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Solitary wave solutions in coherent two-photon pulse propagation
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Solitary wave solutions of an electric power envelope for two-photon pulse propagation in a resonant
medium are given under limited conditions. In addition, we show new types of periodic solutions without
Jacobian elliptic functions and the well-known Lorentzian-shape solutions for a coherent two-photon
amplifier.
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There is considerable current interest in soli-
tary wave solutions for various fields, ' especially
for coherent pulse propagation at the one-photon
resonance' and in Baman transitions. ' ' In this.
paper, we present solitary wave solutions for
coupling the equations of motion of the two-photon
Feynman vector' ' r to the reduced Maxwell equa-
tions. The representation of r is very useful for
the adiabatic following advanced by Grishkowsky
et al. ' and the two-photon precession decay. ' In
addition, the coupling to the Maxwell equations has
led to two-photon self-induced transparency
(TPSIT). ' ' In order to find some stationary-
state solutions, including solitary wave solutions,
we make several assumptions: no inhomogeneous
broadening, equal pulse velocity, and equal per
turbation energy at two different frequency fields
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The atom is assumed to be irradiated by two light
beams with frequencies &, and &2 and propagation
vectors k, and k„where k, =&a, /c.

The two-photon Bloch equations' "with no re-
laxation terms are described as follows:
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where p,.„ is the matrix element of the electric
dipole moment. The optical Stark effect is denoted
by ~E, -~E„which may be canceled under the
assumption of the equal perturbation energy at two
fields and given combinations of two-photon fre-
quencies.

We take into account an exact resonance case
with no instantaneous phase shift (namely, 6&0 =0)
and no additional effect such as a parametric cou-
pling. This choice simplifies the problem con-
siderably. The second-order induced polar izations
for the two-photon resonance expressed by the x
components result in driving forces for the Max-
well equations under a slowly varying amplitude
approximation,
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where N2 is the atomic number density and co is
the dielectric constant.

We now proceed to calculate the right-hand side
of Eq. (4) using the above-mentioned assumptions.
We can easily obtain solutions for x2 and v, under
adiabatic-following approximation to the intermedi-
ate states from Eqs. (3). The solutions are x2
=sin@ and x, =-cosy with
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(3b) After substituting the solution into Eqs. (4), the
propagating equations become
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where r(r»2'„2 2) is the relevant vector r and y
[b ~ +(t1E, —n.E2)/8, 0, -Kg1g2] is the torque vec-
tor; ~+ is the off-resonant frequency to the eigen-
energy separation AQ12 involving the phase shift
$1+$2. The two-photon gyroelectric ratio K is de-
fined as
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where the characteristic propagation constant P,.
=N 2 ttld 1 K/6' 2 ~

Qur aim is to find stationary solutions including
solitary wave forms on the moving frame g =t -z/
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where p' = p,
' '~2p2 1 '. Equation (7) seems to be a sine-

Gordon equation modified by 8 p/Bt, while it re-
duces to

8
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It is convenient to classify the solutions depend-
ing on different values of the integral constant C'0.

Since ()(8/()g =0 implies C, +cosy =0 in a sense of
solitary wave propagation, we may. immediately
conclude that (i) if

~ C, ~ &1, no shape-preserving
pulse solutions are possible. However, we may
find periodic solutions as a result of a step-func-
tion input, although the area is not preserved.
(ii) If ( Cp )

= 1, any shape-preserving pulse solu-
tions can be found to be of area 2nn, n = 0, 1,2, etc.
(iii) If 0&~ Cp~ &1, any shape-preserving solution
has area 2nw, or 2nv+2 cos '(-C, ). (iv) If C, = 0,
shape-preserving solutions having area nm are
possible.

(i) ~ Cp~ &1. This restriction leads to a new type
of periodic traveling wave solution, with no soli-
tary pulse shape preserving,

C,cos[P'(Cp- I)' '(g —gp)]+I
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V (Vbeing the equal pulse velocity at each field). The
first integral on the moving frame for g,' from Eqs.
(6) multiplied by 2J,. yields p2h', —p', 82, =c, [c, being
the constant number of integral and p,

' =p, c V/(c —V)]
which may be called two-photon conservation.
Here, we consider an equal photon number at each
frequency contributed to the two-photon transition.
Since the assumption ~g, =~g2 has been made, we
cansetc, tobezero, although gg, =gE2 and p2g21

=p,b2 force p), and pp2 to have one of at most sev-
eral discrete values because ~g, and ~E2 are func-
tions of &, and w2. For a three-level system, these
values are p), =0»/(I+~ p, „/p2„]') and (02 =0»/(I
+~ p2„/p, „('). Other several distinct values exist
for a multilevel system.

From Eqs. (5) and (6), we transform
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Thus, each power varies as
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The branch solution of Eq. (11), the area q&(g) vs
g, .implies that the area is attenuated toward 2nm

with increasing g from ( = -~. It is noticed that
the full integral of the area Eq. (5) gives qr(~) =2((
indicating TPSIT.

The other case, +0 =+1, may be identical mathe-
matically to p, = -1. However, this choice in-
volves a complete population inversion at an earl-
ier time, and it corresponds to coherent two-
photon amplification. "' The solutions are

9 (g) =2 tan '[-p'(K -K.)], (13)
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In this case, we clearly see from the branch solu-
tion of Eq. (13) that the area is amplified toward
(2n +1)v from (2n —1))( with increasing g. The
area integral yields also y(+~) —y(-~) =2)(, name-
ly the leading edge is amplified, while the trailing
edge is attenuated. It is not in contradiction with
relativity because information exceeds ( = -~ on
the pulse leading edge.

(iii) 0&
~ C, ~

& 1. This limitation yields single-
pulse solutions with the areas

where go is the arbitrary constant on the moving
frame. Equations (10) are physically identical,
because a change of g~ makes g,2., to g,' .

(ii)
~ Cp~ =1. The choice Cp=-1 implies, physic-

ally, the two-photon resonant medium is an ab-
sorber. This solution has been already obtained"'"
and the electric power envelope has a Lorentzian
shape in the moving frame with the two-photon area

q (&) =2 cot-'[-p'(K —K,)].

(C
e-8'(('-('P ) I)y (e-8'(('-('P) C ) e- 8'((' LP)-

(()1(k') sm ( Cp) 1 2 ( 8i(g 1. ) )2
~ (15)

Here, taking the minus sign of y, (g), we obtain

rp (&) =sin '[-(1-Cp)]'~2, which gives an unstable
growing-up solution. Taking y, (g), we can easily
obtain

(iv) C, =O. The solution is given by

q, (K) = tanhp'(K -f.), —

and the electric power envelope becomes
pet (1 C2)1/2

s'(r) =
cosh [P'(g —gp)] —Cp

(16) g,'. (K) = —'sech [p'(K —gp)] . (16)
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The envelopes represent solitary wave solutions
analogous to the soliton solution obtained in the
sine-Gordon equation.

The cases
~ Co~ &1, i.e., (iii) and (iv), represent

not only nonzero population in the excited state,
but also a coherent superposition of states pre-
served over a long time. Especially, the situation
of Co =0 may imply an equal population density and
complete mixed states both in the upper state and
the lower ground state of the two-photon allowed
transition. Therefore, the experimental observa-
tion of these solutions seems to be very difficult
at present, but perhaps an ingenious idea will be
forthcoming.

In summary, we found the stationary solutions
for coherent two-photon pulse propagation. In
the special case C, =O, the solitary wave solutions
were obtained. The general solutions exhibiting
transient pulse propagation" "for any input wave
form could be obtained in a similar way. One of the
future problems is to find transient solutions"
for experimental observation, removing the as-
sumptions for simplicity.
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