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A theory of surface tension is formulated for liquid microclusters which are so small that the homogeneous
properties of the bulk liquid are not attained even at the center. The choice of the equimolecular dividing
surface is made possible by employing a reference bulk liquid which possesses a different chemical potential
from that of the real system. Cluster-size dependence of the surface tension is formulated in such a manner
that the results of computer simulations for microclusters and for the bulk liquid may be employed, and it is
found that for the size range relevant in nucleation the value of surface tension is appreciably greater than
the bulk surface tension. The formalism is extended to noncritical microclusters, and the Gibbs-Thomson
equation is derived in the present formalism to provide the size of a critical nucleus under a given

supersaturation.

I. INTRODUCTION

Liquid microclusters relevant in nucleation from
vapor are usually extremely small in size so that
the homogeneous properties of the bulk liquid are
probably not attained even at the center. Gibbs’
theory of surface tension' is, in principle, appli-
cable to those microclusters as well, but the
location of the dividing surface at the surface of
tension limits its practical applicability because
of the difficulty involved in calculating the posi-
tion of the surface of tension.?~® Employment of
the equimolecular dividing surface, on the other
hand, involves the curvature term in the funda-
mental equation,'+®~*!* which causes much incon-
venience in practical applications.

An alternative formalism for liquid micro-
clusters was provided by Hill*? as an application
of the method of small-system thermodynamics.'?
Hill’s formalism does not invoke the concept of
either the dividing surface or the surface tension,
and is more general than the Gibbs method in
this respect. However, in view of practical appli-
cations, Gibbs’ method is superior to Hill’s in
that the former intends to represent the thermo-
dynamic quantities of microclusters in terms of
the measurable quantities of the macroscopic
system. It is desirable, therefore, to develop
a convenient alternative formalism of surface
tension for liquid microclusters; this is intended
in the present paper. In the following develop-
ment we follow closely the idea behind the theory
of surface tension by Gibbs.!

The value of surface tension for microclusters
will be appreciably different from that obtainable
from surface-tension measurements such as the
capillary-rise experiment. Thus, in order for
the thermodynamics of a microcluster in Gibbs’
method to be useful in practical applications,
formulation of the theory of size dependence of

the surface tension is inevitable. This problem
was already investigated by Tolman,' but his
theory is not applicable to such extremely small
clusters as those investigated here. In addition,
in Tolman’s theory the cluster-size dependence is
expressed in terms of the distance A between the
surface of tension and the equimolecular dividing
surface which is difficult to calculate.?=® There-
fore, a new theory for the size dependence of
surface tension is formulated in such a manner
that the results of computer simulations for
microclusters?®+'® and for the bulk liquid!”*®* may
be employed instead of the knowledge of the
value of A. To complete the present formalism
of surface tension, noncritical microclusters are
studied and the Gibbs-Thomson equation is de-
rived to relate the size of the critical nucleus to
the pressure of a2 supersaturated vapor under a
given temperature. Problems relating to the
translation and rotation of a microcluster in
vapor'®~2! are neglected here, which will be the
subject of a future investigation.

II. THEORY FOR A CRITICAL NUCLEUS

Consider a liquid microcluster in a super-
saturated vapor, which consists of a pure sub-
stance and is in thermodynamic equilibrium. The
microcluster is assumed to be spherical. Suppose
there isa mathematical boundary of the spherical
shape within the vapor whose center coincides with the
center of the microcluster, as shown in Fig. 1.
The radius R, of the boundary is taken to be so
large that it passes through the homogeneous vapor
phase. Imagine another mathematical boundary
which, together with the spherical boundary, en-
closes a conical domain having a solid angle w,
and consider its thermodynamic properties.

Since the system under consideration is small,
the interaction between the molecules inside and
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FIG. 1. Liquid microcluster-supersaturated vapor
system.

outside the boundary must be taken into account.
Thermodynamic properties are homogeneous
along the direction perpendicular to the boundary,
so that internal energy and entropy may be con-
sidered as shared equally between the molecules
on both sides of the boundary at K,; hence the
values of those “extensive” variables for the en-
tire sphere are well defined. We define the
values of those extensive variables for the system
of a conical shape as w/47 times those for the
entire sphere. The number of molecules within
the domain fluctuates, but only the average value
is treated in thermodynamics. The thermodynamic
state of the conical domain is determined by S,
R,, w, and N, in which N denotes the number of
molecules. The fundamental equation in differen-
tial form is given by

dE =T dS~ PR dR, +0 dw + . dN, (1)

where T denotes the temperature, P, the pressure
of the gas, u the chemical potential, and ¢ is de-
fined by

0= (&) ) (2)
dw S, Ry ,N

Upon integration of Eq. (1) by keeping R, and the
nature of the system invariant, one obtains

E=TS+0ow+uN. (3)

Note that all the thermodynamic properties are
supposed to be kept uniform along the direction
perpendicular to the boundary when we consider a
differential change in the state of the system.
For example, (8E/8S); , y actually means the
value (8E,,/8S,,)r ,N”,g where the subscript 47
denotes the values'for the entire sphere. This
enables us to identify the quantity (ab/as)Rg,w,N
with temperature T of the vapor. The same is
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true for both P, and . The reason for consid-
ering a conical domain instead of the entire
sphere as a system is to obtain Eq. (3) from

Eq. (1), i.e., to make E a homogeneous function
of the first degree in terms of S, w, and N under
a fixed value of R, .

o represents the complex effect due to the ex-
istence of the interface between the microcluster
and the vapor. However, the value of ¢ cannot be
measured in practice; hence we must represent
the term o dw in terms of experimentally measur-
able quantities. Consider a reference bulk liquid
having temperature T and pressure P,, within
which we define a hypothetical microcluster as a
spherical domain enclosed by a mathematical
boundary. The pressure P; will be determined
later. Introduce a hypothetical system by re-
placing the real microcluster by the hypothetical
one and by filling the space outside the hypothet-
ical microcluster with the homogeneous vapor of
T and P,, as shown schematically in Fig. 2.
Density profiles for the real and the hypothetical
systems are schematically shown in Fig. 3. Note
that both the hypothetical microcluster and the
surrounding vapor possess the properties of the
bulk phases and that the interface does not exist
in the hypothetical system. The radius R of the
hypothetical microcluster is to be determined in
accordance with a chosen dividing surface con-
dition, which will be specified later. Once the
reference bulk liquid and the dividing surface con-
dition are specified, the hypothetical system is
defined unambiguously. The following equations
hold for the hypothetical microcluster and the
hypotketical vapor within the conical domain of
Fig. 1:

dE,=T dS,—P,dV,+ulan,, )

FIG. 2. Hypothetical system with a dividing surface
at R.
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FIG. 3. Density distribution in the real and the hy-
pothetical microcluster. p; and p, denote the densities
of the reference bulk liquid and the supersaturated vapor,
respectively.

dE, =T dS,~ P, dV,+u dN,, (5)

where the subscripts [ and g refer to the hypo-
thetical microcluster and the hypothetical vapor,
respectively. A superscript is used in p? to
distinguish it from the value of the real micro-
cluster which appears in Sec. IV. The following
equations hold from the geometry:

V,=3wR?, (6)
V,=3w(RI-R°) , (7
A =wR?, (8)

where A denotes the area of the dividing surface.
We introduce the term y dA, in which y denotes

the surface tension, as the difference between

o dw and the corresponding work terms of the

hypothetical system, i.e.,

ydA=0dw+P,dV,+P,dV}, (9)

where dV] denotes the volume change of the hypo-
thetical vapor with R, kept constant. Equation (9)
merely replaces the unknown quantity ¢ by another
unknown quantity y at this stage, but y will be re-
lated later to the macroscopically measurable
value of surface tension so that ¢ may be expres-
sed in terms of known quantities. Eliminating the
term ¢ dw from Eqs. (1) and (9), we obtain

dE =T dS+ydA-P,dV,~P,dV,+undN.  (10)

Differentials dA, dV,, dV}, and dV, in Egs. (9)
and (10) represent the changes in the state of the
hypothetical system corresponding to changes dS,
dw, dR,, and dN of the real system. The value of
R changes, under a given dividing surface con-
dition, in accordance with a change in the state
of the real system; hence dA represents the

change in area due to changes in both w and R.

In particular, Egs. (9) and (10) remain meaning-
ful even for the cases where dw=0, which will be
utilized later in the derivation of the size depend-
ence of surface tension. Note that V, and A are
not independent, and the number of independent
variables in Eq. (10) is four as in Eq. (1). Since
the system is in equilibrium, dE=0 under S, N
and the boundary of the conical domain kept in-
variant. It follows therefore that

P,-P,=2y/R. (11)
Integrating Eq. (10) by keeping R, and the nature
of the system invariant, we obtain

E=TS+yA-P,V,-P,V ,+uN. (12)
This result is also obtainable by integrating Eq.
(9) and employing Eq. (3).

Eliminating y from Eqgs. (11) and (12), one ob-
tains

_6(E-TS—uN+3P,wR?) . (13)

RS
w(P,-P,)

This equation determines the relation between R
and P, under a given state of the real system.
When the reference bulk liquid is specified, R is
determined by Eq. (13), which in turn means that
the dividing surface condition is specified. Con-
sidering that y dA is irtroduced in Eq. (9) as the
difference in the reversible work between the
systems with and without the interface, a natural
choice of the reference bulk liquid would be the
one which possesses the same p and T as those
of the real system. R is the radius of the surface
of tension in this case, as will be discussed later,
which causes much inconvenience in practical
applications due to the difficulty involved in cal-
culating its position. Hence, we take the view
that Eq. (13) determines the reference bulk
liquid under a chosen dividing surface condition.
As long as we take the view that the concept of
surface tension is a method to represent the un-
measurable work term o dw in Eq. (1) in terms
of the experimentally measurable quantities, the
choice of the reference bulk liquid is completely
arbitrary. Let us take the equimolecular di-
viding surface which is defined by the following
condition:

N, +N, =N. (14)
Equation (14) is practically equivalent to
2 7R3 =nvy, (15)

where »n denotes the number of molecules in a
cluster and v, the molecular volume of the refer-
ence bulk liquid, Since bulk liquid is nearly in-
compressible, Eq. (15) determines R in practice
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without an explicit knowledge of P,.
Introducing the excess internal energy E°* and
the excess entropy S®as

E*=E~E,~E,, S% =5-5,~5, (16)
vA may be expressed as follows:

yA =E®™ - TS®*— (11 ~ [O)N,. am
w9 in Eq. (17) is given by

ni=u,+v,(P, - P,), (18)

where P, denotes the equilibrium vapor pressure
and p, the chemical potential in equilibrium. In
Eq. (17), yA may be interpreted as the reversible
work associated with a thought process that the real
system with the interface is formed from the hypo-
thetical system without the interface. Note that yA
is not the excess Helmholtz free energy. It follows
from Eqs. (4), (5), and (10) that

dE® =T dS*™+vy dA + (it — u9) dN,. (19)

This is the fundamental equation for the “surface
system.” Differentiating Eq. (17) and combining
the result with Eq. (19), we obtain the Gibbs-.
Duhem relation as follows:

Ady=—8%dT - N, d(u - 19). (20)

This equation plays the principal role in a devel-
opment of the cluster-size dependence of the
surface tension. The reversible work required to
form a critical nucleus from a large amount of its
vapor is given by the difference in the internal
energy under entropy, number of molecules, and
total volume kept invariant. The internal energy
at the final state is given by Eq. (12) with w=4n.
The internal energy E, at the initial state of a un-
iform vapor is given by the following when the
total volume V is sufficiently large as compared
with® V;:

E, =TS—-P,V +pN. (21)
Hence, the reversible work W is given by
W=E -~ E,=yA - (P, = P,)V,. (22)
Substituting Eq. (11) into Eq. (22), we obtain
=%aR?y | (23)

This result is formally identical with that of
Gibbs!; however the meanings of R and y are of
course different.

IIIl. CLUSTER-SIZE DEPENDENCE OF
THE SURFACE TENSION

The Gibbs-Duhem relation for the surface sys-
tem under a constant temperature is given by

Ady=—-nd(u-puy), (24)
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where w is taken as 47, and N, in Eq. (20) is re-
placed by n. The Gibbs-Duhem relations for the
bulk phases are

dup =v,dP,, du}=v,dP,, (25)

in which v, denotes the molecular volume in a
supersaturated vapor. It follows from Egs. (11),
(24), and (25) that

&y =R(1-v,/v,)dP,- (2y/R)dR. (26)

When P, is altered under a constant T, the size of
the critical nucleus changes accordingly and y in
turn changes due to the size dependence of the
surface tension. Equation (26) provides the re-
lation among those quantities. To proceed further
we need a relationship between dP, and dR. As-
suming that the vapor phase is approximated to

be ideal, we have

h=p,+kT In(P,/P,). 27
It follows from Eqs. (11), (12), and (27) that
57A =(E - TS) - (E, - TS,) +37R°P,
- np, - nkT In(P,/P,). (28)

(E-TS)- (E,- TS,) in this equation may be con-
sidered as the Helmholtz free energy of a cluster,
which we denote as F(x), because the interaction
between a cluster and the surrounding vapor is
usually negligible, i.e.,

Fln)=(E-TS)- (E, - TS,). (29)

Using Eq. (29) in Eq. (28) and taking the differen-
tial of the result, one obtains

Yy, YUy
R 7Y~ &

=£§:L)All4_z_Rde+(vz‘%)dPr (30)
1

Elimination of dP, from Egs. (26) and (30) leads
to

<M+ni‘2—(7’z—)/l‘l> dR =0. (31)

R

Thus, the size dependence of the surface tension
is obtained as

(n) = _Rn 8[F(n)/n] . (32)

n
4 v, an

Calculation of y(x) in Eq. (32) depends on the
knowledge of the cluster free energy F(x), which
is not known in reality. However, F(n) was re-
cently computed for argon under the Lennard-Jones
potential through a Monte Carlo simulation'®:16;
hence it is possible to calculate y () for this case.
It is hoped that the result will indicate a general
feature for the size dependence of surface tension.
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An important problem arises in the course of the
calculation due to translation and rotation of a
cluster in vapor because they are not properly
taken into consideration in the present formalism.
Let us leave this problem to a future investiga-
tion and proceed by replacing F(z) in Eq. (32) with
the internal free energy F™ (z). Lee et al.'5"'®
actually computed the free energy of clusters with
the center of mass fixed in space. We use here
the values of Fint (1) which were obtained!® by
subtracting the rotational free energy further.
Since y(x) is determined by the slope of Fi™ ()/n,
it is desired to represent the simulation data by
an explicit function. The condition that y(z) must
approach a constant value y,, as n -« requires
Fint (33)/n to approach the form f., +C,n""/3, where
C, is a constant and f_ denotes the molecular
Helmholtz free energy of the bulk liquid. Let us
employ the following function to represent the
data:

Fint(n)/n=fu+Cin™ 2 +Con2* +Con™,  (33)

where C, and C, are constants. The value of C, is
related to vy, by

% =[4(3v, 2] /3C,. (34)

To evaluate the constants in Eq. (33) we employ,

in addition to the simulation data for liquid micro-
clusters, the simulation data for the bulk liquid'”+!®
which were obtained for argon under the same
potential as that used by Lee et al.'**'® Thus, the
following functions are obtained through least-
squares fitting of Eq. (33) to the simulation
data'®~'8;

at 84 °K,

Fint(y)/p = — 1.567Tx 10713+ 1,1x10"13,-1/3
—-3.6X107,72/312,1x10"13,! (erg);

(35)
at 80 °K,

Fint(y)/n=—1.533x10-13+1.2x10"13;,-1/3
- 5.2x107;72/312,1x1013,"! (erg);

(36)
at 70 °K, -

Fint()/n=—1.452x10"13+1.4x10-13,-1/3
—7.3x10","2/341.9x10"3,"! (erg).

(37)

—Fint(n )/ (107'%erg )

1 "

"
0 20 _, n 40 60 80 100

FIG. 4. Monte Carlo simulation data for the internal
Helmbholtz free energy per atom for argon microclus-
ters. (Refs. 15 and 16).

The results are illustrated in Fig. 4 together with
the simulation data. Substitution of those results
into Eq. (32) results in

at 84 °K,

y(r)=1.8x10—-1.2x10,"1/3
+1.0x10%,72/% (dyn/cm); (38)

at 80 °K,

y(7)=2.0x10 - 1.7x105-1/8
+1.0x10%2,2/3 (dyn/cm); (39)

at 70 °K,

y(n)=2.3x10-2.4x10,~1/3
+9.5x10%72/% (dyn/cm), (40)

which are illustrated in Fig. 5. Numerical pre-
cision of the results will be discussed later.
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IV. EXTENSION TO NONCRITICAL MICROCLUSTERS
AND THE GIBBS-THOMSON EQUATION

Once y(n) is known, we can calculate from Eq.
(23) the reversible work to form a critical nucle-
us. However, for this to be useful in practice
the Gibbs-Thomson equation must be derived in
the present formalism to provide the size of the
critical nucleus for a given supersaturation. This
may be done by extending the formalism to
noncritical microclusters.

Consider a spherical liquid microcluster which
is not in equilibrium with the surrounding super-
saturated vapor. Suppose that the temperature is
uniform throughout the system and assume also
that the chemical potential u, of a molecule in
the cluster is well defined. Consider a conical
domain as in Fig, 1. The thermodynamical state
of the domain is determined by S, R,, w, N;, and
N,, and the fundamental equation is given by

dE =T dS-PwR%dR, +0 dw +1u,dN, +p dN,,  (41)

where N, and N, denote the number of molecules
in the microcluster and in the vapor, respective-
ly. We use here the same notation N, and N, as
those for the hypothetical system by anticipating
the choice of the equimolecular dividing surface.
u denotes the chemical potential of the vapor, and
o is defined by

v =( 95) . (42)
dw SR, NN,

Let us introduce a reference bulk liquid and a
hypothetical system as in Sec. II and define the

surface tension y by Eq. (9). From Eqgs. (9) and
(41) one obtains

dE =T dS+ydA -P,dV,
—-P,dV,+u,dN,+udN,. (43)
The differential dA represents the change in area
due to changes in both w and R. Although p, may
be different from u in the present consideration,

the system is otherwise in equilibrium. This
condition may be expressed as

(dE—“lle —“ngl)s'w'Rg'Nl+Ng =Ov (44)
which results in Eq. (11). Integrating Eq. (43)

by keeping R, and the nature of the system in-
variant, we obtain

E=TS+yA-P,V,-P,V,+u,N,+uN,. (45)
Elimination of y from Eqgs. (11) and (45) leads to
6(E - TS— i,N, — uN, + 5 wR3P,)
Ra = ol | £ &L, 46
oP,=P,) (46)

This equation determines the pressure of the
reference bulk liquid if we employ the equimo-
lecular dividing surface as the dividing surface
condition. Note that the number of independent
variables in Eq. (43) is five as in Eq. (41) be-
cause V, and N, are interdependent. Introducing
excess quantities as in Sec. II, YA may be ex-
pressed as

YA =E* - TS*- (i, — uON,. (47)

The fundamental equation for the “surface sys-
tem” follows from Eqs. (4), (5), and (43) as
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dE* =TdS*+y dA + (i, - u§) dN,, (48)
and the Gibbs-Duhem relation is given by
Ady==S*dT = N, d(i, - u9). (49)

The reversible work to form a microcluster con-
taining » molecules from a large amount of its
vapor is found to be

W=41R% +n(u, - u). (50)

For a microcluster of a given size the surface
tension is now introduced through two distinct
equations, (17) and (47). The difference between
the two rests on the difference in the pressure of
the surrounding vapor. One expects the difference
in y due to the difference of P, to be negligible at
low temperatures, but some care need be given
because u? in Eqgs. (17) and (47) may depend on
P, through Egs. (13) and (46) which determine the
préssure P, of the reference bulk liquid. The
effect of P, on y may be studied through the fol-
lowing equation which follows from Egs. (11) and
(45):

$YA=E-TS+P(V,+V,)— u,N, - uN,. (51)

Since the interaction between the cluster and the
surrounding vapor is negligible, Eq. (51) may be
rewritten, for w=4m, as

5vyA=F(n)-nu,+P,V,. (52)

Introducing the bulk liquid with the chemical po-
tertial p,, which must be distinguished from the
reference bulk liquid having pf, nu, in Eq. (52)
may be expressed as

1y =nfo(u,)+P(u,)V,, (53)

where f, (1,) and P,(i,) denote the molecular
Helmiholtz free energy and the pressure, respec-
tively, of the bulk liquid introduced here. Sub-
stituting Eq. (53) into Eq. (52), one obtains

éyA=F(n)—nfo°(u.,)-[P,(u;)—Pg]V,. (54)

P,(u,) must be distinguished from P, which ap-
pears, for example, in Eq. (11). It is seen as
follows that P, may be neglected in Eq. (54). For
the case whereu =u;, P,(i,) and P, are related
by

P,(u)=P,+(v,/v, )P, In(P,/P,). (55)

Since v,>»v, and In(P,/P,)=0(1), Eq. (55) shows
that P,(u,)>» P,. This result remains valid when
P, is changed under a fixed size of the cluster as
long as In(P,/P,)=0(1). When In(P,/P,)=0(1)and
the inequality P,(u,)> P, fails, the relevant size
of clusters becomes large and y approaches a
unique value irrespective of the choice of both the
reference bulk liquid and the dividing surface con-

dition, which will be discussed later. Thus it is
concluded that the value of y in the present forma-
lism does not depend on the pressure of the sur-
rounding vapor but is determined unambiguous-
ly by the size of the cluster. o

Let us proceed to the Gibbs-Thomson equation.
The critical nucleus is characterized by the con-
dition u,=u, which may be rewritten as

Wy —ud)+ - p)+(u,—p)=0. (56)

This is equivalent to the condition that the re-
versible work of formation given by Eq. (50)
takes the maximum value under a given value of
P,. Employing the Gibbs-Duhem relation (25) and
Eq. (11), the last two terms in Eq. (56) may be
expressed as follows:

pe—u=-kTIn(P,/P,), (67
u-u,=v,(2y/R+P,~P,). (58)

To represent the first term in Eq. (56) in terms
of known quantities, we employ the Gibbs-Duhem
relation (49) to obtain

Bl - p)) L )= _3y 3y (59)

3R R B8R’
Integration of Eq. (59) from infinity to R results
in

y o0
o= = —3v,<—§— ] 2 dR). (60)

It follows from Eqs. (56), (57), (58), and (60)
that

T, (P _ f Y e Y
7 1"(19, ) 3 ) FEdR-p+P.-P,), (61)
which provides the Gibbs-Thomson equation in

the present formalism. When the dependence of

y on R is negligible in [R,«), Eq. (61) may be
approximated by the following familiar form:

(kT/v;)In(P./P,)=2yR + (P, - P,). (62)

V. DISCUSSION

Let us first consider the numerical accuracy
concerning the results obtained in Sec. III. For
this purpose we employ the results of a recent
Monte Carlo simulation for y,, at 83.86 °K and its
extrapolation to the other temperatures which
were obtained by Miyazaki et al.??'?3 for argon
under the same potential as that used for the
microcluster simulation by Lee et al.!>'® The
values of y, obtained from Eq. (34) in the present
formalism are compared with the results due to
Miyazaki et al.?*?® in Table I. It is observed that
the values coincide to the accuracy of two sig-
nificant digits at 84and 80 °K, and almost two at
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TABLE 1. Values of the macroscopic surface tension
Y. resulting from the present theory and those obtained
by Miyazaki et al??:23

Work T (°K) 84 80 70
Present theory 18.01 19.66 23.06
Miyazaki et al, 18.16 19.14 21.60

70 °K. This strongly suggests that the values of
the constant C, obtained by the least-squares
fitting possess the accuracy of two significant
digits. Detailed analysis of the least-squares
fitting procedure discloses that the accuracy of
two significant digits for C, corresponds to the
accuracy of at least one significant digit for C,,
two for C,, and four for f,. Thus the cluster-size
dependence of surface tension illustrated in Fig.
5 possesses, at least to some extent, quantita-
tive significance.

The present results on the size dependence of
surface tension indicate that y first decreases
according to n"/3, which is in agreement
with Tolman’s.’ However, Tolman’s result
quantitatively shows somewhat stronger depen-
dence. Tolman’s result' gives, for example,

vs/¥e=0.98 at A/R =0.01,
7s/¥==0.91 at A/R =0.05,

where y, and R denote those values with the sur-
face of tension as the dividing surface, and A is
defined by

A=R-R,. (63)

The value of A was estimated to be about 3 A for
argon®®; hence y, diminishes about 2% at =~ 108
and 9% at =~ 10*. Although the physical content
in y is different from that in the surface tension
in the present formalism, the discrepancy be-
tween the present results and Tolman’s is signif-
icant because the work of formation of a critical
nucleus must be independent of the formalism;
i.e.,

4nR%y =?7TR§)/8 (64)

must hold. The origin of this discrepancy may be
due to both the difficulty involved in calculating A
and the error involved in obtaining the constants
for Eq. (33) from'the simulation data. Employ-
ment of Fi"'(x) in the present formalism may have
also contributed to the discrepancy, because in
Tolman’s theory a cluster with 3» degrees of
freedom was treated as if it were stationary. We
must extend the formalism by taking the trans-
lation and rotation into consideration consistently

TABLE II. Asymptotic behavior of the surface tension
for three temperatures.

n\T (°K) 84 80 70

10° 17.81 19.35 22.59
107 17.96 19.58 22.95
1010 18.00 19.65 23.05
-0 18.01 19.66 23.06

in order to establish a complete theory for the
size dependence of surface tension.

As n becomes smaller, y increases again with
decrease of » due to the term proportional to
n~2/%. Note that y(n) is appreciably greater than
.. for n£102, which corresponds to the size range
being relevant in nucleation. The origin of this
increase in y(z) may be understood from Eq. (17)
as that the difference in the thermodynamic
properties between the microcluster and the
reference bulk liquid is entirely absorbed in the
concept of surface tension; and the smaller the
cluster, the larger the difference becomes.

Asymptotic behavior of the surface tension for
larger »n is shown in Table II. It is seen that the
macroscopic value is attained at n =107 ~10%°, i.e.,
R =500 A ~5000 A. This is in agreement with the
result of Lee ef al.?* They studied the size de-
pendence of surface tension for crystalline clus-
ters under the generalized Einstein model?°+?® and
found that the surface tension becomes convergent
at n=10" ~10%., However, contrary to the present
result for liquid, the surface tension for crystal-
lites shows, on the whole, monotonically increas-
ing behavior with decrease in size.

Letus next consider the dependence of the value of
surface tension on the choice of the dividing sur-
face. It follows from Egs. (11) and (13) that

oy/y=-2 6R/R, (65)

where SR and &y denote the changes in those val-
ues due to a change in the choice of the dividing
surface with the state of the system kept invari-
ant. Equation (65) indicates that the value of sur-
face tension in the present formalism must be
smaller than y, by 2y ,A/R,. Since A is of the
order of the interatomic spacing in the bulk lig-
uid,2"® y is to be smaller than y, by about 1% at
n=~10°, Asn—=, the radius of a cluster, the
pressure of the reference bulk liquid, and the
surface tension all approach unique values. In
this limit Eq. (11) approaches the condition of
mechanical equilibrium which is employed in the
surface-tension measurement. Hence, Eq. (32)
relates the surface tension of a microcluster to
the experimentally measurable quantity vy,,.



16 THERMODYNAMICS OF A LIQUID MICROCLUSTER 2151

Let us lastly discuss the interrelation between
the present formalism and the previous ones. In
the theories by Hill®*° and by Ono and Kondo® the
size of a cluster was assumed to be sufficiently
large so that the central part possesses the homo-
geneous property of a bulk liquid. This enabled
them, in a conical domain as that in Fig. 1, to
define an additional spherical boundary with the
radius R, which passes through the central homo-
geneous part of the cluster. Denoting the pressure
at the central homogeneous part as P,, the funda-
mental equation was given by

dE=TdS+0dw~PwR,dR, +P ,wR} dR,+ . dN.
(66)

The boundary of the system was taken to be a
physical wall instead of a hypothetical boundary
employed in the present formalism. The reference
bulk liquid was chosen to have the same property
as that of the homogeneous liquid phase at the
central part of the cluster. The surface tension

y was introduced by

ydA+CdR =0dw +P,dV] +P.dV}, (67)

where the term C dR represents the work term
associated with a change in the curvature of the
dividing surface under a fixed dividing surface
condition. This term was originally introduced by
Gibbs.! It follows from Eqs. (66) and (67) that

dE =T dS+y dA+C dR =P ,dV, =P, dV, +u dN.
(68)

The reason for necessity of the curvature term
C dR may be understood as an extra “independent
variable” to fix the dividing surface condition.
If the term C dR is not introduced in Eq. (67), the
dividing surface is to be determined through the
following relation:

6(E — TS— uN + 4P, wR? - 5P, wR?)

R*=
w(P,-P,),

(69)

and we cannot choose the dividing surface con-
dition at will. The dividing surface determined
by Eq. (69) is called the surface of tension. Note
that Eq. (13) in the present formalism is identi-
cal to Eq. (69) with R,=0. This means that the
dividing surface determined by Eq. (13) in the
present formalism corresponds to the surface of
tension in the previous theories®~!!+'* if the ref-
erence bulk liquid is chosen to possess the same
chemical potential as that of the real system.
However, the boundary of the system in the pre-
vious theories must be reinterpreted as the hy-
pothetical boundary in this case. It is not poss-
ible in the present formalism to introduce the
curvature term in the same way as in Eq. (67).
This may be seen from Eqs. (6)-(8) by noting that
Vi, Vg, and A determine R as well as w and R,.
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