), according to step (i), obtained from a
complex secular. equation based on H(q), i.e.,

where the kinetic part of the Hamiltonian is denoted
by T(qx». . . , qx„) = T(q). The proof is analogous to
the ordinary one. In the same vein, the connection
between the virial theorem and the variation prin-
ciple follows. " As pointed out in Bef. 18, the ex-
act solutions of (1), including concomitant scale

&h(l) IH(q) l&(I)&c(q) = e(q)c(q),

0„(I)=@(I)c(q).

The equation underlying equality (12) is

e(I) = &L(1) i@1)&= &4(r) I ~(r)& =@(r)

(13a)

(13b)
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TABLE I. Stark resonances obtained from the complex-scaling —extended-virial theorem
(algebraic method) as compared with those from Weyl's "complex-eigenvalue" theory (numer-
ical integration) for various field strengths.

Field
(a.u. )

Resonances (a.u.)
Complex scaling; this work Weyl's theory

0.04
0.10
0.25

—0.5037714 —i0.191x 10 5

—0.52742-i0.727 x 10
—0.58575 —i0.932 x 10

—0.5037715-i0.195x10 5

—0.52743 —i0.727 x 10
—0.58575 —i0.940 x 10 '

Since the converged result (12) by definition means
fulfillment of steps (i)-(iii), we also obtain de/dq
=0. It should be pointed out that for a complete
basis

~ @, (13b) will be identical to (2). It is also
important to note that our above described proce-
dure depends on the starting point qo insofar as it
has to be situated within the convergence radius of
the considered resonance, which itself is most
probably basis dependent. Regarding the question
of the convergence, our experience and others (for
the real case"~') shows that it is quite easily ob-
tained. If, however, the process is too slow and
consequently very expensive, for instance as a
consequence of the introduction of g-dependent
basis elements, one can always try to locate sta-
tionary points directly from the knowledge of de/
dq in analogy with the real case described in Ref.
18.

In the execution of steps (i)-(iv) we have the op-
tion to choose our basis dependent or independent
of q. In the latter case, no additional matrix ele-
ments need to be recalculated although the accuracy
of the former should be higher due to the extra
flexibility gained by the appropriate insertion of g
in each step. Although a proper basis should con-
tain "outgoing waves, "negligence in this depart-
ment was not of paramount importance in our test
on the "Stark eigenvalues. " The results of this
calculation using 15-36 basis functions as de-
scribed in Ref. 17 is displayed in Table I. Com-
parison is made with highly accurate Stark shifts
and lifetimes by means of Weyl's complex eigenval-
ue theory. Results of this study are also in per-
fect agreement with Refs. 6 and 23.

IV. CONCLUSIONS

We emphasize finally that g(q) analytically con-
tinued up to the real q axis may turn g into a di-
verging "Gamow type" wave. From this follows
that a resonance defined by analytic continuation
of the Weyl- Titchmarsh m function' is identical
with the present resonance associated with a sym-
metric "Hamiltonian, "where the artificial phase

difference between T and ~ via complex stretching
of all coordinates leads to square integrable solu-
tions. It is also interesting to note that the inde-
pendent particle model allows for individual scal-
ing of each separate coordinate.

In conclusion we stress the following points.
(a) With respect to the Stark effect in the hydro-

gen atom, we find that the extended virial theorem
allows us to directly determine complex eigenval-
ues of the operator, which falls outside the dilation
analytic class discussed by Aguilar, Balslev, and
Combes. ' '

(b) From the computational point of view the vir-
ial theorem offers an efficient procedure for deter-
mining the appropriate complex scaling parameter
g, such that stationarity in the symmetric "Kohn-
like" principle is satisfied with respect to both
linear and nonlinear variations. The simple ver-
sion presented here further allows to accomplish
nonlinear variations without recalculation of matrix
elements.

(c) The general notion of an extended virial theo-
rem also leads to important physical interpreta-
tions. Realizing that the analytic continuation of
the whole Schrodinger equation is connected with
the time-dependent problem via a Fourier-Laplace
transformation" puts our model directly into a
more general frame. A recent deperturbation mod-
el based on the Balslev-Combes dilation analytic
theory applied to the 'II near degeneracy in SiO
shows the importance of the virial theorem as an
interpretative tool for spectroscopic considerations
in connection with predissociation phenomena. "

Although our present computational effort is con-
fined to a one electron system perturbed by an
electric field, we believe that the present formula-
tion may be suitable also for resonances in larger
systems, thereby complementing existing trajec-
tory procedures. Works on these lines are in pro-
gress.
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