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By solving the hypernetted chain (HNC) equation for the pair distribution functions, and by Monte Carlo
simulations, we have calculated the equation of state and the pair structure of dense binary mixtures of
classical point ions in a rigid, uniform background of opposite charge, All of our results indicate that the
excesss internal and free energies of mixing are negligible compared to the energies of the mixture or the

pure phases, for ionic-charge ratios Z,/Z, = 2 and 3, in the strong coupling {high density or low

temperature) regime. This feature allows us to write down a simple equation of state for such mixtures,
which is used to determine the phase diagram of pressure-ionized H-He and H-Li mixtures in a rigid
background of degenerate electrons. We then treat the polarization of the electron gas by the ionic-charge
distribution by perturbation theory and include quantum corrections to the free energy of the ions. Both
effects do not drastically modify the phase diagrams. The applicability of our results in astrophysical
situations is discussed.

I. INTRODUCTION

In the study of the equilibrium and transport
properties of dense fully ionized matter, the clas-
sical one-component plasma (OCP) has proved to
be a very useful model: the ions are regarded as
point charges, whereas the degenerate electron
gas is assumed to form a uniform and rigid con-
tinuum (or background), ensuring overall charge
neutrality. This model of fully ionized matter is
also referred to as "jellium, " and its applications
range from astrophysics to metallic hydrogen.
Since the pioneer work of Brush, Sahlin, and Tel-
ler, ' the thermodynamic properties, equilibrium
structure, and dynamical properties of the OCP
have been quantitatively studied by Monte Carlo'
and molecular-dynamics' computer simulations,
and by the numerical solution of integral equations. '
The present paper is devoted to an extension of the
equilibrium calculations to the case where two ion-
ic species are present, in pe, rticular O'-He" and
O'-Li'" mixtures.

Stenvenson' has recently shown that O'-He'+ mix-
tures in a responding electron background phase
separate under temperature and pressure condi-
tions characteristic of the interior of Jupiter. In
his calculation, Stevenson used a hard-sphere
reference system and thermodynamic perturbation
theory to describe the ions, and the Hubbard-Gel-
dart-Vosko' dielectric function to describe the re-
sponse of the electron gas. Some Monte Carlo re-

suits' are also available for mixtures with low-
number concentrations of He ions, the linear re-
sponse of the electron gas being described by the
Lindhard dielectric function. ' This paper presents
the first extensive numerical results for the ther-
modynamic properties and equilibrium structure
of two component ionic plasmas in a rigid uniform
background over a wide range of temperatures,
densities, and concentrations, and for the two ion-
ic cha, rge ratios Z,/Z, = 2 and 3. These results
lead to a very simple equation of state which is then
applied to the study of the phase diagram of such
mixtures. Quantum corrections and the effects of
the polarization of the electron gas by the ionic
charge distribution (i.e. , electron screening ef-
fects) are handled by perturbation theory

The outline of the paper is the following: The
model, all relevant parameters, and some general
properties are introduced in Sec. II. The results
from the nonlinear Debye-Huckel theory are pre-
sented in Sec. III. Section IV contains the results
from numerical solutions of the hypernetted chain
(HNC) integral equation for the pair-distribution
functions. Monte Carlo (MC) data are presented in
Sec. V and compared to the results of Secs. III and
IV. "One-fluid" models are briefly discussed in
Sec. VI. The phase diagrams of O'-He and H'-
Li'" mixtures, based on the preceding results,
are drawn in Sec. VII. Quantum corrections and
electron screening corrections are treated in Sec,
VII, while Sec. IX contains some concluding re-
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marks.
A brief account of parts of this work has been

published elsewhere. '

II. THE MOI3EL

Consider a. mixture of N, ions of charge Z, e and
N., ions of charge Z, e (Z, & Z, ) in a volume V; e is
the elementary charge. The partial number den-
sities are p, =N, /V and p, =N ,/V, t.he number con-
centrations are x, =N, /N and x, = N, /N= 1 -x„the
total number density is p= p, + p, = N/V, and the
charge density (divided by e) is p' = Z,p, + Z,p,, = (Z),„p,
where (Z)„„is the mean charge x,Z, +x,Z, . The
uniform background charge density is of opposite
sign. If the background is rigid (nonresponding)
the interaction Hamiltonian for the periodic sys-
tem can be cast in the form

N

p& — Z ex k oI't ~ .

9

j =1
(2)

(Z')„=x,Z', +x,Z'„and the prime in the summation
means that the term k= 0 is left out, to take proper
account of the uniform background.

We define the "ion-sphere" radius a= (3/4mp)' '
and the "electron-sphere" radius a'= (3/4mp')' '
= a/(ZL'. Apartfrom the ideal gas contributions,
the thermodynamic state of the ionic mixture is
completely determined by x, and the dimensionless
coupling parameter

I' = e'/ak~T, (3)

where T is the temperature. Alternatively, we can
choose as independent variables x, and

I"= e'/a'ksT = I'(Z).v (4)

In the density and temperature range that will be
' considered here, the Fermi temperature of the

electrons T~» T, so that the electron gas is com-
pletely degenerate and is entirely characterized by
the usual dimensionless length parameter:

where a, is the electronic Bohr ra.dius. If we con-
sider moreover the limit x, «1, the electron gas
is completely rigid and does not affect the ion-ion
interaction, which is then given correctly by (1).
We shall call this simplified model of an ionic mix-
ture the "two-component plasma. " (TCP) by analogy
with its one-component counterpart, the OCP.
The equilibrium properties of the classical TCP
will be studied in Secs. III-VII, while the more

e= g — '„,' (o.'p'- N«'), „),
k

where p-' is a Fourier component of the charge den-
sity,

realistic case taking due account of quantum ef-
fects and the polarization of the electron back-
ground by the ionic charge distribution, will be
considered in Sec. VIII.

In the following we choose a as the unit of length
and use dimensionless Fourier transforms:

QQ ~

f(q) = 3 f(x)x'dx,
ao gX

(6)

where x=x/a, q=ka, and 4mpa'=3. Letg„,(x) be
the partia. l-pa. ir-distribution functions (v, p = 1,2),
k„,(x) =g„,(x) —1 the pair-correlation function, and
c„(x)the direct-correlation functions, which are
related to the h„„bythe Ornstein-Zernike equa-
tions:

k„,(q) = c„,(q) + P x,h„(q)c,(q).
0; =1

Let p-'"' be the Fourier components of the partial-
number densities:

p'"'=Q 8" '' (v= 1 2)

The partial-structure factors are then defined as

S„() =(NP„)",'p-"'p'-") = &„,+(x~.)"k„„(q).
(9)

A quantity of central importance is the charge-den-
sity structure factor

S'(q) =—,-(p' p' )NZ „q-q

and, using the virial theorem, the equation of state
then follows from

P'V/N= 1+ 3u, (12)

where P= 1/k~T.
The usual charge-neutrality and perfect-screen-

ing conditions" imply that

S'(q) q'/31'(Z'), „.
q ~ Q

A straightforward fluctuation calculation, along
the lines of a similar calculation in Ref. 11 for the
OCP, or in Ref. 12 for a binary molten salt, yields
the following expression for S'(q), which becomes
exact in the long-wavelength limit (q-0):

= — (,) Q Q (x~, )'~'-

av v

xZ„Z,[5„„+(x~,)'~'k„,(q)]. (10)

Comparing (1) and (10), we see that the excess
(nonideal) internal energy of the TCP can be ex-
pressed in terms of S'(q) through

PU~ 1(Z')„"[,( )
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S'(q) = [(3I'(Z ) „/q )(1 —6q ) ]

ss (Z}',
„

[(plp')(s p/sx, )...r ]
'

3r(z),„~Sp (Z2), " I+ ((Z)'.x,x,/(Z'). ,) [(S/Sx, ) ( Z)„'„(S/Sx, )pE/¹], ,
~ Xy

where J" is the Helmoholtz free energy, N'= ZN is
the total number of charges, and T, p', and x, were
chosen as independent variables.

The isothermal compressibility X~ can be ex-
pressed in terms of the direct-correlation func-
tions through a suitable generalization of the com-
pressibility equation"':

3I'Z„Z„=1 —lim QQ xp., c„,(q)+
0 4 Vu q'

where )(r= P/p is the isothermal compressibility
of an ideal gas, taken at the same temperature
and density.

In the weak-coupling limit (r « I), the excess
internal energy tends towards its Debye-Huckel
(DH} limit

uns L~3(I (Z2} )3/2 (16)

Mermin" has shown that (16) yields a lower bound
to u for any value of I". In the DH limit we also
have

c n„"(q)= -3I'Z„Z„/q'. (17)

27 ((Z)&~/3 (Z5/ 3) /(Z2) )
2 (19)

which is of order 1, except for very large charge

In the strong-coupling limit (I"» 1) we expect u to
approach its value calculated in the framework of
the "ion-sphere" (IS) model. " In this model, each
ion interacts only with the uniform background in
its "ion sphere, " i.e. , a sphere of radius a,/a
=(Z„/Z)'/' such that the background charge con-
tained in it exactly cancels the charge Z„ofthe
ion. An elementary calculation then yields

u'2= —0.9r(z}'./'(Z'/'}„= -0.9I"'(Z'/')„. (18)

In fact, by a straightforward generalization of a
proof by I ieb and Narnhofer" for the OCP, it can
be shown that (18) also yields a lower bound to u
for all I'. lt is interesting to compare the lower
bounds (16) and (18); for a given value of x„the
two bounds are equal when

ratios Z, /Z, . When r & I „un"& u", i.e. , un" is
closer to the exact energy; the converse is true
for I'& I', . Thus we anticipate tw'o rather different
regimes; for I'& I'„weexpect the dimensionless
thermodynamic properties to behave roughly as
their DH limits, whereas for I'& I'„weexpect
these properties to be essentially linear in I .

For sufficiently strong coupling, we expect the
TCP to crystallize, just as the OCP does. ' In
fact, the internal energy (18) of the ion sphere
model is very close to the: tic energies calcu-
lated for a number of ionic c~~fnpounds on cubic
lattices. " Although we shall briefly return to the
question of crystallization in Sec. VI, the bulk of
this paper will be devoted to the fluid phase of ion-
ic, mixtures, with special emphasis on two-com-
ponent systems with charge ratios Z, /Z, = 2 and 3.

III. NONLINEAR DEBYE-HUCKEL THEORY

We have first calculated the pair-correlation
functions and the equation of state of the TCP in
the framework of the nonlinearized version of
Debye-Huckel theory, i.e. , by solving the com-
plete coupled Poisson-Boltzmann equations nu-
merically. " In the limit I -0, the nonlinear DH
theory reduces of course to its linearized form.
On the other hand it can be easily shown from the
Poisson-Boltzmann equations that the internal en-
ergy satisfies the inequality

u —,'r'(Z" ')„. (20)

This is of the same form as the exact bound (18),
except for the numerical factor. Numerical solu-
tions for various values of x, and Z,/Z„ indicates
that for I"& 1 (strong coupling), the calculated in-
ternal energy tends rapidly towards its lower bound

[Eq. (20)].
In Table I we compare the internal energies of

the linear and nonlinear DH theories, with the
more accurate predictions of HNC theory (cf. Sec.
1V). As expected the linear DH results differ quite
sensibly already for I'= 0.1, whereas the nonlinear
DH and the HNC results are in excellent agree-
ment at that I', and are still reasonably close at
I =1. Since the HNC results will be shown to be
in excellent agreement with the "exact" Monte
Carlo results (see Sec. V), we conclude that the
nonlinear DH theory is surprisingly accurate up to
I'=1, and not unreasonable for even stronger cou-
plings.
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TABLE I. Comparison between excess internal ener-
gies u calculated in the linear and nonlinear Debye-
Huckel approximations, and in the HNC approximation
for ionic mixtures with Z& =1, Z& =2.

c„(x) = -Pv„,(x) = -Z„Z„r/x. (21)

Consequently, we define short-range direct-corre-
lation functions

X1 HNC Nonlinear DH Linear DH c'„,(x) = c„,(x) + Z„Z„l/x, (22)

0.1
0.75
0.5
0.25
0

—0.02568
-0.0557
-0.0914
-0.1316
-0.1759

—0.025591
-0.055207
—0.090198
—0.129552
-0.172641

-0.027 386
-0.063399
—0.108253
-0.160456
-0.219089

whose Fourier transform is regular in the limit
q-0. The HNC approximation for the pair-dis-
tribution functions g„ then reads

g„,(x) = exp[I1„„(x)—c„',(x)].

1
0.75
0.5
0.25
0

-0.5705
-1.075
—1.639
—2.253
-2.911

-0.54846
-1.01296
—1.52872
-2.08790
-2.68493

-0.866025
—2,00488
-3.42327
-5.07406
-6.92820

IV. HNC SOLUTIONS FOR THE TCP

A final feature which appears from inspection of
Table II is that u, calculated in the nonlinear DH

approximation, is nearly /inear in xy for fixed ~',
in agreement with the lower bound [Eg. (20)] which
is exactly linear in x,. This behavior will be con-
firmed by the HNC and MC results.

py'ex I'

y(r, x,)= (r;x,)=
~

u(y, x,)—,
v'Q

(24)

or directly from the excess chemical potentials
which are given, in the framework of the HNC ap-
proximation, by the following formula:

Eoluation (23) together with the Ornstein-Zernlke
relations (7) form a closed set of three integral
equations for the g„„whichwe have solved itera-
tively using a generalization of the procedure de-
scribed by Ng' in the case of the OCP. The inter-
nal energy and the pressure were then calculated
via Eqs. (11) and (12). The excess (nonideal)
Helmholtz free energy can be calculated either by
integrating the internal energy with respect to I'
for a fixed value of x, :

Recent careful calculations by Springer et aL
and by Ng' and the comparison with "exact" Monte
Carlo computations"" show that among the usual
integral equations for the pair distribution func-
tions, "the HNC approximation gives by far the
best results for the one component plasma as it
does for long-range potentials in general. In fact
the internal energy of the OCP calculated in the
HNC approximation differs by less than 1' from
the MC results for all I'. It is reasonable to ex-
pect a similar situation for ionic mixtures, and
the purpose of this and Sec. V is to show that this
is indeed the case.

The perfect screening condition" implies that
the direct-correlation functions behave like the
corresponding pair potentials for large interionic
distances; more precisely,

2

Pp,„=Qx, — h„,(x)
p, =l

x [)c.
„

lc) —c„,(c)]c'dc —c'„„(0)) .

(25)
Equation (25) is a generalization of a formula de-
rived by Verlet and Levesque" in the case of sim-
ple liquids; a proof is given in Appendix A, but it
must be kept in mind that such relations, which
express chemical potentials in terms of pair-cor-
relation functions, hold only within the HNC ap-
proximation. In that framework the free energies
derived from (24) and (25) are consistent and the
agreement between the numerical values obtained
through the two different channels serves only as
a check on the numerical accuracy of the compu-

TABLE H. Excess internal energy n and excess internal energy of Inixing Au [cf. Eq. (27)]
calculated in the nonlinear DH approximation for 1 '=0.1 and three values of Z2 (Z& =1).

Z2=2

1
0.75
0.5
0.25
0

0.025591
0.049818
0.075117
0.100968
0.127145

0
0.001161
0.001251
0.000788
0

0.025591
0.091922
0.162185
0.233808
0.306064

0
0.003787
0.003642
0.002138
0

0.025591
0.784789
1.572612
2.363544
3.155449

0
0.023266
0.017908
0.009440
0
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-x,u(r', x, = 1), (27)

is negligible compared to u(I",x,). If u,(r) = (PUo'"/

N)(r) is the excess internal energy of the OCP, as
a function of I", Eq. (27) can be rewritten

u(r, x,) ™x,uo(r'Z', ~')+x,uo(r~Z', '), (28)

i.e. , the equation of state of the TCP can be ex-
pressed very simply in terms of the known equa-
tion of state of the OCP. More precisely,
hu(r', x,) appears to be always positive, but very
small; for Z,/Z, =2, our numerical results indi-
cate that bu~ 0.005 for all I"; this represents
about 0.3% of u at I"' = 1, and less than 0.01%%uo at
I'=40. In fact, for fixed x„duis roughly inde-
pendent of I"' for I'& 1, and its relative impor-
tance decreases rapidly, since u increases ap-
proximately linearly with l"'. Only in the-limit
I"'«1 does bu become a sizable fraction of the en-
ergy of the mixture.

In the strong-coupling limit, the calculated in-
ternal energies approach rather closely their
lower bound (18). The difference is of the order
of 3% for I"= 50. Note that the lower bound (18)
exactly satisfies equation (27).

For the ratio Z,/Z, =3, we reach similar con-

tations.
The situation is quite different for the isotherm-

al compressibility, which can be calculated either
via (15), or by differentiating the internal energy
with respect to I; for fixed x,:

y.or/Xr = 1+ -', [r(eu/er )+ 3u]„. (26)

The two routes to the compressibility are not auto-
matically consistent, since they lead to identical
results only if the exact pair correlation functions
are used in (11) and (15).

We have solved the HNC equations for two charge
ratios: Z, /Z, = 2 and 3; three concentrations: x,
=0.25, 0.5, and 0.75; and for several values of I',
in the range 0.05 —I'~ 80. From our discussion
in Sec. VI it will become clear that we have
covered practically the entire fluid range of the
TCP. Our numerical procedure and the conver-
gence of the iterative scheme are sufficient to en-
sure five significant figures on our energy values.

A comparison of these values with the energies
calculated for the OCP in the HNC approximation, ~

i.e. , the energies for x, = 0 and 1, shows that for
a fixed value of the coupling parameter I"',
u(r', x,) is remarkably linear in the concentra. -
tions. In other words all our results indicate that
the excess internal energy of mixing at constant
I" (i.e. , constant temperature and charge den-
sity),

bu(r', x,) =u(r', x,) -x,u(r', x, =1)

clusions, except that in this more asymmetric
case, the excess energy of mixing is slightly larg-
er, as one would intuitively expect; we find that
hu ~ 0.01 in this case, which is still practically
negligible compared to u, except when I' «1.

If we neglect bu, the equation of state of the TCP
reduces to the very simple form (28). u, is well.
known, ' and the HNC results have been fitted very
accurately by De Witt, "who has proposed a simple
functional form valid for I'&1. We prefer to use
a fit which is slightly less accurate, but which has
the advantage of going over to the correct DH lim-
it when I 0:

u, (l ) = I' '(A, /(B, + I')' '+A, /(B + I')], (29)

where A, = -0.899 962, B,= 0.702482, A, = 0.274 105,
and B,=1.319 505. The equation of state of the
TCP follows from replacing (29) in (28). All
other thermodynamic properties can now be de-
rived from (28) via (12), (24), and (26); the ex-
cess specific heat at constant volume follows
from

It is worth mentioning that careful numerical in-
tegration of our energy data leads to excess Helm-
holtz free energies of mixing which are slightly
larger than the excess internal energies of mixing;
we find

0 —hf (r', x,) 6 0.03 for Z,/Z, = 2,

0 ~ hf (I',x,) 6 0.05 for Z,/Z, = 3.
These values are still negligible for most practi-
cal purposes.

A serious difficulty arises when we consider the
values of the isothermal compressibilities ob-
tained either via (15) or via (26). As indicated
earlier we do not expect the two expressions to
yield the same values in the HNC approximation.
In fact we find that the two routes yield inverse
compressibilities which differ by as much as 30%%uo

at large 1 . The situation is pi.ctured in Fig. 1,
where we have plotted both estimates of yr/Xr as
a function of I' for x, =0.5 and Z,/Z, =2. The large
discrepancy is the consequence of an internal in-
consistency of the HNC approximation, and is not
unlike the well-known difference between the

~ "virial" and "compressibility" equations of state
of a hard-sphere fluid as obtained in the Percus-
Yevick approximation. " The same discrepancy
exists in the case of the HNC results for the OCP,
but had not been pointed out before. Because of
this serious inconsistency, we cannot a priori
trust the HNC results, and "exact" Monte Carlo
calculations have to be carried out to check the
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10.' 20.' 30.' 40.' I'

FIG. 1. Inverse compressibility X ~/gz as a function
of I', full curve: HNC result based on the compress-
ibility equation (15};dashed line: HNC result based on
differentiation of the equation of state; dots: MC results.

gram used in Ref. 2 needed only slight modifica-
tions to be adapted to the two component case, and
we refer the reader to that paper for technical de-
tails, particularly the treatment of the long range
of the Coulomb potential under periodic boundary
conditions by Ewald summation techniques.

The first (0.5-1) x 10' configurations of each run
were discarded and the internal energy and pair
distribution function averaged over a further (2-4)
x 10' configurations. The results for the internal
energy of seven different (I',x) states of a 128-ion
system are summarized in Table III where they
are compared with the HNC results. In calculating
4u we have used the MC results for the QCP given
in Ref. 2. In order to estimate the N dependence
of the MC energies, we repeated three runs for a
system of 250 ions and these results are also dis-
played in Table III. Since the estimated statistical
uncertainty in u is of the order of +0.01, the dif-
ferences between the N= 3.28 and N= 250 results
are well within the combined uncertainties, and
we are therefore confident that the quoted energy
values are close to their thermodynamic limit.

Inspection of Table OI shows that the "exact" MC
energies are systematically lower than their HNC
counterparts, though the relative difference is al-

2.

accuracy of the HNC equation of state (see Sec.
V). Both estimates of the compressibility show
that }('r/Xr becomes negaNue for 1"& 1, just as in
the case of the OCP. ' It has been shown however
that this feature entails no fundamental difficulty. "

An example of the three pair-distribution func-
tions g„„(x}is shown in Fig. 2 and compared to the
MC results. As expected g»(x} (corresponding to
the higher charge species) shows more structure
than g»(x) and g„(x).Contrary to the nonlinear
DH result, the g„(x)exhibit oscillations, charac-
teristic of short-range order, above some critical
value of I" (of order unity) for a given value of x,.
The c'„„(x)'s,defined by (22} are very-short-
ranged functions; beyond x = 2 all three are prac-
tically zero. The full direct-correlation functions
c„„(x)have a behavior qualitatively similar to that
of c(x) for the OCP [cf. Fig. 3 of Ref. 2(a)].

1 ~ ~

0.

1 ~ ~

0,

V. MONTE CARLO RESULTS

In order to check our HNC results and, in par-
ticular, the validity of (28), we have carried out
Monte Carlo computer "experiments" for a TCP
with ionic charge Z, =1 and Z, = 2, for a range of
X' values and three concentrations. The MC pro-

0.
0. 2.

FIG. 2. From top to bottom: g&&(x), g&&(x}, and

g22(x} as a function of ~ =r/~, for an ionic mixture Z&
=1, Z2=2, at r =40, x~ =0.5; full curves: HNC results;
dots: MC results.
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TABLE IG. Comparison between Monte Carlo and HNC

results for the excess internal energy u and the excess
energy of mixing Du tcf. Eq. (27)], for ionic mixtures
with Z& =1 and Z2 =2. N is the number of particles used
in the MC simulations.

quantitative differences that occur for the pair
functions, is the result of cancellation of positive
and negative errors in the short-range part of the
HNC pair functions. This is a quite general fea-
ture for both the TCP and the OCP.

HNC
-u Au

1 0 5 128
1 0.5 250
5 0 5 128

10 0.75 128
10 0.5 128
10 0.25 128
10 0,248 250
20 0.5 128
20 0.5 250
40 0.5 128

1.651
1.645
9.715

13.777
20.134
26.964
27.016
41.201
41.191
83.643

0.002
0.008
0.000

-0.002
-0.010
-0.001

0.004
-0.004

0.006
-0.024

1.639 0.005

9.638
13.670
19.975
26.771
26.828

0.004
0.003
0.005
0.004
0.004

40.919 0.004

83.161 0.004

ways less than IVo; a similar situation holds for
the OCP. In view of the statistical uncertainties
in the MC data, the excess energy of mixing can-
not be determined with the precision of the HNC

results; according to the latter, 4u is positive
and always less than 0.005, which is below the
statistical noise level of the MC results. Bearing
this in mind, the value hu= 0 for all I' and xy would
be compatible with the MC data quoted in Table
III. If we adopt this value, the "exact" equation of
state of the TCP reduces to (28), where uo(l ) is
now the "exact" internal energy of the OCP. ' This
has been fitted as a simple function of F,
by DeWitt"

u, (r) = aI'+ bI'~'+ c. (32)

The best fit of the MC energy data. over the range
1~ 1"~ 160 is achieved with a= -0.896434, 5
= 0.86185, c = -0.5551. The corresponding excess
free-energy function is

fo(r) =aI'+4br'~'+ c lnI'+ d, (33)

with d= -2.996. The isothermal compressibility
obtained by differentiating the internal energy via
(26) is in good agreement with the HNC compres-
sibility obtained in a similar fashion, as shown in
Fig. 1 for equal concentrations of the ions. Since
the pair correlation functions obtained by the MC
method are "exact," the compressibility calculated
through (15) agrees with its value obtained via (26),
except for numerical inaccuracies due to statisti-
cal errors.

Figure 2 shows the three pair-distribution func-
tions at j. = 40, x, = 0.5, from the MC and HNC cal-
culations. The MC g„„(x)'sare seen to exhibit a
more pronounced structure than their HNC count-
erparts. The excellent agreement between the MC
and HNC internal energies, despite the appreciable

1 I 4v(z, )'
Ho=~y Q ~,

' (p-„p„.-&), (34)

where N=N, +N, is the total number of ions of
charge Z, and p„-=p„- +p-„"'. If we consider H-H,
[where H is given by (1)]as a perturbation, we
know from the Gibbs-Bogoliubov inequality that
the sum of the zeroth- and first-order terms of
thermodynamic perturbation theory yield an upper
bound to the excess Helmholtz free energy of the
TCP for any choice of Z, (Ref. 21):

f(I',x,) f,(I'Z,') +(PI—N)(H —Hg (35)

where the statistical average of H -H, is taken
over the reference system canonical ensemble.
Equation (41) is easily transformed into

f(I', x,) f,(I'Z,') + [((Z)—'„.„-Z,')!Z',)u, (I'Z', ) . (36)

We now minimize the right-hand side of (36) with
respect to Z, ; using (30) thxs leads to the follow-
ing simple equation for Z,:

(Z,' —(Z)„'.c„"'(rZ,') = 0,
where c„"'is the specific heat at constant volume
of the OCP; since c+'& 0, the only solution of (SV)
is Z, = (Z),„.The correspondingupper bound is not
very useful since the predicted free energies lie
more than 5' above their exact values for Z,lz,
=2.

On the other hand the ion sphere model, which
leads to the lower bound (18) for the energy, sug-
gests. the choice

z -&z)'~'&z &q

(SV)

(38)

for the effective charge. " With this choice we
find, from (32) and (33), for r'&1:

VI. "ONE-FLUID" MODELS

Although we now have at our disposal a very ac-
curate equation of state of the TCP, it is interest-
ing to see whether one can formulate a simple van
der Waals "one-fluid theory" of ionic mixtures in
terms of the properties of the OCP, and some
"effective" charge Z,. Such theories have been
moderately successful in the description of simple
liquid mixtures of components which are not too
dissimilar. The main problem lies in finding a
simple recipe for determining Z,. In terms of
Z„the interaction Hamiltonian of the one-compo-
nent reference system reads
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VII. MISCIBILITY IN A RIGID BACKGROUND

Until now we have been concerned only with the
thermodynamic properties of ionic mixtures with-
out explicitly considering the properties of the
background (i.e. , the degenerate electron gas) and
without investigating the possibility of phase sepa-
ration (or demixing). Since the electron gas is
supposed to be completely degenerate, its prop-
erties depend only on x„asdefined by (5). In
particular, if the electrons are nonrelativistic
(r, & 10 '), their pressure P, is given approximate-
ly by the Nozieres-Pines formula":

P, V 1.473 0.305

S S
(42)

We have checked that the effect of finite tempera-
ture corrections on the phase diagrams, which
will be presented later, is completely negligible.
The total pressure of the system is the sum of ion-
ic and electronic pressures

P= P, +P;.
If we investigate the possibility of phase separa-

(rt ) 5rt1/4[((z5/3) )1/4 ((z5/3)1/4) ]

(39)

bf(r', x,) = 4bu+ c(ln(Z'/ /„-(lnZ'/'), „). (40)

In the range of validity of these formulas, bu and
nf are both positive slowly increasing functions of
I"; the values predicted by (39) and (40) are about
an order of magnitude larger than the correspond-
ing HNC or MC results. For Z,/Z, =2, x, =0.5, and
I' = 40 (I"' = 45.79), (39) predicts d u = 0.078 and (40)
/)f=0. 222. These figures, although small, are
definitely larger than the statistical errors on our
Monte Carlo results which predict that these quan-
tities differ from zero by less than the combined
statistical uncertainties ( 0.03 for nu). We con-
clude that, although the choice (38) in conjunction
with the OCP equation of state yields excellent
absolute thermodynamic properties, the small
di ffexences b,u and bf, which are essential in de-
termining the thermodynamic stability of the TCP
against demixing (cf. Sec. VII), are strongly over
estimated by this simple "one-fluid model. "

If we assume that the free energy of the crystal-
line phase is obtained with a comparable accuracy
when calculated in the framework of the one-fluid
model with Z, given by (38), we can estimate the
coexistence curve between the fluid and solid
phases of the TCP in the (I",x,) plane from the
known result for the OCP. ' The curve is then
simply given by

r'(z'/')„= r(z)', „'(z'/'),„=155. (41)

tion at constant pressure, we must consider the
Gibbs free energy of mixing

nG= G(P, T,¹,xi) —G(P, T,¹i,x, = 1)

G(P, T, N, ,x, =O), (43)

nG = r F=F(p', T, N, x,) -F(p', T,N„x,= I)

-E(p', T,N„x,=0),

or equivalently,

prF pE, pE(r', x,) -x,
N

(r', x, =1)

(44)

(r,x, = o). (45)

pn, E/N is the sum of the excess part &f, which
has been ealeulated in the preceding sections, and
of the ideal-gas part (i.e. , minus the ideal entropy
of mixing):

pnF XgZ$ +2~2—Af +x~ In( )
+x In

( ) (46)

From our result for hf, Eg. (31), it is clear that
the TCP is miscible under all conditions in the
limit r, -0, since the excess free energy of mix-
ing hf is too small to compensate the ideal entropy
of mixing.

However for finite values of r„the ionic contri-
bution to the pressure ceases to be negligible to
the electronic contribution. The condition of equal
pressures for the coexisting phases leads then to
different charge densities of these phases, and the
calculated bG exhibits regions of negative curva-
ture as a function of x, (for fixed P and T) which
are characteristic of phase separation. These ther-
modynamically unstable states are eliminated by
the usual double-tangent construction.

The resulting coexistence curves in the (T,x,)
plane are shown in Figs. 3 (Z, = 1,Z, =2) and 4 (Z,
= 3) for two values of the reduced pressure m = Pa04/
e'. m= 1 corresponds to a pressure of 294.2 Mbar;
a reduced pressure m= 0.1 is typical of pressures
believed to exist in the deep interior of Jupiter. In

wh~re N'=Z, N, +ZP', is the total number of charg-
es (i.e. , electrons),

N,'=(Z,x,/Z)¹= Z,N, and N,'=(Z~,/Z)¹= Z+, .
%'e first consider the simplest case where the

ionic pressure is negligible compared to the elec-
tronic pressure (P, «P,): this corresponds to the
limit x, -o, typical of white dwarf matter (where
r, =10 '). Since P, is a function of r, only, the
condition of constant pressure is then equivalent to
the condition of constant charge density, and b, G
coincides with &F, which depends now only on ion-
ic properties:
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VIII. QUANTUM- AND ELECTRON-SCREENING

CORRECTIONS

15.

1p.
hC

2.

p I 4 1 6 Xi

FlG. 3. Phase-separation curves for H+ -He++ mix-
tures under reduced pressures n =0.1 (upper curves)
and m =0.01 (lower curves). The dashed curves are for
a rigid background, whereas the full curves correspond
to a polarized background with Lindhard screening and
include ionic quantum corrections. The dash-dotted
lines are estimates of the Quid-solid coexistence curves
based on Eq. (1).

calculating these coexistence curves, we have used
our HNC results for the free energy and the equa-
tion of state of the TCP (see Sec. IV), including
the small nonadditive corrections bu and hf. The
coexistence curves are practically unchanged upon
setting hu=rhf=0, or upon replacing the HNC re-
sults by the MC data.

Inspection of Figs. 3 and 4 shows that, as ex-
pected, the critical temperature of demixing de-
creases with increasing pressure, since the cor-
responding charge density then increases, and we
have seen that in the limit r, 0, the mixture is
always stable. The most striking difference be-
tween the two sets of coexistence curves is the
sharp increase of the critical temperature (by al-
most an order of magnitude!) for a given pressure,
in going from Z, =2 to Z, =S.

Coexistence curves for H'-He" mixtures have
also been calculated by Pollock and Alder, "using
the one-fluid model with the effective charge given
by (38). The excess internal and free energies of
mixing are then given by (39) and (40). The re-
sulting (T,x,) curves lie well 'above our results,
indicating that the precise location of these coex-
istence curves depends very sensitively on 4u and
hf, which are overestiniated by the one-fluidmod-
el.

Before we can compare our coexistence curves
with the results of Stevenson, ' we must include
quantum corrections for the ions and electron
screening corrections in our calculations. This
will be done in Sec. VIII.

In this section we apply our results for the TCP
model to a "realistic" calculation of the thermo-
dynamics and phase diagram of H'-He" and H'-
Li'+' mixtures. To do so we must include two ef-

fectss

which are generally non-negligible in the pres-
sure and temperature range considered here:
quantum corrections to the thermodynamic proper-
ties of the ions and electron-screening corrections
due to the polarization of the electron gas by the
ions. Both corrections have already been consi-
dered in the case of the QCP,"'"and we present
here the straightforward extension to the TCP.

Let A„=(h'/2vMPaT)' ' be the de Broglie ther-
mal wavelength of the ionic species v of mass M„.
We expect quantum effects to become important
when

(46')

where f" is the classical excess free energy per
ion, defined by equation (24). As expected the
quantum corrections break the simple scale in-
variance of the excess thermodynamic properties

j

5.

2

p l4 &.6

FIG. 4. Same as Fig. 3, but for H+-Li+++ mixtures
under reduced pressures m'=0. 1 and 1.

where m is the electron rest mass. As long as
A„/a' « I, the Wigner expansion" of the free en-
ergy in powers of h' is expected to be sufficient to
account for ion quantum corrections. Limiting our-
selves to the lowest-order correction (- h'), we
obtain, after a straightforward calculation, and
with the help of Poisson's equation:
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of the classical TCP, i.e. , their dependence on
two, rather than three, independent variables (1"'
or I' and x,}, through the introduction of the char-
acteristic length(46'); the excess free energy (47)
of the ions depends now on r„in addition to I" and

X]e
On the other hand the rigid uniform background

approximation for the electron gas is valid only at
very high density (r, -0). At densities of astro-
physical interest or in situations characteristic of
laser-imposed superdense matter (10 '& r, S 1),
the electron gas is polarized by the ionic charge
distribution and the formation of polarization
clouds around the ions modifies the ion-ion inter-
action. The importance of this effect can be char-
acterized by the dimensionless Thomas-Fermi
wave vector

q = g}&, = (12(Z),„/v)'~'r,'~'. (46)

The rigid background approximation becomes ex-
act in the limit qT~ 0. Electron screening effects
are expected to become important when q» = 1.

Vfe now follow closely the very similar calcula-
tionfor the OCP." Limiting ourselves to the linear
response of the electron gas to the ionic charge
distribution, and considering this response to be
instantaneous, which is justified in view of the
large mass ratios M„/m, we write the interaction
Hamiltonian of the ions in the presence of a re-
sponding background:

H = Q ~, [p~p' —N(Z).'& l

1 4me' 1
+ Q o

( )
-1 pp. =Ho+Hi& (49)

P(H,) 1
N Sm

S'(q) ao(q) q' dq, (51)

where S'(q} is the charge structure factor (10) of
the reference system and zu(q) is the perturbation
potential, divided by k~T, and averaged over ionic

where e(k) is the static dielectric constant of the
degenerate electron gas, H, is the "unperturbed"
(or "reference") Hamiltonian (1), and H, is the
"perturbation. " This separation of H is justified,
since &(k)-1 for all k, in the limit r, -0, and
hence H reduces to Ho in that limit. For finite val-
ues of r~ we have treated H, by thermodynamic
perturbation theory. " To first order the excess
Hemholtz free energy per particle is given by

QI', x,; r,) =f"'(I',x,)+ (1/N)(PH, ), (50)

where f"~ is the free energy of the reference sys-
tem, i.e. , the TCP, and the statistical average is
taken over the reference system canonical ensem-
ble. In reduced units,

species:

w(q) = (31 (Z')„/q')[1/e(q) —1]. (52)

1-(qT,/q')f(y)G(y)
' (54)

The RPA is recovered with the particular choice
G( y) = 0. Geldart and Vosko' suggested the form

~(y) = v'/(2y'+g),

with g= 1/(1+ 0 026r, ) in. order to satisfy the com-
pressibility sum rule for the degenerate electron
gas." We shall refer to this form of &'.(q) as the
Hubba. rd-Geldart-Vosko (HGV) dielectric function.
Note that for r, & 0.01, the electron gas becomes
relativistic, so that the relativistic counterpart of
e~(q) must be used. "'"

Replacing (52) and (54) in (51) we obtain the fol-
lowing expression for the first-order correction
to the free energy:

I"(Z')„,"",
( )

&(q) -1
v ~o e(q)

'( )f( )
q' qTvf(y}H(y}—

where H(y) = &(y) -1.
Since we are mainly interested in situations

where q»& 1, we have expanded f"' in powers of
qTv (i.e. , in powers of r,'~):

f"'(I",x, ; r,}= qT~[A(I', x,) + -' qTv+ C(1,x,)qTF

+D(1',x,)qTF+O(q~TF)], (57)

where the coefficients A. , C, and D are given ex-

In the following we shall limit ourselves to the
first-order theory (50), which yields an upper
bound to the free energy of the ionic system char-
acterized by the Hamiltonian (49). As long as we
consider situations where r, ~ 1, we expect the
higher-order terms to be small. "

In order to evaluate (51), we must choose an ap-
propriate dielectric constant E(q). In the high-den-
sity limit (r, «1), the random-phase approximation
(RPA) becomes exact, and the corresponding z(q)
due to Lindhard' reads

&,(q) = 1+ (qT, /q') f( y),

f(y) =2+ [(1-y')/4y]»~(1+y)/(1-y)
~

I

where y = q/2qr and qr —(9v(Z),„/4)'~'is the reduced
Fermi wave number.

For r, =1, E~(q) must be corrected for exchange
and correlation effects. Follow'ing the pioneer work
of Hubbard, ' we cast e(q) in the general form



16 STATISTICAL MECHANICS OF DENSE IONIZED MATTER. ..

TABLE IV. Electron-screening corrections to the excess Helmholtz free energy of O'-He++
mixtures at r, =0.8. ftoi is the free energy in a rigid background; fP and f~J are the first-
order screening corrections using the Lindhard and HGV dielectric functions. Our data are
based on the HNC results; the MC data are those of DeWitt and Hubbard (Ref. 7).

f (O)

$2
6

f(O fp (Mc} f (O)

S2=Y= 'L

f(0

5
10
20
40
60

-5.193
-11,254
-23.837
-49.634
-75.774

-0.949
-1.518
—2.557
—4.541
-6.484

-0.785
-1.366
-2.427
-4.433
-6.381

-8.687
-18.532
-38.800
-80.106

-121.84

-1.683
-2.837
-5.048
-9.385

-13.69

-1.696
-2.905
—5.208
-9.706

—14.16

plicitly in Appendix B. In practice the expansion
turns out to converge surprisingly well up to q»
=2 for 1 &1. The dominant term is seen to be
linear in r„in agreement with the Monte Carlo re-
sults of De Witt and Hubbard. ' Note that the coef-
ficients of the two lowest-order terms [A(I', x) and
+] are in fact independent of the function G(y), so
that the values obtained for f"' turn out to be ra-
ther insensitive to the choice of &(q}.

We have calculated f"' and the coefficients, A,
C, and D using our ONC results for the TCP charge
structure factor. Our results for A. , C, and D
have been fitted by simple functions of I', for fixed
values of x„andthese are given in Appendix B.
Some numerical examples at r, = 0.8 are given in
Table IV for O'-He mixtures, and a comparison
is made with the Monte Carlo results obtained by
De Witt and Hubbard' for x, = —,

'
( the highest He

concentration considered by these authors), using
Lindhard screening. The agreement between their
and our f"' values is satisfactory considering the
rather large numerical uncertainties on the MC
data of these authors. The table also confronts the
free energies which we have calculated using the
Lindhard and HGV dielectric functions at r, = 0.8
andy =0.5.

It is worthwhile mentioning that, for fixed values
of the charge density, and temperature (i.e. , r,
and I"'), f"' is nearly additive, exactly as f io',

both for O'-He and O'-Li mixtures:

f"'(Pl;x,;r,) =x f"'(P', x,=l;r,}

+x,f&»(l",x, = l;r, ) (58)

However, the small nonadditive contribution b f'"
turns out to be crucial in the accurate determina-
tion of phase diagrams.

W'e have recalculated the O'-He" and H+-Li"'
coexistence curves, including the lowest-order
tluantum correction (4V) and electron screening
correction (56). The various contributions to the
Gibbs free energy of mixing are shown for a typical
case in Fig. 5, as a function of x,. The contribu-

tions to 4G from electron screening are nearly
identical when calculated with the Lindhard or HGV
dielectric functions; the corresponding coexistence
curves are very close and we present in Figs. 3
and 4 the results obtained with the Lindhard di-
electric function at two reduced pressures. From
the figures it is immediately apparent that the
quantum and screening corrections do not drasti-
cally modify the coexistence curves obtained:in
Sec. VII for purely classica/. ions in a rj~d back-
ground.

At m =O, i, the O'-He" coexistence curve exhi-
bits two maxima, i.e. , two critical points separa-
ted by a minimum. This feature is due to the
screening corrections and persists at higher pres-
sures, but disappears towards lower pressures
where the two maxima merge into one. No simi-
lar feature is observed for O'-Li' mixtures. %e
must stress however that the calculated coexistence
curves are very sensitive to small numerical in-
accuracies on b, G. The precise location of the cri-
tical point and the existence of the double maxi-
mum could very well be considerably affected by
higher-order screening corrections. However,
the explicit calculation of such terms requires ap-
proximations leading to uncertainties which are of
the same order of magnitude as the corrections
themselves; consequently we have not included
higher-order corrections in our calculations.

In Fig. 6 we compare our coexistence curve with
the results of Stevenson' for a O'-He mixture at
m = 0.1. Our results obtained with the Lindhard and
HGV dielectric functions are nearly undistinguish-
able on the scale of the figure. Stevensen used the
HGV dielectric function and added corrections for
the nonlinear response of the electron gas to the
ionic charge distribution; he predicts a somewhat
higher critical temperature, but the overall agree-
ment between his and our results is satisfactory,
considering the very different approaches.

Finally, in Table V, we list the critical tempera-
tures and concentrations, as a function of m, both
for' O'-He" and O'-. Li mixtures.
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FIG. 6. Comparison between H+ -He++ phase-separation
curves for a reduced pressure ~=0.1 (29.4 Mbar) under
the following conditions: dashed curve, rigid back-
ground; full curve, polarized background with Lindhard
screening; dots, Hubbard-Geldart-Vosko screening
(only a few points are indicated); circles, results of
Stevenson (Ref. 5) using the latter dielectric constant.
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TABLE V. Variation of critical temperature, density
(r,), and concentration with reduced pressure x =Pa40/e

(m =1 corresponds to a pressure of 294.2 Mbar) for ionic
mixtures with &~=1, &2=2 and 3, using Lindhard scre-
ening. In the case &2=2, we have indicated the critical
parameters corresponding to the two maxima in the co-
existence curve which appear for ~ ~ 0.1.

—
~ 15

FIG. 5. Contributions to the Gibbs free energy of
mixing PEG/N for a H+-He++ mixture under a reduced
pressure n =0.1 and T =5850 K. (1) Ideal entropy of
mixing; (2) electronic contribution [cf. Eq. (42)]; (3)
minus the ionic excess contribution in a rigid back-
ground; (4) minus the screening correction, using the
Lindhard e(k); (5) h2 quantum correction to the ionic
contribution; (6) sum of all five contributions.
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6.44
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0.815
0.835
0.84
0.84

0.23
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0.19
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0.615
0.547

IX. CONCLUSIONS

We have considered in some detail a simple mod-
el of two species of point ions in a uniform back-
ground. If this background is assumed to be rigid,
the main result of our accurate numerical calcula-
tions is that the excess thermodynamic properties

0.05
0.1
0.2
0.5
1

1 & 2

5.44
5.35
4.71
3.63
3.22

0,82
0.82
0.815
0.75
0.70

1.095
0,964
0.842
0.703
0.619
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TABLE VI. Coefficients aq, a2, and a3 in Eq. (B5) as
a function of concentration for I"-He and K"-Li+++
mixtures.

a& (x&) a, (x,) a3 (xg)

are very nearly additive at constant I", i.e. , the
excess properties of mixing (hu, hf, hG) repre-
sent a practically negligible fraction of the excess
properties of the mixture and of the pure phases.
There is no obvious physical explanation for this
striking feature. The only hint towards an under-
standing. of the additivity is the fact that the lower
bound (18) for the internal energy satisfies the
property exactly; for large values of I" the inter-
nal energy of the mixture, derived from our HNC

or MC calculations, lies within a few percent of
this bound.

The near additivity of the thermodynamic prop-
erties of the mixture at constant I" allows us to ex-
press these in terms of the properties of the one-
component plasma which are known very accura-
tely. We used the corresponding equation of state
to study the coexistence curves of H'-He" and H'-
Li'" mixtures in a rigid and in a responding elec-
tron background. The first case is a good approxi-
mation in the high-density limit (r, «1), typical of
degenerate stellar matter (white dwarfs). Our re-
sults clearly indicate that under such extreme con-
ditions ionic mixtures are always stable against
demixing. At lower densities (0.5& x, —1), typica, l
of the interior of Jupiter, the situation is less sim-
ple, because electron screening effects become
important. In fact in the corresponding pressure
range (P = 50 Mbar), hydrogen is completely ioni-
zed, but helium may very well. not be pressure
ionized. " Our calculations, which assume com-
plete ionization of both ionic species, show that
the electron screening effects, treated to lowest
order, do not appreciably modify the coexistence
curves, and in particular the critical temperature,
as compared to the rigid background case. The
values we have obtained for the critical tempera-
tures are very sensitive to small changes in the

excess Gibbs free energy of mixing d G, especially
to the electron-screening contribution to b, G. In
particular the existence of a double maximum in
the H'-He" coexistence curves at high pressures
must be accepted with caution, since higher-order
electron-screening corrections may very well
change b, G sufficiently to suppress this feature.

Finally we would like to point out that our re-
sults can be applied to cases where one (or both}
ionic species are only partially ionized (e.g. , Li ),
provided I" is sufficiently large so that the remain-
ing ion core is of smaller radius than the distance
of closest approach, which is essentially deter-
mined by the range of interionic distances r over
which the pair-distribution functions g„,(r) are
practically zero.
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APPENDIX A

ln this appendix we prove Eq. (25) valid in the
framework of HNC theory. Let z„=e~~~/(pp'„) be
the activities of the two ionic species; A„is the
thermal de Broglie wavelength for species v; then
P p, „'"=lnz„ is given by the exact relation"

2

lnz„=p ~ r x, v„,rh„,x;X, Al
p. =1

where h„„(r;X)is the pair-correlation function be-
tween a single ion of species v which interacts
with the ions of species p, via the potential Xv„~(x),
0 «X «1. Note that h„„replaceshere the usual g„,
to account for the background interaction. If we
define the function y (x; A) through

Zf 1y Z2=2 h„,(r; X) = exp [-PXv„,(~) +y„,(r; X) ] -1,
0
0.25
0.50
0.75
1

-0.142548
—0.116518
-0.088105
—0.056562
—0.019573

-0.40086
-0.38382
—0.36582
-0.34315
—0.33073

Zi1Z23

0.08151
0.08611
0.09376
0.10282
0.13331

we obtain upon differentiation with respect to X:

Pv„„(r)h„„(~;~) = —h„,(r; ~) + —, y„,(~; ~)
8 8

8-Pv„,(~) + y,„(r;&) h„—,(~; &),

0
0.25
0.5
0.75
1

-0.388602
—0.316052
—0.244867
-0.141028
—0.019573

-0.49450
—0.45826
-0.420 56
-0.36722
-0.33073

0.08339
0.08229
0.08537
0.08490
0.13331

(A8)

upon replacing (A3) in (A1), we can immediately
perform the integration over X for the first three
terms on the right-hand side of (AS} and we are
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left with the exact relation
2

lnz„=p ' drgx„[y»(r) -h»(r) -Pe»(r)]
JL ~1

2
9

+ p J
dX dr+ x~h»(ril(. )—y»(r~~)iax

(A4)

where h„„(r)-=h„„(r;X = 1) and y„„(r)=-y„„(r;& = 1).
The second term on the right-hand side of (A4) can
also be integrated over X if we make the HNC ap-

proximation (23), according to which

y„„(r;X)=h„„(r;X)-c„„(r;X), (A5)

where use was'made of (22} and (A2). If S» and y»
are the Fourier transform of h„„andy„„,we have
the following Ornstein-Zernike relation [cf. (V)]:

y„(k;&)=gx,S„(k;X)[h„(k)-y „(k)]. (A6)

The second term on the right-hand side of (A4) then
becomes, upon using Parseval's theorem and (A6):

p ( dX dkQ x„h»(k;X)—y„„(k;X) = — dk d}(.Q Q x„x—[h„„(k;h)h„ (k;X)][h „(k)-y „(k)]-o ~0

dkQ h„„(k)Qx h„(k)[h „(k)-y „(k)]
O

=P
J dr+ h„„(r)y„„(r)

Gathering results and returning to reduced units
(x= r/a and pa'= 3/4m), we recover Eg. (25).

APPENDIX B

The first-order electron-screening correction
to the Helmholtz free energy of the TCP, given
by E(l. (56), can be expanded in powers of the re-
duced Thomas-Fermi wave number q», defined
by (48). A straightforward calculation yields for
the coefficients A, C, and D in Eq. (5V):

~(~ )
I'(Z'),„1,"

d
S'( y}y( y) (I 1);Xq =—

C(I', x,) = — ", dy -~
I'(Z') 1 " 1

Sq~ 0 y
2

&'((|if*(yl&((t)+3& Z' y'),

&(I";x,) =(1/48q~)(3 +3/g —8q~6),

(82)

(E3)

where 6 is defined in Eg. (14), and g was introduced
in E(l. (55); 1/g=o (1) for the Lindhard (HGV) di
electric function; 8'(q) is the charge structure fac
tor of the TCP. If we neglect the very small ex-
cess free energy of mixing hf [cf. Ecl. (31)], ex-
pression (14) for 6 simplifies to

TABLE VII. Coefficients cq, c2, and ce of C(L';~~) in Eq. (B5),as a function of concentra-
tion for H+-He++ and H -Li++ mixtures, and for the Lindhard and HGV dielectric functions.

cg (xg)

Lindbard
c2 (~i) c3 (s1)

Z f 1$ Z2 2

HGV

c2 (s,) c3 (x,)

0
0.25
0.5
0.75
1

0
0.25
0.5
0.75
1

0.001604
0.003063
0.002634
0.001882

-0.00394

0.007218
0.006976
0.010359
0.008041

-0.000394

0.15438
0.11331
0.11916
0.11834
0.10544

0.19204
0.19153
0.14761
0.16151
0.10544

-0.20143
-0.15311
-0.16981
-0.18269
-0.20127

Z$ —1 Z2 3

-0.20176
-0.20477
-0.16958
-0.20293
-0.20127

0.000292
0.001888
0.001665
0.001232

-0.000484

0.003528
0.003562
0.007382
0.005898

-0.000484

0.14175
0.10064
0.10639
0.10571
0.09348

0.17929
0.17841
0.13422
0.14802
0.09348

-0.1999V
-0.15179
-0.16846
-0.18143
-0.20020

-0.20030
-0.20324
-0.16808
-0.20140
-0.20020
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TABLE VIII. Coefficients d&-ds in Eq. {B6),as a function of concentration for H"-He+++

and E"-Li+ + mixtures.

d3

0
0.25
0.5
0.75
1

0
0.25
0.5
0.75
1

-0.29538x 10
—0.37034xlp 3

0.19607xlp 2

0.23228 xlp '
-0.73845xlp 3

-0.66461x10-2
0.69752x10"3

0.54191x10 2

0.10614xlp '
-0.73845x lp

+j 1j +2 2

0.36762x 10 0.55775x 10
0.19893x10 ~ 0.138702
0.76733x lp 2 0.198421
p.17191xlp ' p.159741
0.18381x10 ' 0.55775xlp '

+2

0.55143x10 ' p.55775xlp
0.15960x10 0.184669
0.12569x 10 0.219740
0.17276x10 0.236936
0.18381x10 ' p.55775x lp-'

0.103398
-0.84515xlp-
-0.73436xlp ~

-0.28266 xlP ~

0.206791

0.68932xlp ~

—0.40724xlp ~

-0.56575xlp '
-0.63926xlp ~

0.206796

-0.143098
-0.106490
-0.122229
-0.190719
-0.572391

-0.63599x lp ~

-0.43747x 10-~
-0.60028xlp '
-0.10328$
-0.572391

aP (Z).,',
sr(z) e ' (z'I

ted the calculated values of A, C, and D by simple
functions of I' for different concentrations. For
I'&1, we have represented A. by

(84) A(1', x,) = a,(x,)I'+ a,(x,)I'~'+ a,(x,), (85)

The derivatives of P with respect to p' and x, are
expressible in terms of the partial inverse com-
pressibilities (8P/sp, ), r and (8P/Bp, ), r; to be
consistent, we have calculated these from the
q-0 limits of the q,„(q)[ef. Eq. (15)), rather than

by differentiating the equation of state based on our
HNC results. From (81) we see that A is indepen-
dent of G(y), i.e. , A is the same for the Lindhard,
HGV, or any other dielectric function which in-
corporates the correct HPA high-density limit.
C and D, onthe other hand, depend on the chosen
dielectric function. For practical use we have fit-

5 = d, (x,)I'+ d, (x,)I'~'+ d,(x,)

+d,(x,)1' '~'+d, (x,)i' ', (86)

the coefficients d& are given in Table VIII. For
concentrations not listed in the tables, A. , C, and
~ are obtained with sufficient accuracy by a La-
grange interpolation formula.

and we have used a similar function for C, with
coefficients c„c„andc,. These coefficients are
listed in Tables VI and VII for Z, = 1, Z, = 2 and 3,
and various concentrations. Finally we have re-
presented the coefficient & in D by
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