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Maxwell relaxation time for the transverse mode in simple liquidse

Ravinder Bansal
Ivan ¹ Stranski Institut fiir Physikalische und Theoretische Chemic, Technische Universitat Berlin,

Ernst-Reuter-Platz-7, 1000 Berlin-10, West Germany
and Institut fur Theoretische Physik, Freie Universitat Berlin, Arnimalle 3, 1000 Berlin-33, West Germany

(Received 23 February 1977)

A microscopic expression for the Maxwell relaxation time for the transverse mode in simple liquids has

been derived on the basis of the generalized Langevin equation developed by Mori. For this, it is assumed

that the correlation function of the second random force is a function of t '
~ The derived expression does not

involve any adjustable parameter and leads to a correct result for the shear-viscosity coefficient. Numerical

predictions for the relaxation time in liquid argon are compared with other existing estimates. It is found

that the present results are comparatively much better than some other existing estimates.

I. INTRODUCTION

In our recent papers, ' we have discussed the
longitudinal mode of the liquid and derived a mi-
croscopic expression for the Maxwell relaxation
time for the longitudinal mode r, (q). Numerical
predictions of our results for v, (q) in liquid argon
were compared with other existing estimates. ' '
Very good agreement with the experimental obser-
vations" was achieved, which indicated the im-
portance of higher moment relations involved in
the expression for T, (q)

This paper is devoted to the study of the trans-
verse mode which describes the shear motion.
Study of transverse mode is important because this
mode is the main feature which distinguishes the
dynamical behavior of the liquid from the solid.
Formation of these modes in simple liquids has
frequently been investigated in the last few
years."" Information about this mode can be
obtained only through light-scattering experiments
or through computer molecular-dynamics experi-
ments. Neutron-scattering experiments cannot
provide any information about the transverse mode
as neutrons can couple only to density fluctuations.
A molecular-dynamics study of transverse modes
in simple liquids, made by Hahman" and Levesque
&t al. ,

"greatly facilitates attempts at its theoreti-
cal under standing.

Some authors" '"*"did attempt to describe the
transverse correlations in simple liquids on the
basis of the generalized Langevin equation. But so
far no attempt has been made to calculate the re-
laxation time v, (q) from first principles. Ailawadi
et al. ' and Levesque ef al."determined 7,(q)
through a least-squares-fit method. Chung and Yip
(CY)' assumed a simple form for ~, (q) which re-
produced correctly the small and large q limits of
the transverse-current correlation function
C&(q, co). Akcasu and Daniels (AD)' proposed an
expression for 7, (q) by requiring r, (q) to yield

correct shear viscosity and also that as q-~, the
peak frequency (~,)„,.„, of C, (q, ~) should vanish
like the free-particle result. Moreover, their re-
sult involved an adjustable parameter. Further-
more, Murase" also claims to have derived an ex-
pression for ~, (q) and compares his results with
those of AD. As we discuss in the text, his for-
mulation is different from AD and ours. Apart
from this, his expression for 7', (q) involves the
fourth-moment relation of C, (q, ~) for which he
used an incomplete expression. All the discrepan-
cies and difficulties mentioned above are hopefully
surmounted in the present work.

Our formulation is exactly the same as that of
CY or AD, except that we do not assume any spe-=
cific form for r, ( )q, but rather determine it unde. ":

two assumptions. The first assumption is that the
correlation time of the first random force is large
compared to that of the second random force. The
second assumption is that the decay of the second
random force is governed by a function of t'. The
resultant expression for v, (q) involves the fre-
quency moments of C,(q, ~) up to the sixth, the
highest frequency moment hitherto obtained. " The
constant of proportionality appearing in the ex-
pression for 7, (q) is determined by requiring tha. I

v, (q) reduces to its long-wavelength limit; i.e. , i. i
gives the correct shear-viscosity coefficient.

To outline the paper, the theory and calculation
of r, (q) are described in Sec. II. Numerical esti-
mates, comparison with the results of other au-
thors, and discussion of results are presented in
Sec. III. A brief summary of the present work to-
gether with the achievements, limitations, and
possible improvements presented in Sec. IV, con-
cludes this paper.

II. FORMULATION

The transverse-current correlation function is
defined as
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where q is along the y axis. Let us introduce the
Laplace transform

Cg(q, P) = dt C, (q, t)e ", (2)

P being the Laplace variable. In Mori's'" memory-
function formalism, the time-correlation function
C, (q, t) satisfies an integro-differential equation of
the form

dC, (q, t)
dt

dt'M, (q, t —t')C, (q, t'),

~,g= (&g)~

5,((5„+~,() = (~(),
~ i~ I~2~~3~+ (5 i~+ ~2~)'1 = (~~)

(5)

where the nth frequency moment of C, (q, &u) is de-
fined by the relation

d)d &u"C, (q, co)/C, (q, t = 0) .

In an earlier paper, "we extended the calculation
of frequency-moment sum rules of C, (q, ~) up to
the sixth order. In another paper, ' we simplified
the expressions for these higher-order moment
sum rules by performing various angular integra-
tions involved in the two-body and three-body in-
tegrals which appear in these moment relations.

In order to determine C&(q, u), it is necessary
to truncate the hierarchy of Eqs. (4) at some suit-
able stage. We truncate it at the second stage by
assuming that M, (q, t) decays much faster than
M, (q, t) and obtain

C,(q, t =0)
C&(q, P) =,' ~ ( ), (7)

where C, (q, t = 0) = q'k~T/m. ks is the Boltzmann
constant and T is the absolute temperature. Prom

where the kernel M, (q, t) is the correlation func-
tion of first random forces and is known as the
memory function or damping function associated
with C, (q, t). M, (q, t) also satisfies an equation
akin to (3) with a "higher-order" memory function
M, (q, t) as the kernel and so on. In terms of
Laplace transforms, this chain of equations can be
written

Ct (q 0)
M

5))t
C, (q,P)-,M( ), M~(q, P) p, M ( p)

(4)
where 5);, =M),(q, t =0) and are expressible in terms
of the moments of C,(q, &u). Explicit expressions
for the first three 6, are given below:

dM, (q, t)
dt

dt'M, (q, t —t')M, (q, t') . (9)

The truncation scheme mentioned above in Eq. (7)
allows us to rewrite Eq. (9) as

dilf, (q, t) = -T~ '(q)M, (q, t), (10)

with

~g '(q) = dt M, (q, t) = M, (q, 0) .

This is the Maxwell approximation for the time
correlation of the first random force and 7, (q) is
the Maxwell relaxation time. Equation (10) results
because the mentioned approximation implies that
the correlation function M, (q, t —t') will make a
maximum contribution only when t = t', and in such
a time interval the correlation function M, (q, t') is
nearly a constant and can be set equal to M, (q, t).
Then the solution of (10) can be readily seen to be
the following exponential:

&,(q, t) = 5„(q)e ""'. (12)

Substitution of (12) into (8) shows that the result-
ant expression for C, (q, ~) will give correct zeroth
and second frequency moments irrespective of the
choice of ~,(q). The problem is now reduced to the
calculation of the relaxation time v, (q).

As a first approximation, it seems more reason-
able to estimate the integral of Eq. (11) from the
short-time behavior of M, (q, t):

M, (q, t) = 52, (1 —~ 5,t'+ ~ ~ ~ ) . (13)

Assuming M, (q, t) to be a function of 5„t' yields

~) '(q)" ~.(/(5, ()" (14)

The constant of proportionality is denoted by $ and
depends on the function used to model the higher-
order terms in the expansion of M, (q, t) Thus Eq..
(14) can be written as

T& '(q) = &5.&/(5.))". (15)

The corresponding approximate form for C, (q, t)
would be

(7), it is easy to write an expression for C, (q, e)
which is equal to m

' times the real part of
C,(q, P). This gives

mC, (q, e) M', (q, ~)
C, (q, t = 0) [M',(q, ~)]'~ [& M;(q, ~)j

(8)
M', (q, w) and M,"(q', &u) being the real and imaginary
parts of M, (q, i&d)

The next step is to evaluate the memory function
M, (q, t) for which we write its equation of motion
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FIG. 1. Wave-number dependence of (62])

C (q, t) = ' exp
2 cos(ct)+

q'k~T t- sin(e t)
FpE j( q 2f 'r

with

e ' = 6„[I—(g/2)'j . (16)

limlim 2 C,(q, &u) =
-o -o q ~~p (17)

p is the number density and g is the shear-viscos-
ity coefficient. We then find that

We determine the constant of proportionality $ by
requiring C, (q, &u) to reproduce the correct Kubo
limit:

= 1.407 g/cm', T = 76'K) corresponding to liquid
argon near to its triple point. The numerical re-
sults for the wave-number dependence of the vari-
ous frequency moments, to be used here as input,
were presented and discussed in Hef. 1. The read-
er is, therefore, referred to that paper for de-
tails.

In Fig. 1, we have compared the results of our
calculation for the quantity (6„)'t' with those ob-
tained by Murase. " This comparison is made in
order to make clear a characteristic difference in-
troduced by using a complete expression for (u', )
and the Kirkwood superposition approximation for
g, (r, r') (the triplet correlation function) needed to
evaluate (&u, ). Murase has erroneously estimated
(&u', ) because he missed the sine term and also used
a low-order decoupling approximation for three-
body terms involved in (~',). Now the q dependence
of (6„)'~' is not much different from the relaxation
time estimated by AD. Of course, as pointed out
earlier, it is not consistent to compare the relaxa-
tion time obtained by Murase with that of AD.

In Fig. 2, we have depicted the wave-number de-
pendence of the inverse relaxation time 7& '(q)
The solid and open circles are, respectively, the
results obtained by Ailawadi et al, .' and Levesque
et pt. "by least-squares fitting the expression (8)
to the molecular-dynamics data. Ailawadi et al.
fitted the data obtained by Hahman, "whereas
Levesque et al. fitted their own data. Also shown
in Fig. 2 is the curve obtained from the model of
AD, who assumed that

,mo q2 62,
(18)

Here it is worth pointing out that our approach is
different from Murase, "who assumes a Gaussian
decay for M, (q, t): o 1.0-

M, (q, t) = 6„exp(-t'6„/2), (19)
~ ~ ~

which is different from our expression for M, (q, t),
an exponential. Furthermore, Murase defines the
relaxation time as the time in which M, (q, t) de-
cays by 1/e and obtains

(2o)

Thus this relaxation time corresponds to a Gaus-
sian form for the memory function M, (q, t) It is, .
therefore, inconsistent to compare the results of
(20) with the model of AD.

III. RESULTS AND DISCUSSION

We turn now to the numerical calculation of the
relaxation time discussed in the preceding section.
We consider only one thermodynamic state (mp

0
I

0.5-

O.C, I I I

1 2
(A

—I )3 5

FIG. 2. Wave-number dependence of the inverse re-
laxation time ~, (q). Solid circles, results obtained by
Ailawadi et al . (Bef. 8) by fitting Eq. (8) to the molecular-
dynamics data of Bahman (Bef. 13); open circles, re-
sults obtained by Levesque et al . (Bef. 12) by fitting
Eq. (8) to their own data; dashed curve, obtained from
the expression proposed by AD6; dash-dot curve, obtained
from the expression proposed by CY9; and full curve,
the results of the present calculation.
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7, '(q) = 25'„+[~,'(0)+ (qv,)' —25„](l+q'q, ') ',
(21)

where

~, '(0) = lim
mp

, q' (22)

(~g(q)&
2 &~g(q)& —(~((q)&'

(24)

This expression results if one assumes a Gaussian
decay for the memory function M, (q, t) So the. y are
obviously inconsistent in choosing T, (0). Results
of Eq. (23) with v, (0) =0.135&&10 "sec are also
shown i.n Fig. 2.

QY also attempted to determine r, '(q) by ex-
amining the frequency where the observed C,(q, &u)

has a peak. This peak position is denoted by
(&u,),„, and physically this corresponds to the phe-
nomenon of shear-wave propagation in the liquid.
Then they calculated r, ( )qfrom the expression

(25)

which can be obtained from Eq. (8). Since we do
not have access to Rahman's original data for
C, (q, m), we cannot compare the results of approx-
imation (25) with our results. Also, we cannot
compare the results for spectral densities. How-
ever, comparison of our results for T, (q) with
various prescriptions for v, (q) described above
should definitely be instructive as to the usefulness
of our results.

For smaller wave numbers (q ~ 0.5 A '), our re-

and v, = (2kaT jm)'~' is the thermal speed of the
particles. They adjusted the parameter q, = 1.5 A '
by fitting Rahman's molecular-dynamics data.
Their results are shown by the dashed curve.

Chung and Yip (CY) have approximated ~, (q) in a
rather crude manner. In order to analyze
Rahman's data for q ~ 1 A ', they replaced T, (q)
simply by its limiting value ~,(0). For q & 1 A

they proposed that

(23)

which should correctly reproduce both the small-
and large-q limits. But for r, (0), needed in (23),
they used the value calculated from the expression

suits are similar to those of AD. This is because
expression (21) and our result for v, (q) reproduce
the shear-viscosity correctly. Furthermore, our
results seem to be in phase with the observed re-
sults. On the other hand, results of AD tend to in-
crease rapidly after q - 0.5 A ' and cross the ob-
served results and seem to differ in their q de-
pendence. The results of CY are considerably
higher in magnitude.

IV. SUMMARY

We have presented a simple prescription for cal-
culating the Maxwell relaxation time for the trans-
verse mode in simple liquids in terms of the fre-
quency moments of the spectral function of the
transverse-current correlation function. Numeri-
cal estimates of our result for r, (q) in liquid argon
are found to be consistently slightly below the ob-
served results. However, the q dependence of
r, ( )qcalculated by us is much improved over the
results of other authors and is in phase with the
observed results. The consistent difference of our
results from the observed ones can be partially
ascribed to our use of the superposition approxi-
mation for the triplet correlation function and the
decoupling approximation used for evaluating four-
body integrals appearing in sixth frequency moment
of C,(q, &u). At present, we do not know the errors
involved due to the use of mentioned approxima-
tions for higher-order static correlation functions.
However, it should be expected that use of better
approximations for these higher-order correlation
functions should improve the results for T,(q) In.
any case, we believe that the wave-number depen-
dence of our results is encouraging enough to make
the calculation worthwhile.
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