
PHYSICAL REVIEW A VO LUME 16, N UMBER 5 NO VEMBER 1977

Quantization of the linearly damped harmonic oscillator
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A previously developed novel theory for the formal canonical quantization of classically dissipating systems
will be the starting point for a detailed discussion of the quantum statistical aspects of the simple linearly
damped harmonic oscillator. The formalism essentially involves complex classical canonical coordinates and
momenta, and thus quite naturally leads to the possibility of creation and annihilation operators.
Furthermore, the occurrence of quantal noise operators appears to be of principal importance for the
conservation of the fundamental commutator in the course of time, as will be expressed in a simple
fluctuation-dissipation relation. Making a canonical transformation back to the real, Cartesian Hermitian
position and momentum an "effective" Hermitian Hamiltonian will be derived, with which a transformation
is made from the Heisenberg frame to the Schrodinger frame where the density operator equation will be
computed. This will make it obvious that no proper Schrodinger equation exists for the dissipative subsystem
on its own, thus reflecting an incomplete knowledge. The master equation will then be translated into its
Wigner representation. The intimate connection between the diffusion coefficients in the resulting Fokker-
Planck equation and the uncertainty relation will be demonstrated in a clear fashion,

I. INTRODUCTION

The quantization of dissipative systems appears
to have presented a tantalizing problem, as may
be concluded from the abundance of papers on the
subject over the last decades. For a rather ex-
tensive listing of them we refer to Befs. 1-3. One
of the most powerful methods for quantization may
be found in Dirac's canonical procedure. However,
since the usual classical Hamiltonian formulation
cannot cope with frictional phenomena, "the solu-
tion of the quantization problem is not obvious in
that case.

Several historical solutions to the problem have
been proposed, of which we only briefly mention
the following. Kanai6 introduced an explicitly
time-dependent Hamiltonian, which however has
been shown to violate the fundamental commutator
of position and momentum, and hence violates the
uncertainty principle. Kostin' invented a nonlinear
Schr6dinger equation. Apart from the fact that
Kostin s Hamiltonian thus obscures the usual Hil-
bert space formulation of quantum mechanics, ' in
that it violates the superposition principle and does
not produce the frictional frequency shift, we men-
tion the paradoxical existence of a complete set of
stationary energy states. The latter result also
applies to Hasse's' nonlinear frictional potential.

A recent novel generalization of Hamiltonian
classical mechanics to complex canonical variables
lifted the restriction to real Hamiltonians. ' The
intimate relation between the purely imaginary
part of the Hamiltonian and the dissipation has
been shown. The quantization procedure now leads
to a non-Hermitian Hamiltonian operator and the
possible occurrence of quantal "noise" sources.

The noise sources reflect the incomplete know-
ledge we have a,bout a quantum system when going
from known deterministic dissipative dynamics
to its quantized version, without having detailed
information concerning the underlying microscopic
quantal interactions. That is, one can always add
to quantum equations operator functions whose ex-
pectation values vanish. In the quantum mechanics
of dissipative systems these "hidden" operators
appear to be fundamentally associated with the
damping. These findings are in line with the re-
sults from, for example, Senitzky's' fully quantal
reservoir-coupling approach.

In the present paper we report a detailed investi-
gation of the consequences of the above described
Hamiltonian quantization procedure. For this pur-
pose we have considered one of the simplest con-
ceivable dissipative models: the linearly damped
harmonic oscillator. In Sec. II we transform from
the classical, real, Cartesian coordinates to the
complex canonical variables and apply the formal
quantization. Having transformed back to the orig-
inal dynamical variables we discuss in Sec. III
some relevant properties of the appearing noise
operators and introduce a Hermitian effective
Hamiltonian. In Sec. IU we then transform from
the Heisenberg frame to the Schrodinger frame and
derive the master equation, which will be dis-
played in Wigner form in Sec. U. Then, in Sec. UI,
the result can be conveniently discussed in relation
to Heisenberg's uncertainty principle. Some final
remarks will be made in Sec. VII.

II THE FORMAL QUANTIZATION

The classical deterministic equation of motion
for a linearly damped harmonic oscillator in one
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dimension reads

x+2Ax+Q x-0.
In the analysis we suppose the system to be under-
critically damped" and introduce the complex co-
ordinate

q = m 't'[p+(A —i e)x], (2)

~ = 2 r(q*q - qq*) - (~-i&)q*q (4)

by variation of q*. The complex conjugate of (3)
results from 2* by variation of q. From (4) the
canonical momentum conjugate to q has been de-
fined as

Bg i
q+

eg 2 (5)

where rd=(Q' —A.')' ' and P=x. By means of (1)
the equation of motion for p is easily found to be

q+ieg+Xg =0.

We briefly recall from the general theory' that (3)
may be obtained as the Euler-Lagrange equation
from the complex Lagrangian

spect to the noise only. In Ref. 1 the quantal noise
was shown to be intimately connected with the con-
servation of the fundamental commutator

[rr, q] =-ih (13)

q = (o ' t'[p+ (X —i cu) x],
rr =-,'i(o 'r'[p+(z+i(u)x].

(14)

(»)

in the course of time. We will touch in more detail
on this in the next section.

It is noted in passing that one can presently
introduce the operators a = (2h) 't'q and a
=-i(h /2) 't'rr, which thus have the commutator
[a, a ] = 1 and therefore exhibit the properties of
annihilation and creation operators. The oscilla-
tion part of the Hamiltonian (9) then leads to the
familiar expression H=k~a a.

Having performed the quantization based on the
essentially complex classical coordinates and mo-
menta g, m we now wish to return in the quantal
formulation to our real physical Cartesian vari-
ables x, P. In view of (2) and (5) we have the trans-
formations

Now it has been shown to be possible to formulate
a complex Hamiltonian K which generates the dy-
namics and which in the present case may be given
as

These relations are ea.sily inverted to yield

x = (u ' t'( —,'i q —rr),

p= (u 't'[(A. —i~)rr ~t (%+i(u)q].

(18)

(17)

X =H+iF

H = -i~~q'; f" = i ~mq'.

It is immediately verified that the generalized
Hamiltonian equations

8$Q g+
q= 7T

gq

(8)

(8)

Since the transformation is linear the general
form of the equations of motion (11) and (12) is
preserved. Furthermore, simple algebra shows
that (13) transforms into

[p, x] = ifi, (18)

so that the transformation is canonical. Then, in-
serting (14) and (15) into (10) one obtains

indeed lead to the correct equation of motion (3)
and its conjugate. The general formalism as pre-
sented in Ref. 1 now states that the above classical
mechanics leads to a quantum mechanics in the

A

Heisenberg frame with the Hamiltonian operator 3C

3{', = H+i F, (9)

and where the equations of motion read

q =-(i/h)[q, d] +(1/h)[q, I'], +if, (t),

rr =-(i/h)[rr, e) +(I/h)[~, i],+%„(t), (12)

wherein [ ] and [ ], represent commutator s and an-
ticommutators, respectively. The X, and X, have
been identified as noise operators, having the
property

(3I,(t)&„=(if,(t))„=0,
where the formal averaging may be taken with re-

a=-,'p'+-,'~ [p, x], +-,'n'x2; i =--,'n, (19)

where we have used (18). The result (19) has been
communicated before. ''"'" It is to be emphasized
that our Hamiltonian X = H+ zI" in the case of van-
ishing friction ~ -0+ properly reducestothe con-
ventional expression for the free harmonic oscilla-
tor and thus leads to the well-known Hermite poly-
nomials for the stationary energy states of Schrod-
inger's equation. If ~ &0 the Ha.miltonian itself
cannot be identified with the energy, of course,
and merely plays the role of generator of motion
in the sense of (11) and (12).

III. THE EFFECTIVE HAMILTON IAN

In terms of the Hamiltonian X the equation of
motion for x may be written as

x = (i/h)(xX -3t'. x) +iI,-(t), (20)

which by means of (18) and (19) yields, as it should,
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« =j+ft.(t). (21)

Similarly, the equation for P explicitly reads

p = -2X p - 0'x + 2 (t) . (22)

In view of the vanishing expectation values of the
noise operators, (21) and (22) properly fulfil Eh-
renfest's theorem regarding our starting equation
(1).

We next consider some relevant properties of
the noise operators using standard techniques from

x(h t) = x(0) —(f/h) [x(0)X(G) —Xt(0)x(0)]Lf

pAt
+ X, (T) dr, (23)

Jp

where x(0) = x(t) and x(b, t) =x(t+ b.f}. Invoking the
corresponding solution for p we form the product

fluctuation theory (see Refs. 1, 13, 14). We write
down from the fluctuation equation (20) its coarse-
grained short-time solution, "'"

j(at)«(r t) =p(0)x(0) ——[ j(0)x(p)X(p) p(p)X~(0)" (0) p(0)fC(0)" (0) SCAN(p) j(p)x(p)]at
At

+
J p(0)g(r} dr —a- t [p(0)g;(0) -36 (0)p(0)]X„(r)dr

0 0

Qt

+ 3t, (r)x(0) dr- nt—
0 0

At Dt

+ dr dr'X~(r) Jt,(r'),
0 0

(24)

where a term of second order in AI, has already
been omitted. One may also form the product
x(6 t)P(a t), subtract the two products, divide by
4 t and average over the noise variables, taking
account of the usual Markov property"" which
states that any oscillator operator at some time t
is uncorrelated with the noise operators at any
later time t '. Now assuming the commutator (18)
to be conserved when going from t to t+ 4 t, and
letting 4I'tend to zero, one may present the re-
sult as

&[3Io( ), 3I.( ')] -&

=(2/h)([x, J(r] +[xi', P] &„6(~-T'). (25)

If me define, also for later use, for example"

& X (r)fl, (T')&» =2D~,5(r —T'),

to be an essentially quantum mechanical feature
(in view of h &0). Furthermore, we re~ark that
(28} clearly demonstrates the intimate relation of
the operator noise with both the fundamental com-
mutator (regarding -N) and the dissipation (re-
garding &). Equation (28) represents a distinct
example of a quantal fluctuation-dissipation rela-
tion. It will be seen to be of vital importance in
the folloming.

We also require some knomledge concerning the
correlations of system operators and noise at the
same instant, about which the Markovian property
itself does not yield any information. We there-
fore multiply, by way of example, (23) from the
left with Z~(b, t), average and invoke (26). Since
Jo 6(g) dg = 2 one obtains the result

(27) &g (t)x(t)&„=D,„ (29)

and insert I' from (19) for the special case of the
linearly damped process into (25), the result
reads

4p„= -i@A.. (28)

We note first of all that 4~„being nonzero is seen

Other possible correlations will be obvious by now.
Our next step mill be to incorporate the noise

sources into the Hamiltonian. To this end me re-
turn to (23), where in view of the conserved funda-
mental commutator me may remrite the noise term
as

Dt

X, (r) dr=-
@

X„(r)[x(0)P(0)—j(0)x(0)]dr
0

Qt=-
zz ~((+~)J (*(o(&.(~(S(O(-((0(e.(~('(0(]d.

0

+ (1—c)
~ b,t

[x(pg (0)3t (r) -3r (T)p(0)x(0)]dT
40

(30)
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where in the second step we have used the Markov
property, and where c will be taken to be real but
otherwise arbitrary. Inserting the above expres-
sion again into (23) it is easily seen that we may
obtain a "noisy" Hamiltonian regarding x by just
adding to X a contribution

f, =-,'(1+ e)ft„P+-,' (1 —e)P%, . (31)

In the same manner one computes, & being arbi-
trary,

h~ =-—,
' (1+6)1~x-—,

' (1-5)xtp. (32)

Combining these noise terms with (19) we may
write our total non-Hermitian noisy Hamiltonian
in a single expression as follows

K„=H+i I"+ )„+t~. (33)

(a+5)b ~„=2i(f&~, ' (35)

where we have used the definition (27). By virtue
of the fluctuation-dissipation relation (28) and the
expression (19) for I', we conclude that any choice
of e and ~ constrained by the relation c+& =1
appears to be appropriate in order to effectively
"Hermitize" the Hamiltonian. Their explicit spec-
ification is simply circumvented by the notion that,
effectively, the terms with e and 6 in )„and I)~

cancel the anti-Hermitian part of the original X.
Therefore, putting & =~ =0 entails putting I"=0.
Thus we are left with the following manifestly
Hermitian noisy effective Hamiltonian.

a„=-,' p'+-,'~[p, x], +-,' n'x'

+ —,
' ['Jt „,p], ——,

' [%„x],. (36)

Before proceeding with this Hamiltonian, we will
verify in detail whether it correctly reproduces
the equations of motion (21) and (22) for (x&~ and

(P)„. Because If„ is Hermitian it serves as
a proper time-translator, so that the equation of
motion for x now reduces to its usual form

Since it will be our goal to derive the density-op-
erator equation for the damped oscillator while
the quantization has been performed in the Heisen-
berg frame, we have to transform to the Schrod-
inger frame. Such a transformation can only be
done properly by means of a unitary operator; that
is, by using a Hermitian Hamiltonian. In the fol-
lowing we show the possibility to construct an ef-
fective Hermitian Hamiltonian by a proper choice
of the parameters c and &. For that purpose we
require (X„-K„&„to be zero. By means of (33)
one obtains

2i(l) +E(3t,p-pX„& -5(P x-x3t )„=0. (34)

We now invoke the previously calculated correla-
tions of which (29} is a typical example. This leads
to

x =-(i/h)[x, a~] (37)

=(x)„D,„+(p&„D„„+in(%„&„

=
& x&„D,„+(p&,D,„.

In this way (38) leads to"

( x)„=(p&„+[Z -(i/5) n, „](x)„=(p&„,

(39)

(40)

where in the last step we have once more used the
fundamental fluctuation-dissipation relation (28}.
A similar calculation leads to

(41)

which completes the proof that (36) indeed gener-
ates in a proper manner the correct effective,
mean value dynamics of ~ and P.

IV. THE MASTER EQUATION

Having now the Hermitian Hamiltonian H„ in (36)
at our disposal we are in the position to transfer

Inserting (36), and averaging over the noise, one
finds

(x&„=(p&„+x (x&„-(i/2@)( x(3t,p+ pX„-3|,x- x ft~)&„

+(i/2h)((ft„P+PZ„- 2~x- x Xp)x)„. (38)

In order to simplify the computation of the correla-
tions we shall presently assume the well-known
Gaussian property to hold. "'" We have not veri-
fied in detail to what extent the final result may be
influenced by this assumption. In fact, this is not
thought to be relevant within the framework of the
present approach. Since, as has been emphasized
before, we have started from classical determin-
istic equations which already contain the dissipa-
tion, no detailed knowledge has been available re-
garding the underlying microscopic interactions, "
and the noise sources had in fact to be introduced
by necessity only to prevent the killing of a funda-
mental quantum mechanical requisite, namely
Planck's constant K This lack of knowledge will be
seen, first of all, to lead to a description of the
damped oscillator in terms of a density operator
rather than an explicit Schrodinger-state vector
and, moreover, to some not completely specified
but essentially nonzero coefficients such as D~„ in
the master equation. So, regarding our starting
point and the observed partial knowledge all we can
do is to find the simplest system which does not
violate quantum mechanics in the course of its
evolution, and the assumption of the Gaussian
property does not seem to be very restrictive.

Invoking the correlations like (29) one now easily
evaluates (38). As a typical example one may con-
sider

(xpft, &„=&x&„(pX,&„+(x( p&„%„&„+(xp&„( ft„)„
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from the Heisenberg frame to Schrodinger's frame.
For the density operator 4 one thus obtains

relevant reduced density operator for the oscillator
we must take the trace over the noise variables:

(R(t) =-(t/tt)[H„(t), tR(t)] (42) P(t} = tr„4(t) .

where the explicit time-dependence of H~ now

arises from the noise only. In order to obtain the

This can be done, as in the Heisenberg frame, by
coarse-graining. The general solution of (42)

~ ~

OD n f;

(R(t) =61(t- T) + Q
n=y

~ ~ ~
2

~n-y
dt„[H (t, ), [H„(t,), . . . [H (t„), tR(t T)] ~ . ~ ] ] (44)

where in order to decorrelate the oscillator and
the noise, 7 may be taken as the correlation time.
In view of the assumed Markov property we pre-
sently consider T = 6 t -0+. Detailed analysis
shows that, in this case, confinement to the term
with n = 1 in (44) indeed represents a consistent
first-order approximation in the following calcula-
tion. Thus we obtain

5t
6I(t) = (R(0) —

&
[H„(t')tR(0) —CR(0)H„(t')] dt',

(45)

where on the right-hand side we have set for con-
venience, f, - ~I, =O. In view of the definition of
~ t one now has

The first term on the right hand side of (50) will be
of order ~ t and hence vanishes as 4 t-0+. Using
(49) we may do the "tracing procedure i"n the
other terms in (50) as usual. The second and third
term in (50) then are found to vanish because all
noise operators have zero mean. Thus the only
nonzero contributions in (50) arise from the last
term. Accounting for such definitions as (26), and

again noticing that Jo"6(g) dg = —,', one finds"

[ p], =8 LP pPD„„—ppxDq, —xpP„qD„p+xpxD»j . (51)

In view of the structure of our master equation the
above contribution occurs twice. The evaluation
of the other contributions will be clear now, so we
give only the respective results:

6I(0}= pp„, [P],=-
~ tr„[H„(t),6I(O)] =- '[H„p], —(52)

where p~ represents the density operator for the
noise sources only, while p solely concerns the
oscillator variables. The equation of motion of the
oscillator p can now be derived from (43} by means
of (42), (45), and (46), while H„has been given in

(36). Let us only consider a typical example of
terms involved:

[t)],=-II 'tr~ P„(t)H„(t') 6(I 0)dt'

[j],=-tt -'tr„ (A(0)H„(t')H„(t) dt'

= -It [p'pD„„—pxpD„~ —xpp D~„+x'pD» I, (53)

[ p] =5 tr~ IX„(t)tR(0)H„(t') dt'. = -It I pp D„x —pxpDp~ —ppxD„p + px Dpp] . (54)

[$],=ti tr„[H,pp„8, +D,p p„i) (t')
Jo

+ ii (t)pp„H, + fj (t)pp„g (t')] dt'.

(50)

For ease of survey we set

H~( t) = Ho + f) (t), (48)

where, regarding (36), Ho may be identified with
8 in (19) so that $ contains the noisy remainder of
H„. In the Schrodinger frame P=P(0) and x=x(0),
so that P and f(„(t) as well as x and %~(t) for t& 0

P

always commute here, whence we may simplify fl as

q(t) =%,(t)j—fr, (t}x. (49)

Inserting (46) and (48) into (47) one obtains

It is noted in passing that [ p], = [p],, and that D,~
= D~*„." We finally obtain our reduced master equa-
tion by adding twice (51) to (52)-(54). The ultimate
result may be written as

P'=-(t/ )[H P] -@ D..[P, [f, P] ]

+tI 'D,„[x,[A p] ]

+It D, [P, [x, p] ] —k D [ [xx, p] ]
+~ &p ([x pP]- —[P, px] ) ~ (55)

We rema. rk that (55), being cast in pure commuta-
tor form, evidently shows that p obeys local con-
tinuity. However, it should also be obvious now
that in constrast to t(l the oscillator operator p does
not obey such a simple commutator equation as
(42). The master equation (55) in fact cannot be
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pbtained from a SchlOdinger equation for a single-
state vector related to p in the usual manner. This
possibility is being spoiled by the dissipation-Quc-
tuation mechanism, entering in (55} through the
diffusion coefficients D„,.

tions":

dr r r-1
&r'(r (r& =r'6(r'- r),

(57)

(58)

V. THE SIGNER DISTRIBUTION

It will be convenient to represent (55) in terms
of a pseudoprobability distribution. "'9 " In the
presently considered coordinate representation
the well-known Wigner-distribution" ~ay be pre-
sented in the form"

W(p, x, t) = e'~" "&x- —,'yiP}x+2y&dy. (56)2'
If, for a pure state, we put p= ( && } and note that
&r( & =g(r) represents the wave function, we re-
cover from (56) the more conventional definition
of Wigner's distribution. The equation of motion
for S' for the damped oscillator may now be ob-
tained from (56) with the aid of (55), where we
mould like to recall the following fundamental rela-

&r'[j(r& = -ia , , 6(r

Moreover, it is remembered that H in (55} stands
for H as given in (19), taken at f = 0. We thus have
to evaluate a number of contributions of which we
consider the first by way of example in some de-
tail. The kinetic energy term &P' from P. , leads to
-8W i 1

8t 2A 2'
e""'"x--,'y "2p- p"' x+-,'y ey.

(60)

Inserting now the completeness relation (5'I) one
may obtain

d,v.y~
2A 2&5

In view of (59) one has

82
& t (

p'
I x + 2y& = -A ' —,6( t' - x v -,' y) .

BE
2

&&(&»- lylP"'l&&&&lplx+2y&-&x-kyl&(&It&&&}P'jx+-.'y&}. (61)

(62)

Inserting (62) into (61) and performing in each term two partial integrations, one readily finds
(&0 CO 82 824"'"' d( '«-"+-*'» ~ &(li(*+»-((((-*--*'(»,(» '(iil(&} (e-&-

6(2

We may further evaluate this expression as follows:

8W ih 1 "
]p ]g 8"3" " „&(((((-"+*'3'&,(&(t(&(~+is&-((((-*-»'& ( &~-»'I&&I(&}, (84&

8g
8 dy ""'"

& lysi I -+ly&.21' 8x Q ~ 8y (65)

One final partial integration with respect to y
yields

8g-
8t

8
— pS'.

8x (66)

8$"
8t

8=0 — x W', (6V)

Since the calculational procedure is expected to
be intelligible now, we merely quote the subsequent
results of the other terms from the master equa-
tion. The potential energy term ~Q'x2 from H~
leads to

while the remaining anticommutator in Po gives

88'

This takes care of the contributions from H,. The
next four terms in (55) are found to produce the
following respective contributions to the Wigner
equation, taken together as

8 8—xS'- — —PS"8x 8P (68)

" 8 fV 825' 828' 82$'
+( .+ ~ )

(69)
whereas the remaining part of the master equation



2132 H. DEKKEH.

gives rise to

85' i 8 a
xlV + PW. (70)

From (71) one now easily computes the equations
of motion for the second moments:

Adding up (66)-(70), and noticing that in view of
the fundamental fluctuation-dissipation relation
(28) the first contributions in (68) and (70) cancel
each other, one obtains
~S' 9 a

~t ~x ~P
pR'+ Q xS'+ 2~ PW

Bp

~ W ~ W ~'W+D„„,+(Dp„+D„n), +D» (71)

VI. DIFFUSION AND UNCERTAINTY

The foregoing calculations demonstrate several
points in a clear fashion. One of the most impor-
tant formulas appears to be the fluctuation-dissi-
pation relation (28). First of all, it preserved the
fundamental commutator in the Heisenberg frame
in the course of time. Then it offered the possi-
bility to find a proper Hermitian effective Hamil-
tonian, such that a transformation to the Schrod-
inger frame could be realized. And in the deriva-
tion in the preceding section it led to an appropriate
equation of motion for the Wigner distribution.
Appropriate, in the sense that (71) correctly re-
produces the classical mean value equations of
motion for (P) and (x).

But the entity 4p, does not stand on its own. It
has been clearly observed to be generated by the
quantum noise operators, which also generate,
for example, D». In view of the underlying struc-
ture of the noise operators we do expect the diffu-
sion coefficients to be nonzero in principle for
dissipative systems. This notion agrees with the
findings from Senitzky's approach, ' where a com-
mutator of noise operators prevents the killing of
the fundamental commutator of P and x, but where
a symmetrized product is involved in the zero-
point energy fluctuations.

We once more poirit out the incomplete knowledge
concerning our damped oscillator. First, no dy-
namical description in terms of a state vector
appears to be available, and second, no detailed
expression of the diffusion coefficients in terms of
known parameters has been found yet. Further-
more, it is noted in passing that the fact that (71)
is of the simple Fokker-Planck type is a direct
consequence of the structure of the noisy Hamil-
tonian (36), which also involves the Markovian
property. " Otherwise, higher-order derivatives
with respect to P and x might have appeared. But
we note again that in view of the preceding it only
seems to make sense in the present approach to
search for the simplest possible quantal descrip-
tion.

axx = 20px+2Dxx yXX px

d
=0'px =Opp —2&apx —~ axx+Dpx+Dxp &at

(72)

2
0'pp = -4A.O'pp —2Q 0'p + 2Dpp (V4)

where &„„=(x')—(x)', v» =(p') —(p)' and o~, =(px}
—(P)( x)." Let us investigate the final steady-state
fluctuations which emerge from these equations.
Clearly, one has

o~„(~) = D„„-

o»(~) =(2A) '(D»+ Q'D„„),

(7 5)

(76)

In view of the conservation of the fundamental com-
mutator by virtue of the fluctutation-dissipation
relation (28), the expression (80) is expected to be
&—,'O'. This leads to

[XD„+,'(Dp„+D )]' -h-'(v' ——,'Q'). (81)

Since the left-hand side of (81) represents a pure
quadratic form, we conclude that v ~ &Q, so that
E(~) ~ ~AQ. That is, the quantal damped oscillator
does not decay below its free-energy ground state.

If we presently assume the absence of fluctua-
tions (such as thermally induced) other than the
fundamental quantum ones, there is no means to
excite the oscillator in the long run above its
ground state. Therefore, let us set v equal to its
lower bound, i.e., ~=-,'Q. In that case, from (81)
we observe that

2(Dp„+D„~) = -AD„, , (82)

such that the uncertainty product (80) simplifies to

o'»(")&:(")= -'@'. (83)

As expected, this clearly indicates a minimum un-
certainty state. For such a state, however, it is
well-known that (Ref. 24, p. 301; also Ref. 26)

(x„,(~) =(2AQ') '[D»+(Q +4k)D„, +2&.(Dp„+D,q}].

(77)
From this we easily compute the final energy

E(~) =(2A) '[D»+(Q +2k. )D„„+A(D~„+D,p}]. (78)

We set E(~}= h v, where v is undetermined yet.
We next solve (78) for D».

Dpq =2khv —(Q'+232)D„„—X(Dq„+Dp). (79)

Having inserted this into (76) and (77) we form the
uncertainty product

o' ( )o„„( ) = Q (A v —[AD„„+—'(D „+D„)]]. (80)
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~,.= 2 ((P"-(P&)(~-(X&)+(~- &~&)(P"- (I»)& =0. (84)

Regarding (75) this leads to

D„„=p,

which upon insertion into (82) yields

Dpx+Dxp = o.
Finally, by means of (79) one thus finds

Dpp =AAQ.

Herewith, the Wigner equation for the damped
oscillator as presented in (71) reduces to

(85)

(86)

(87)

8 8 8 ~'W
x BP

PW+ 0' xW+2X Pg +k&a
Bp Bp

(88)

We make the remarkable observation that thus the
fluctuations here appear to be effectively coupled
to the momentum. Actually, this seems to be the
usual assumption in the Langevin approach of
classical stochastic processes. ' ' "'"

VII. SOME CONCLUDING REMARKS

The treatment presented above of the quantum
mechanical features of the damped oscillator
seems to be a decisive step in the continuing debate

concerning the quantization of dissipative systems.
On the one hand, our procedure strongly parallels
the fully quantum theoretic oscillator-coupled-to-
reservoir approach. But, on the other hand, it
essentially emerged from our generalized canoni-
cal quantization procedure for complex variables.

Our theory manifestly demonstrated why other
quantization approaches to the damped oscillator
have failed. Our master equation shows that no
dynamical description in terms of a Schrodinger
wave function can be expected to exist, the essen-
tial reason being the occurrence of fluctuations
associated with the dissipation.

The noise sources could not be identified in de-
tail, as a consequence of the absence of knowledge
concerning the underlying microscopic-loss me-
chanisms in the classical deterministic damped
oscillator equation on which our approach has been
founded. We have only specified some of their
correlation properties. They lead to a simple
fluctuation-dissipation relation (28) which (i) pre-
vented the killing of the fundamental commutator
and (ii) allowed us to introduce a, Hermitian effec-
tive Hamiltonian, so that (iii) we were able to de-
rive an appropriate master equation. Moreover,
the noise has been observed to guard the oscillator
from decaying below its free-energy ground state.
In other words, the quantal vacuum has not been
turned off even by classical friction.
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