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Previous results concerning statistical errors due to finite-time T averaging in many experiments are made
more precise. In particular, we show that the error does not always decrease according to a T ~'2 law as
T — . In the case of power or correlation function measurements, the departure from a T ~'/? law may be
due to an unbounded spectral density for some frequencies, which appears for some physical noises.

The statistical errors due to the replacement of
ensemble averages by averages over finite-time
intervals (T) in the evaluation for the correlation
functions of stochastic processes were recently
given.! These results were presented in the con-
text of computer experiments and applied to the
case of liquid sodium.? They are, however, very
general. According to Refs. 1 and 2, the statis-
tical error is of the order of T'/2 for large 7T,
with a coefficient of the square root related to
some characteristic relaxation time.

Zwanzig and Ailawadi’? considered Gaussian
processes and stated the following with respect to
non-Gaussian processes: “Because this is not nec-
essarily true when A(¢)[originally assumed to be a
Gaussian random variable] is a dynamical quantity,
our results are expected to be plausible estimates,
but not rigorous. At the present time we do not
know of any way to correct for non-Gaussian be-
havior.”® In the present paper, we show that the
error is not always of the order of 77'/2, even in
the Gaussian case. Our calculations are applicable
to any moment of the process.

Let us consider a real second-order stationary
stochastic process (SP) X(¢). This SP is, for ex-
ample, the dynamical quantity A(¢) considered in
previous papers''?, or any function of this quantity.
At this state of the calculation, physical interpre-
tations of X(¢) are not required. In what follows,
the mean value (X(¢)) of X(¢) is denoted by .. The
average of X(t) over a time interval T is

t
XT(t)=%ft_TX(6)d6. (1)

This function is obtained from X(¢) by linear fil-
tering. This is a perfect time averager, some-
times called a cardinal filter because the modulus
~of its complex gain is®

G o (v) = (sinmvT)/TvT . (2)
It is clear that
X)) =m,, 3)

meaning that X ,.(¢) is an unbiased estimator of the
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mean value m, of X(f). Using standard methods,
the error squared defined by

(T) = (X (1) - m, ) @)
is found to be?*
€X(T)= f <Si::;T>zn(v)dv, ®

where 7, (v) denotes the power spectrum of the SP
X(t)-m,.

We are actually interested in the behavior of
€*(T) for large values of T. Since the analysis of
this behavior has been previously reported,>¢ we
shall present here only the main results.

It follows from Eq. (5) that for large values of -
T, the only important frequencies are those in the
vicinity of v=0. Thus let us suppose that, for
lv|=a,

v, (W)= [v]" ), (6)

where f(v) is a continuous nonzero bounded func-
tion. Because X(f) is a second-order SP, we have
m>-1. The case m =~1 is beyond the scope of
this study, even though it may correspond to phys-
ical noise, e.g., the “flicker noise.” We write

€(T)=€(T) + e X(T), (1)

where €2 and €/ are the integrals of y,(v) over the
intervals |v|=a and |v|>a, respectively. Since
the integral of v, (v) over all frequencies is, by
definition, the variance ¢2<+%, we have

€'3(T) = o3(na)2T2. (8)

The calculation of €%(7) is performed in Ref. 5
or 6. Combining this result with Eqs. ('7) and (8),
we obtain the behavior of €*(T) for large values of
T. If -1<m<+1, we obtain

e(T) =~ c(m)T" ™1 9)
and, if m=1,

(T)~c(m)T2. (10)

Thus the result presented in Ref. 1 is valid only

when if m =0, that is, when y,(0) is finite and non-
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zero.
Let us briefly consider this special case. Start-
ing from Eq. (5), we have, for large T,

€(T)~ 7,(0)T™ . (11)

Moreover, since y,(v) is the Fourier transform
of the correlation function I'(7) =(X ()X (¢ - 7)), we
have

o+ 300 r' (T)

yx(0)=f I"x(T)dT=off —I{TO—)dT=oftc. (12)

The expression on the right-hand side (rhs) of
Eq. (12) can be viewed as the definition of the cor-
relation time ¢, of the process X (¢). This defini-
tion is particularly convenient in the case of ex-
ponentially decreasing correlation functions. Thus
the error squared is

&(T)~ 0% T (13)
x"c

It is important to note that the decrease of ¢* as
T— does not necessarily behave as T™'. From
Eq. (9), it follows that, as m—~1, the error in
fact becomes independent of 7. In that case, time
averaging is useless. Conversely, ‘it is not pos-
sible to obtain an error decreasing faster than 772,

Let now the previous results be applied to the
measurement of the correlation function of a dy-
namical quantity A(¢).}*2 An unbiased estimate of
its correlation function is obtained by using Eq.
(1), where the function X(¢) is expressed in terms
of A(¢) by

X(t)=AMAE-T). (14)

In order to apply the previous results, it is nec-
essary to evaluate the behavior of the power spec-
tral density y,(v) for v~0. As done in Ref. 1, we
simplify the discussion by considering the case
7=0. We thus estimate the power, or variance,

" of A(?).

Suppose first that A(¢) is Gaussian. The correla-

tion function of X(¢) - (X(#)) is given by

. (r)=2T%(7), (15)

where I" ,(7) is the correlation function of A(#). By
Fourier transformation we obtain

yx(z/)=2f YAy ,(v=n)adn, (16)
and 7,(0) can be written
n@=2 Rwav an

because y(v)=y(-v) for real SP. This integral can-
not be zero, but it can be infinite. Thus the para-
meter m of Eq. (6) must satisfy the inequalities

-1<m=0. (18)

If m=0, y,(0) is finite and the error is that given
in Eq. (11). That is the result of Ref. 1.

Let us now consider the case where the integral
on the rhs of (17) is infinite. Because A (t) is a
second-order SP, v ,(v) is integrable and 7, (v) can
become infinite only if, for some frequencies v;,
the power spectral density of A(#) is unbounded.
This situation is encountered in reality. It is en-
countered, for example, in the flicker noise, in
which case v;=0.

To make the above discussion more precise, let
us consider the case where there is only one sin-
gular frequency. Let us assume further that, for
‘V =V ' =a,

va)=[v=v,|"if,(v), (19)

where f,(v) is a nonzero continuous bounded func-
tion. Evidently, since there is only one frequency
v;, we have y,(x)<B for |v-v;|>a.

Using this expression to calculate the integral in
(17), we see easily that y,(0) is infinite if m;<—3.
Because 7,(v) is integrable as A(¢) is of second
order, we have m;>-1. We now study the behav-
ior of v,(v) as v—0 when

—-1l<m,<~-%. (20)
i

If m;>~-3, v,(0) is finite and the error is that
given by Eq. (11). The detailed calculations pre-
sented in Appendix A show that

v, W) =c,|v[min (21)

as v -0 with condition (20).
Using Eqgs. (6) and (9), we conclude that the er-
ror in the measurement of the power of A(¢) is
€2(T)'¥C(mi)T-2("‘i+1), ..1<mi<——é- 22)
~cT™, m;>=% '

if there is one frequency v, where the power spec-
trum has the behavior in Eq. (19). When there is
more than one frequency where y,(v) is infinite,
the result follows from Eq. (22) by addition.

As suggested in Ref. 1, it is interesting to es-
timate the importance of the Gaussian assumption.
Unfortunately, the non-Gaussian behaviors which
appear in many physical problems do not uniquely
specify the SP, and it is therefore impossible to
provide general results. Nevertheless, results
can be given for some non-Gaussian statistics, in
particular for spherically invariant processes,’
which are natural generalizations of Gaussian
processes.

We can deduce two kinds of information from
Egs. (13) or (22): first, the exponent of T on the
behavior of €*(T) for large T, and second, the co-
efficient ¢, which is ¢2¢, for T™*. As far as the
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exponent of T is concerned, the Gaussian assump-
tion is not essential. Indeed, consider a dynam-
ical quantity A(¢), not necessarily Gaussian. We
study the measurement of the mean value of X (¢) =
AZ%(t) by time averaging. Following the results of
the first part of this Comment, the error €3(¢) in
this measurement for large T depends only on the
behavior of v (v) as v~ 0. In particular, if ¥,(0)#0,
the error is proportional to 77%.

If we know the fourth-order moment of A(t), it
is possible to calculate y,(0). This moment can
generally® be decomposed into two terms: the first
one coincides with that obtained for Gaussian SP;
the second one, called “cumulant,” is due to the
non-Gaussian character of the process. We show
in Appendix B with the help of fairly general as-
sumptions concerning this cumulant that the be-
havior of €*(T) for large values of T is the same
as in the Gaussian case. Thus for this kind of
problem, the Gaussian assumption is unnecessary.

From a practical point of view it is not always
convenient to perform time averagings as indi-
cated in Eq. (1). Indeed, the process X(#) may be-
come nonstationary during the long time intervals
needed to reduce the error. It is then necessary
to use more sophisticated methods, such as those
used in the study of oscillators.*

Finally we can indicate that there is a connection
between the behavior of the power spectrum as in
Eq. (6) or (19) and the structure of the correlation
function for large values of 7. In computer experi-
ments it is often this point of view which is used,
and we discuss briefly this point in Appendix C.

APPENDIX A

We study the behavior for v—~0 of v (v) [defined
by Eq. (16)], with v,(v) given by Eq. (19). Because
Y4(v)=7v,4(-v), the convolution appearing in Eq. (16)
can be written

+00

g0)= [ vy = v)dn. (A1)

-0

We will study this function for |v|<a. For this
purpose, let us suppose v>0 and introduce the in-
tervals I and I’ defined by

nel—v+y,—a=n =y;+a, (A2)
nel'—n&l.

Evidently g(v) =g (v) +g.(v), where these func-
tions are restrictions of the integral (Al) to the
intervals I and I’, respectively.

Consider first the integral g, (v). If nel’, v,(n)
x Y, —v) is bounded, because there is only one
frequency where v,(v) is unbounded. This means
that y,(n)v,(n — v) becomes infinite only for n=y;,

and n=v+v,, which are outside I’. Moreover, for
large values of n, y,(n)=y,(n - v), because |v|<a.
But v ,(n) is integrable from -« to +«, because
A(t) is a second-order SP. Thus y;(r) is integra-
ble for high frequencies and g,(v) is bounded.

Consider next g (v), which we write, using Eq.
(19),

Vi+a
g,(u)=f In-—uil"'iln—v,.—u|’"i
VWi-a

X fin)f(n=v)dn. (A3)

By taking n - v,=vf, we obtain

a/v
g )=t [ [flml -t e ar,  (a8)

(v=a) /v

where %,(f) <M. The integral I appearing in Eq.
(A4) is bounded. Indeed, we have

1=uf lrlr- 1l (45)

because this integral exists. ‘Indeed for |f |~ o,
the integrand is of the order of [f [>™, which
is integrable according to Eq. (20). For f-Oor 1,
the integral is regular because m,>-1. The same
calculation can be performed for v<0. The final
result is Eq. (21) of the main text.

APPENDIX B

We calculate the power spectrum v, (v) of X(¢),
which we define as the square of a non-Gaussian
dynamical quantity A(#). Because v, (v) is the
Fourier transform of the correlation function of
A%(t), we can write

, n00=f(A@+ﬂAU+ﬂAuyuﬂk*””dr. (B1)

We introduce the Fourier transform y,(¥) of the
fourth-order moment

T 4(F) =A@ )A)A(L)A()) . (B2)
Because A(?) is stationary, v,(J)=0 outside a sta-

tionary manifold S,° defined by v, + v, +v,+v,=0.
It can be written

YD) =y (D) +v,. (D). (B3)

The first term in (B3) is the Gaussian term. It is
the only one if A(#) is Gaussian. Its contribu-
tion to the error €*(T) has already been calculated.

Thus we shall only consider the contribution of
the second term in (B3), which can be written

Vo) =701, v, 03, ) 80, + vy v+ 0,) (B4)

By Fourier transformation we calculate the con-
tribution of this term in v, (v). Taking this expres-
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sion into Eq. (B1) we find

YeolV) = _/‘f)’c(u—1/2,1/2,1/3)d1/2dv3 . (B5)

In general, we assume that the integral of ]y (v,,
Vs, v3)| is bounded. This assumption secures the
boundedness of 'yxc(O). The contribution of the non-
Gaussian term to the error is then of the order of
T-'. If the error decreases more slowly than 77,
this is due to the Gaussian term.

APPENDIX C

The calculation of Refs. 1 and 2 were presented
in the context of computer experiments on statis-
tical mechanics. The aim of this comment is to
explain that the problem is very general and ap-
pears in all the experiments where ensemble av-
erages are measured by using time averages and
assuming some ergodic properties of the process.

Some examples of spectral densities such as in
Eq. (6) were presented in the study of statistical
models of contact noise in semiconductors.®

In the case of computer experiments in molecu-
lar dynamics, it seems that the only well-known
exception of a bounded spectral density was given
by Alder and Wainwright.}! It was particularly
found that the correlation function of hard disks

in two dimensions decays asymptotically as 7
which is equivalent to a logarithmic singularity in
the spectral density. This example is interesting
because it cannot be described by Eq. (6), and we
present shortly the result corresponding in this
case to Eqg. (9).

Let us suppose that

7(v)==1na|v|,
=m, |v|=v,. (C1)

[v|<v,<1/a

The error squared is given by Eq. (15), which
becomes a sum of two integrals from 0 to v, and
from v, to ». The second integral gives a con-
tribution as in Eq. (10) whichdecreasesas T2,

The first one can be written

I= f e (smfwT) v (c2)

After simple calculation, we obtain that, for large
values of T,

I=C(InT)/T, (C3)

which converges to zero, but more slowly than
€*(T) of Eq. (11). Thus a logarithmic singularity
in the spectrum leads to a slow convergence of the
error to zero.
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