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Similarity analysis of magnetohydrodynamic flows with viscous stress relaxation

H. E. Wilhelm and S. H. Choi
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A novel similarity solution in terms of a hyperelliptic integral is given for a magnetohydrodynamic flow
across an azimuthal magnetic field in a diverging duct, under consideration of viscous stress relaxation.
Velocity profiles and the critical duct angle for flow separation are calculated as a function of the Reynolds
number and the Hartmann number. It is shown that viscous stress relaxation modifies the velocity
distribution and reduces considerably the critical duct angle for flow separation at low Reynolds numbers. At
large Reynolds numbers, viscous stress relaxation is less important, and the results approach asymptotically
those of ordinary magnetofluiddynamics, which is based on a static relation between viscous stresses and the
velocity component gradients.

I. INTRODUCTION

IT ~~/ m (C(c( —3c 5(g)f(c, r, t)d c

of the Boltzmann equation yields, for an incom-
pressible viscous fluid (V v= 0), the relaxation
equation (discussed in connection with the 13-mo-
ment approximation in the Appendix):

s (Ii;,+ v,&,II,~
= r'II(~ -p(v—,.v,.+ &~v,.),

if thermal forces and terms of higher order in the
field derivatives are neglected. The viscosity p,
the fluid pressure p, and the viscous stress re-
laxation time ~ are interrelated by p. =p7. This
equation satisfies the basic requirements of a
(classical) r, t-dependent field equation since it
(i) contains space and time derivatives, and (ii)
is invariant against Galilei transformation. The
static Navier-Stokes relation is not in accordance
with either requirement.

The third equation is in the typical form of an
inhomogeneous relaxation equation, with a forcing
term, -P(&(v&+&&v(). It is seen that it reduces
to the first equation if the temporal (8(11,.&) and
convective (v~&~II(&) relaxation terms are dis-
regarded.

In classical fluid mechanics' and magnetohydro-
dynamics, ' it is assumed that inhomogeneities
&;v; in the velocity components v,. produce instant-
aneously viscous stresses IT,-&. Mathematically,
this is expressed through a phenomenological
"flux'"-"force" relation, given for incompressible
fluids or subsonic flows by"

"(~= - I((v(vt+ v(v().

In a real continuum, velocity inhomogeneities do
not switch on viscous stresses instantaneously but
rather in accordance with a relaxation process
of characteristic time 7. Indeed, the moment

According to the first equation, viscous stresses
would propagate in accordance with a (parabolic)
diffusion equation (continuous "signals" and in-
finite speed of propagation). According to the
third equation, viscous stresses mould propagate
in accordance with a (hyperbolic) wave equation
(discontinuous "signal" and finite speed of propa-
gation). This is readily shown, e.g. , by combining
the equation of motion for the viscous fluid with
the first and third stress transport equations,
respectively, for the case of a small one-dimen-
sional velocity perturbation. Thus, these equa-
tions give rise to a qualitatively significant dif-
ferent behavior in viscous stress transport.
Quantitatively, the term S(II(& is of importance
for short processes with a duration time ts r = (((/

p. A criterion for the quantitative significance of
the term v~&,II,&

is not as easily establishable,
since &„IT,

&
may be quasisingular at certain points

of the fluid. Similarly, the rigorous theory of heat
transport has to be based on a (hyperbolic) wave
equation. '

We consider herein subsonic flows of dense,
ionized gases across an external azimuthal mag-
netic field B, in a duct with inclined walls (so-
called diffuser, Fig. 1). The analysis is based on
the magnetohydrodynamic equations mith viscous-
stress relaxation, i.e., we disregard effects of

magnetic" viscosity (which occur in highly rare
fied plasma flows) assuming that (d,r, «I, whe. re.

(d,. = e; 8,/m, . and r, are the gyr. ation frequency and
collision time of the ions, respectively. By means
of an exact (nonlinear) similarity solution, we
demonstrate that convective-stress relaxation
affects the onset of flow separation, i.e. , the
first occurrence of wall back flows which, in gen-
eral, are unstable and result in a turbulent bound-
ary layer. Flow separation is commonly observed
if for given Reynolds (B) and Hartmann (K) num-
bers, the duct angle 8, is increased beyond a
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critical value 80'. The calculated velocity distri-
butions are qualitatively in agreement with velo-
city profiles observed in diffusers. 4

Magnetohydrodynamic diffusers with transverse
magnetic fields and nonvanishing electric load are
frequently used to study the transformation of
kinetic flow energy (due to thermal expansion) into
electric energy. For the experimental realization,
it is suitable to install the diffuser in a similar
larger diverging duct through which the working
fluid is pumped at a constant rate in order to mini-
mize three-dimensional entrance effects. The
development of the boundary-layer with entrance
effect is a complex problem which has been ana-
lyzed only for magnetohydrodynamic flows between
noninclined walls by means of Goertler series ex-
pansions. '

H. NONLINEAR BOUNDARY-VALUE PROBLEM

Let cylindrical coordinates (r, 8,z) be introduced
for the description of the magnetohydrodynamic
flow model (Fig. 1). The conducting fluid is bound-
ed in the surfaces ('8=+ 80, x, »r»x, ) and (8 = —8„

r, ) by —insulating walls, and in the surfaces
(z =+a ) and (z = -z„)by electrodes, which are
connected through an ideal circuit (B = 0). The
conducting fluid is injected through the inner cyl-
inder section (r =r„—8, » 8»+ 8„—z„»z»+z„)
and removed downstream through the outer cylin-
der section (x=r„—8, » 8»+ 8„-z„»8»+z„).
The boundary layers at the electrodes are disre-
garded compared with those at the insulating walls
by assuming that the interelectrode spacing is
large, z»~(x, +r,)8, The m. agnetic field has
its sources in an electric current I flowing through
a conducting rod (0» ~ » r„—~ —z»+ ~,x, & r, ).
In accordance with Stokes's law, fB ds= pg, the
magnetic field is azimuthal (p, is the.permeability
of vacuum) and has the induction

B= (p, /2v)(&/~)e„

The radial flow v=ue„of the conducting fluid
across the magnetic field B induces axial electric
(E,) and current density (j,) fields, presuming

that the Hall effect is negligible (&u, T,«1),
j =c(E,+uB,)e,.

The resulting I orentz force density is a purely
radial field which opposes the inducting flow,

j x B= o(E,+ u'Bt))Bee„

Because of V x E = 0 and V ~ j =o(V ~ E+ B ~ V x v
—v ~ V x B)= o'V ~ E = 0, the axial electric field is
inhomogeneous, and vanishes,

E=E,e, = P, R=O,

since the load of the external circuit is zero. In
this case, the current in the external circuit as-
sumes the maximum value

J

�+
80

uBp" A'd 8.
1 ~0

These equations are based on the assumption that
the induced magnetic field is small compared with
the external magnetic field, which implies small
magnetic Reynolds numbers, '

E~= g,eu(~, 0)v «1.
In this elementary radial-flow model, fluid dynam-
ic and electric end effects at r =x, and ) =r, (~ 8~» 8,) are disregarded.

The magnetohydrodynamic diffuser flow under
consideration is described by the nonlinear bound-
ary-value problem for the radial velocity [u
= u(r, 8)], stress [II,.

&
= II,,(x, 8)], and pressure

[p =p(x, 8)] fields:

Bu Bp 1 B I BIIg IIge
p —=- ————(~ll )+-rr r Be

—rB,'(r,)(
—') r,

0 = ——————(~'Il,„)+—1 BP & B, 1 BII
x Be z'Bg '" r Be

Bu u—+ —=0,

where

\

I
I

I

I

I

= e=a
I
I

I

I

u BII„„Bu""+II„„=-2p, —,
p Bg Bg

u BIIg~ i BQ
p. — "+IIe„=-p,——

p

u BII68 u+ IIea= -2&
p

(4)

FIG. 1. Geometry of diverging duct with radial velo-
city field v and azimuthal magnetic field 8 0.

u (x, 8= + 80) = 0,
'~o

u(r, 8)rd8=Q.



16 SIMILARITY ANALYSIS OF MAGNETOH YDROD YNAMIC F LO%S. . . 2137

Equation (6) specifies the flow rate Q through the
diverging duct. For similarity reasons, Eq. (8)
is equivalent to inlet (r = r, ) and outlet (2 =r

)2

boundary conditions. Instead of Eq. (8), it is
more convenient to assume the Reynolds number
R(0) of the central streamline to be given, '

Pu(2. , 8= 0)r/y, =R(0).

Equations (1),(2) are the 2 and 8 components
of the equation of motion of the conducting fluid
in the azimuthal magnetic field [&2=82(x,)r2/2].
Equation (3) represents the continuity equation
for incompressible radial flow, and Eqs. (4)-(6)
describe the convective stress relaxation with a
viscosity p, =p~. It is noted that for pure radial
flow

v ~ w'll =u& II/92.

III. SIMILARITY TRANSFORMATION

The dimensions of the flow fields and the fluid
constants are interrelated by

(2/)=(4/p2}, (p)=(11$,)=(p'/p2").

Accordingly, we try to reduce the partial Eqs.
(1)-(6) into ordinary differential equations by
means of the similarity transformation:

~(~, 8)=(I //) 'f(8),

f (~, 8) = (2u'//) 'P(8), -

11„(~,8) = (2I '/Pb. 'g„(8),
II „(r, 8) = (2P'/P)2 'g,„(8),

1122(& 8}=(2&'/Pk 'See(8) ~

(1o)

(11)

(12)

(12)

(14)

The functions f (8), P(8), and g, /(8) are nondimen-
sional. Upon substitution of Eqs. (10)-(14), we ob-
tain from Eqs. (1)-(9}the ordinary boundary-
value problem:

From the stress-relaxation. Eqs. (17)-(18)one ob-
tains the conventional static stress relations for

f &e.--2f', 8's --f; P» )f ].

IV. CLOSED-FORM SOLUTION

Substitution of Eq. (16) into Eq. (19) gives the
pressure function P(8) in terms of the velocity
function f(8),

P=2[2f+P +(4f'+P')' ']. (24)

where

f(8= +8o) = 0, (26)

The differential equation for the corresponding
flow without stress relaxation' is obtained from
Eq. (15) as

f"+f '+ (4 —X')f+ 4P, = 0 for P»
~
f

~

.
The substitution,

df d2f
d8 ' d8' 2 df

(27)

transforms Eq. (25) into a nonlinear differential
equation of first order for P= P(f ),

P+ E(f)P+ G(f ) = 0, (28)

The minus sign of the square root is not applicable
as one verifies by means of Eqs. (20) and (22). By
eliminating P(8) by means of Eq. (16) and gt„by
means of Eq. (18), we find from Eqs. (15) and
(20) the nonlinear boundary-value problem for the
velocity function f(8),

f~~[2f+ P + (4f2+ P2)&/2]+ 2P (4f 2+ P2) & /2f&2

+ [P,+ (4f '+ P', }'/']Lf'+ (4 -~')f
+ 2[P + (4f'+ P')'/2]] = 0, (26)

[(P -f)/P] &-=f

[(P f)/Pl 8.,= ='f-',

[(P-f)/P] &2 = -f,
where

f(8=+8,}=0,
t +eo

f(8)d8=Q/I,

RIll

PO=P(8=+82), f(0)=R(o),

K'= —B'r '= o p p, 2m '.

(16)

(i6)

(i7)

(18)

(19)

(20)

(21)

(22)

(23)

where

E(f ) = 4P Q2f+ P,+ (4f-'+P')'/'](4f '+ P')'/2] '

(29)&0,

G(f }=2[P +(4f'+P')' '-]

x /2+ (4 ~2)f+ 2[P + (4f2+ P2)g/2]j

x [2f+ P,+ (4f '+ P')" /']-'

(30)

The general solution of Eq. (28) is found by the
method of variation of the integration constant of
the solution of the associated homogeneous equa-
tion as
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4'( f )= exp (-

x

E(f)dj
p

f
exp

f
F(f)df G(f)df, (31)

where

f (~)
ff '( f)d.f, fo=f(-o),

4 p

(33)

f2 =f(o)-,
where

P. -=P(f=-f (0))= f = 0
d

d8~ p

(32)

44(f)= exp(—

X g22—

p(f ) &f)
p

f f
exp + F(f)df G(f)df

5p fp

(34)

for symmetrical flows. Combining of Eqs. (27)
and (31) yields an integral solution for 8= 8(f )
from which one obtains the analytical solution
f= j'(8) by inversion

Equations (33) and (34) represent a closed-form
solution for the magnetohydrodynamic diffuser
flow with viscous stress relaxation in terms of a
hyperelliptic integral, since by Eq. (34),

[P,+ (4f' +P,')'/'] [2f,+ (4f', + P', )'/']
[2f+ (4f '+P')' '] [P + (4 '+P')' ']

~ 1 [(4f2+ P2)3/2 (4f 2+ P2)3/2]

~ 1
(6 762)[f(4f 2 ~ P2)1/2 f (4f 2 ~ P2)1/2]

+ —'(() —44')p'()n(pfe (4f'+p,') '] —)n(2f e (4f'. +p')' ']]))

(35)

H '(f)df. (36)

Based on Eqs. (33)-(36), velocity distributions
f (8) ~0 of pure outflows have been computed for
the typical duct angle 8,= 5' and given Reynolds
numbers R =R(0) =f (0) of the central stream line
8= 0, with the Hartmann number K as parameter,
X'~O.VR& —,R. In the presence of viscous stress
relaxation, the onset of flow separation, as will
be shown, is inhibited at large Reynolds numbers
A for Hartmann numbers

R&X X' =--8 for R»I

In Eq. (33), the + sign has to be used depending
on whether df/d8~ 0, or 85 0 in case of pure out-
flows, f (8)&0. The integration constant g, is
determined in Eq. (32) for symmetrical flows
with an extremum at 0= 0, which are of main
practical interest. The remaining integration
constant P, contained in the solution of Eq. (33)
is determined by the boundary condition in Eq.
(26), which gives

Figure 3 shows f (8) for the moderate Reynolds
number R = 10' and K' = 0.7R —5R( 8, = 5'). In this
case,

~
df (8= +8,)/d8~ decreases with decreasing

X so that a well developed flow exists only in the
central region for small X'& -',R. Figure 4 shows
f (8) for the relatively large Reynolds number
R = 10' and R' = 0.7R —5R (8,= 5'). For small Hart-
mann numbers, K'& —,R, the flow is considerably
depressed in the extended regions adjacent to the
walls so that Reynolds numbers R(8) —= 10' are
realized only in the limited central section

~
8~(—,', 8 of the duct. The f (8) curves in Fig. 4 show

clearly the transition to the limiting velocity dis-
tribution, for which ~df (8=+8,)/d8~ assumes the
smallest realizable value, as K--3R. It is con-

f(e)
i,o(~io')

The velocity distributions in Figs. 2, 3, and 4
represent net outflows without backflow regions
since X&K,„. Figure 2 shows f (8) for the rela-
tively small Reynolds number R = 10' and X' = 0.7&
—10 R(8= 5'). The velocity distributions become
flatter and the velocity gradients at the walls
8=~ 8, increase in magnitude as X increases.

- I.O —.8 —.6 —.4 —.2 0'

eie,
.8 I.O

FIG. 2. f(8) vs g for R = 103 and various K (60 ——5').
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eluded that well d
exist for sufficie tl 1

developed velocit dist ''
y is ributions

icie 1 g artmann numbersicien y lar e H

, , e.g. , X'& —R for R=10'

h d od
' dff -flo

i ive comparison is, however
s' ce a conical diffuuser was used in the
ments. ' Velocit d t ns

'
y is ributions

ion ave been calculated previously. '

2R&8-X':

3 (8-K + R) —1+i —1+z 1+

which gives

, 1 —cosQ
1+ cosQ

(43}

Equation 40

42

( ) contains an elliptic inte ra"-"d.,-.-.f hcans of the substitution

V. MAGNETOHYDRODYNAM IC FLOVf SEPARATION
yg (3/R)1/2g ij'(Q k) (44)

The integral solution derived in E s.
seri es physical flows as long P

=+8,)~0 for the i
as

8 s'
e given parameters R K

„since the pressure f' ld
and

rywhereP(g)0
ie has to be

1 obl
' E

8 ~I9. Theb
m in Eqs. (25)-&26' be

0

f"+ g (8 -X')f + 'Rf '= 0-2

f(8= +go) = 0,

(37)

(38)

where

(40)

where

3
e(f)=f'+ —(6-K')f'-———(8 -K') —1 (41)

is a trinomial in f wh' h h
'o-',1--...,".ic as one real

a e roots since, in general

f( g)
f( 8) f( 8)

f(0)
', f(8= 0) =—1; R =R(0). 39

Since P, = 0 in Eq. (37), it cannot be rit cannot be reduced to the

0 f '
' '

g ow with vanishin wa
'

g ll pressure P,

(3/R} [-v(f)]" '

where

A. =(3[1+(8 K—')R '

k =2[1+-, & '[2+ (8 —X')R ']}
Inversion of Eq. (44) and substitu '

0

(45)

(46)

(47}( g) 1 y, 1 —cn[( 3R ) X8, k]
1+ cn[(—,'R)'+Kg k]

'
7

According to Eq. (44), the critical duc

e oundary condition f(8==+8,)=0 as,

8,(P, =O)=(3/R)'~'& 'E(Q k8 — —
o, k), (48)

Q, = arc cos[(X' —1)/(X'+ 1)],

in terms of

(49

of the characteristic flowof 's ic ow numbers R and

. (4o) —
i i

It is recognized that

0(g &8
p 80(Pp 0) m for X' ~ 8++ 3R, (50)

0& 8,—8,(P, = 0)&m for X'&8+—+ 3R. (»)
Accordingly, ph sicalysical flow solutions with P(8}

f(8)
I.O(x IO ) H =5R

f(8)
I.O(x l05) H =SR 5R

—I 0 —.8 —.6 —.4—.4 —.2 0
8/8

.8 I 0
I I

—.6 —.4
.7R

—.2 0 ,2 .4 .6.6 .8 I 0

FIG. 3. f(8) vs 8 for g =1 4or &=10 and various $C(8 =o= 5') FIG. 4. f(B) vs 8 for g =or&=10 and various X(8 =p=5).



2j.40 H. E. WILHELM AND S. H. CHOI

~ 0,
~

8i ~ 8„exist for all duct angles 0& 8, (m if
the Hartmann number is

(52)

On the other hand, if &&X, physical flow solu-
tions with P(8) ~ 0,

i 8i ( 8„exist only for duct
angles 8,~ 8,(P, = 0) & m.

In Fig. 5, the critical duct angle 8;= 8,(P,=O)
for vanishing wall pressure is plotted versus
R =—R(0) with K as a parameter. It is seen that
0, decreases with increasing R, but increases
with increasing K. The stabilizing effect of the
magnetic field at sufficiently large Hartmann num-
bers K is apparent, in particular, in the regions
X&Z (R).

The critical duct angle 8;= 8,(P, = 0) is also ob-
tained from the condition df(8= +80)/d8= 0, if vis-
cous-stress relaxation is not taken into consider-
ation. ' The corresponding curves 8;= 8,(R,K) are
shown dashed in Fig. 5. Comparison indicates
that for the same R and K, 8,' "without stress re-
laxation" is considerably larger than 8, "with
stress relaxation" for relatively small Reynolds
numbers, R ( 10'. Accordingly, viscous-stress
relaxation has a destabilizing effect on the flow,
which, however, is completely negligible for
large Reynolds numbers, R» 10'. As the wall
pressure drops to zero, the laminar flow solution
can no longer be realized, and flow separation
sets in for duct angles 8,& 8;(R,K) & w.

In the classical similarity theory for incompres-
sible viscous flow between inclined walls, ' solu-
tions with a (positive) homogeneous overpressure
p, exist so that one does not have to be concerned
about negative pressures in back-flow regions at
the onset of separation. The similarity analysis
of the corresponding compressible flow' no longer
permits solutions with over pressure, and the
limiting flow solution with df(8= +8,)/d8= 0 exhibits

a negative wall pressure, Po&0. For this reason,
the onset of separation was determined from the
condition P(8= +8,) -=0.' Similarly, here we have
associated the onset of separation in flows with
stress relaxation with the vanishing of the wall
pressure, P,=O. The observed stabilizing effect
of the magnetic field is due to the increase in the
wall pressure (Fig. 6) with increasing Hartmann
number 3.'. In conventional incompressible fluid
dynamics without stress relaxation, the conditions
df(8= +8,)/d8= 0 and P(8= +8,)= 0 lead to the same
separation criterion.

Interest in this theoretical problem arose in
connection with experiments on boundary-layer
separation in incompressible liquid metal flow
and subsonic magnetogasdynamic flow in nonuni-
form magnetic fields and ducts." If the Hart-
mann number is set to zero, the closed-form solu-
tions presented reduce to those for the flow of
electrically nonconducting ordinary fluids with
viscous-stress relaxation in diverging ducts.
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APPENDIX: VISCOUS STRESS TRANSPORT EQUATION

Incompressible magnetohydrodynamics is appli-
cable to conducting liquids such as liquid metals,
and also, as an approximation, to collision-domi-
nated ionized gases and plasmas at subsonic flow
speeds. In each case, the viscous momentum
transport is due to the heavy atomic particles
while the electrons affect only the stress relaxa-
tion time ~ through cross-collisions. For this
reason, conducting fluids can be described by
one-fluid magnetohydrodynamic equations.

The stress-relaxatian equation for incompres-

I.O H= OI2 3 5 IO 20 50 IOO 200
I I I I I i I

.8

c: .6
O
'a
D
a

200
FIG. 5. Critical duct

angle go for separation vs
p for various $C, with ( )
and without {—-) viscous-
stress relaxation.

.2

0
lo~

s s &sill
«0'

I I I I t I I I I

IO~
f(0) = R

I04 IO6
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Po

R

IQ

IO-

relaxation equation can be derived from the Born-
Green kinetic equation which differs from the
Boltzmann equation through the collision integral
for many-body collisions. The most elegant meth-
od of solution for the Boltzmann equation is the
].3-moment approximation due to Grad, ' "which
is mathematically also more rigorous than the
Chapman-Enskog and. Hilbert methods. " The
closure of the 13-moment approximation is forced
by truncating the third-order heat-flux tensor
Q,.» in terms of the heat-flux vector q

mc, c&ckf (c, r, t)d'c

2
IO-

Io I I

2
H/R

FIG. 6. Wal1 pressure po vs 3C for various p(00=5 ).

sible (V v=0) flows is derived as a special case
of the stress-relaxation equation for compressible
(V v4 0) flows based on the Boltzmann equation
presuming that the fluids are sufficiently dense and
collision dominated. For liquids a similar stress

k(qf~»+ @J~kf+ Ik~&1)~ (A1)

where f(c, r, t) is the distribution of thermal vel-
ocities c. This truncation affects mainly the
heat-flow dynamics, and is, therefore, an excel-
lent approximation for quasi-isothermal magneto-
hydrodynamic flows (q= 0).

Following the original deduction of Grad for a
neutral one-component gas,"we multiply the
Boltzmann equation for particles of mass m„and
charge e„ in an electromagnetic field E —B by
—,m„,[c„c —(k)c„'5] and integrate it over the entire
space d'c„of the thermal velocities c„of the
x particles. Thus, the following moment-conser-
vation equation is obtained for the nonhydrostatic
stress tensor II„=P„-p„5of the r component
(summation s over the remaining components s of
the fluid):

—11„+II„x&u„+ [II„x&o„] '+ v„~ VII„+II„V v„+p„(Vv„+ [Vv„] ' ——,'V ~ v„5)+-,'(Vq„+ [Vq„] ' ——,'V ~ q„5)

+ (n, ~ tv, + [rt, ~ wv, ] ' ——,ll„:vv, a) =offJ m, t'L,c, ——,c',a]c„dt:„ (A2)

where

g~~ ~ g& 4%dc A3

is the binary collision integral, "and &u„= -e,.Bjm„
is the gyration frequency ([ ] designates the in-
verse tensor). In the 13-moment approximation,
the distribution functions f,(c„,r, f) and f,(c„r,f)
are expanded in Hermite tensorial polynomials,
the expansion coefficients being the first (scalar)
13 moments of the distribution function. " By
means of these expansions and Eq. (A3) it can be
shown that Eq. (A2) is of the form

(A4)

where v'„ is the viscous-stress relaxation time"
and ~ „,is the relaxation time describing the linear
momentum exchange" between the components ~
and s &r. B„is an abbreviation for the remaining
tensor terms on the left side of Eq. (A2), and

a„,are numerical coefficients. For representative
times f » r„, the term BII„/Bt in Eq. (A4) is negli-
gible, and one obtains the quasi-equilibrium, II„
proportional to the sum of the various driving
force tensors. " 'The tensor B„reduces not always
to the velocity gradients Vv„of the Navier-Stokes
relation, ' and for representative times t & 7„, the
13-moment approximation does not approximate
the phenomenological Navier-Stokes relation and
gives better results. "

For magnetohydrodynamic applications, a sim-
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8II/8&+v VII=-r-tll -P(Vv+[Vv]-t), (A5)

where v =7~ n„m„v„/Zn„m, is the mean-mass velo-
city of the fluid. The relaxation frequency 7 ' of
the total stress tensor II is a linear combination

pie-stress transport equation for the electrically
conducting, incompressible fluid as a whole can
be deduced from Eq. (A2) by neglecting those
terms which are small compared with the leading
terms. The contribution of the electrons (e) to the
fluid of ions (i) and atoms (a) as a whole is insig-
nificant since m, «m,-, and" n„., o.„«1.The
magnetic anisotropy terms are negligible since
&,.&, «1 for the heavy ions, and vanish for the
neutral atoms (w, = 0). The V v„ terms can be
disregarded for incompressible fluids and sub-
sonic (compressible) flows. The q„ terms are
negligible for quasi-isothermal flows, and the
terms H„~ ~v„are of the order of magnitude of
quadratic terms in &v„, and therefore small com-
pared to the linear ones. The stresses in the elec-
tron gas have no effect on the stress distribution
of the fluid as a whole (m, «m, ,). Thus, one ob-
tains from Eq. (A2) as stress transport equation
for incompressible, quasi-isothermal fluid as a
whole:

of the inverse relaxation times 7-', z ' 7' ' The
Reynolds number in the preceding similarity ana-
lysis and 7 are related by B(0)= [pu(0)r/p(0)]r '.

Equation (A5) can also be derived directly from
elementary physical arguments. The Navier-
Stokes driving force -p(Vv+ [Vv] ) of II follows
from the symmetry argument of Einstein. The
term 8II/st results from the fact that the Navier-
Stokes quasi-equilibrium II/7 = -p(Vv+ [Vv] ') de-
velops within a time of the order of the "collision"
time 7. Finally, the convective term v V'D has
to be added in order to make Eq. (A5) invariant
against Galilei transformations (r' = r —wt, f'= f).

We have based the deduction of the stress trans-
port equation on Grad's 13-moment theory, which
gives all driving forces (for the viscous stresses)
which have a simple physical meaning, i.e. , not
only the Navier-Stokes forces -Vv and -[Vv] '.
It is seen that the 13-moment theory is more com-
prehensive and more rigorous than the Navier-
Stokes theory, and "refuses to predict results
which may be inaccurate. ""On the other hand,
the failures of the Navier-Stokes stress equation
may assume catastrophic proportions, e.g. , it
"predicts smooth solutions for shock strengths of
infinite magnitude (with a transition from negative
to a positive density). ""
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